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On Nonadiabatic Processes in Inhomogeneous Fields

JULIAN SCHWINGER

Columbia Pniuersity, Nev)t) York, ¹ Y.

(Received March 1, 1937)

The problem of calculating nonadiabatic transition probabilities is considered. It is shown

that the. general Guttinger equations are incorrect and lead to erroneous results in any case
other than that of the rotating magnetic field, which he considered. The corrected equations are
applied in the calculation of transition probabilities between the various magnetic states of
a field precessing with constant angular velocity.

A N atom, or a neutron, moving in an inhomo-

geneous field is acted on by a time-varying
field in the reference system of the particle. If
the variation in the field is sufficiently slow, the
atom, according to the adiabatic theorem, will

remain in the same state with respect to the
instantaneous value of the field. The problem of
calculating nonadiabatic transition probabilities
has been considered by Giittinger, ' who applied
his general equations to the case of a magnetic
field rotating with constant angular velocity.

It is the purpose of this paper to point out
that Guttinger's equations are incorrect and lead
to erroneous results in any case other than that
of the rotating field, which he considered. The
corrected equations are applied in the calculation
of the transition probabilities between the
various magnetic states of a field precessing with
constant angular velocity.

THE GUTTINGER EQUATIONS

Consider an atom whose Hamiltonian contains
certain time dependent parameters, such as
electric or magnetic field strengths. The eigen-
state of the system satisfies the equation

It should be emphasized that E (t) and @„(t)are
functions of t only in virtue of the time de-
pendence of the parameters contained in X(t)
The equations which the probability amplitudes
C„(t) satisfy are
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This expression may also be evaluated as
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If the system is nondegenerate, + may be
expanded in terms of a complete, orthogonal set
of eigenstates of K(t), vis
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where ~(t)+-(t) =E-(t)+-(t) (3)
' P. Guttinger, Zeits. f. Physik 7'3, 169 (1931);see also

E. Majorana, Nuovo Cimento 9, 43 (1932); I. I. Rabi,
Phys. Rev. 49, 324 (1936).

648

( a+- ) (m
I
B~/at Im')

m+ m'. (8)
at ) E„E~—



NONADIABATIC PROCESSES 649

Substituting this latter relation into Eq. (4), we

obtain:

aC„(m
~

aac/at
~

m')
i7i E—C =i7'i C ~

m~gm

The solution of Eq. (4) will, therefore, be a
solution of Eq. (3) with the eigenvalue (15).

The s"bstitution, + =e i~ &+ ', transforms
Eq. (14) int~:

(sin a cos &pe'~ &J,e '~ &+sin a sin pe'~ "Je '~*~

+ -os aJ.)%„'=m4„'. (16)

Save for the last term, these equations agree with
Guttinger's. Unfortunately, it does not seem

possible to find a general expression for this
additional term without actually solving Eq. (3).
In the next section, we shall solve this equation
for a rather general Hamiltonian which includes

most of the cases of interest.

Denoting e'~~4'J e '~~&, e'~» &„e '.~'&, by A, (y),
A„(y), respectively, we have

dA, (p) =ie'~ &(J,J. J,—J,)e '~*&-= —A„(p),

(17)

SO'LUTION OF THE EIGENSTATE EQUATION

In this section, we shall solve Eq. (3) for a
Hamiltonian of the form (discarding irrelevant
additive terms):

Therefore,

A, (p) =A, (0) cos p —A„(0) sin rp,

A„(y) =A, (0) sin p+A„(0) cos rp,

(18)

(10) e'~ &J,e i~ &=J, cos q —J„sin y,

e'~ &J„e i~ &=J, sin p+ J„cosq.where J is an arbitrary angular momentum
vector in units of 5, and po is the Bohr magneton.
This is the appropriate description of a magnetic
field H(t) interacting with (a) the magnetic
moment of a neutron; (b) the electronic magnetic
moment of an atom with zero nuclear moment;

(c) the nuclear moment of an atom with vanish-

ing electronic moment. Referred to a vector
coordinate system fixed in space, H may be
written

Utilizing these relations in Eq. (16), we find that
satisfies an equation independent of

VgS.:
(20)(sin aJ,+cos aJ,)4„'=m%

The further substitution,

0 '=exp (—iJ„a)4.,'0',

J,+ &'&=m+ ('), (21)H(t) =II(isin a cosrp+j sin a sin p+k cosa), (11) yields:

with FI, 6, and q functions of the time. Hence,

X= —gpoFI Jg, (12)

J|+~=m+~, —j~m~ j, (14)

where

Jr ——J H/H= J, sin a cos y

+ J„sin a sin q + J, cos a. (13)

An eigenstate + of J~, satisfying the equation

with the aid of the relations

e'~~~ J,e—'~~~ =cos 8J,+sin 8J„
e'~~~ J,e '~~~= —sin 8J,+cos 8J,. (22)

Consequently, + &" is an eigenstate of the s
component of angular momentum corresponding
to the eigenvalue m. Combining the two sub-

stitutions, we obtain, finally:

(23)—e
—iJgag —iJ71&+ (0)

will be an eigenstate of X corresponding to the
energy,

E (t) = —mgtipH(t).

Having found the eigenstates, we can sub-

(15) stitute directly into Eq. (4), without using the
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corrected Giittinger equations. One need merely around the s axis. In this case, Eq. (27) re-
evaluate duces to:

ak
i. Now,

at i
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j.ag iJ«J —s (Jy/)+, (—0) (24)

whence we obtain:
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using the second relation of Eq. (22). The only
nonvanishing expressions of this type are:

BC
(h = m(g—/i, H+h&u cos 8) C

+-,'hra sin 8((j+m)(j—m+1))'C
+-', h& sin 6((j—m)(j+m+1))'Cm+1 ~ (29)

To solve this set of equations, let us introduce
the eigenstate 4, defined by

C' = EC-(t)+-(0). (3o)

It is easily verified that C (t) satisfies a differential
equation of Hamiltonian form, namely:

ih 4=—I
—(g/ipFF+hco cos 8)J,+h~ sin 8J, I C.

Bt (31)

In terms of the angle 0, defined by
( 8'0

[
= —i(() cos 6m,

at ) ken sin 8
tan O~=

k(u cos 8+gIJ,pII
(32)

a+m —i)
~

= (ij sin@ —a)-', ((j+m)(j—m+1))'* this may be written
at )

f a+m+z)
(i(/ sin 0+a)-, ((j—m) (j+m+1))

at
(26)

Hence, the differential equations for the proba-
bility amplitudes become:

BC
ih +mgppHC = —hj cos emC

Bt

8 ken sin 8
ih C= — — (cos O~J —sin O~J,)C. (33)

Bt sin O~

8
ik—c'=—

Bt
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sin 0+

(34)

the solution of which is

The transformation, C =e'~~ C', simplifies this
equation to

+-,h((( sin 8+i&)((j+m) (j m+ 1))—'*C„ i

+-,h(j sin 8 —ia)((j—m)(j+m+1))*'Cm~(. (27)
5 C &@ (0)s—(i/k) &~' i (33)

THE PREcEssING FIELD

The most general field giving rise to a set of
equations for the C with constant coefficients
satisfies the conditions:

Here, the C ' are arbitrary integration con-
stants, and

leo sin 8

sin O~

dt
=0 8=0, j =+=const. , (28)

m(g'/io'FI'+2g/ioH— hu cos 8+h'aP)'* (36).
Therefore,

which is the mathematical description of a
field precessing with constant angular velocity co

siJyBQ C &+ (0)s—(i/k)Em (37)
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from which we obtain

C (t) =(@„&o&,C)

=p(m~e' ~ ~m')C„'e-&@"&e "'
m'

The integration constants C ' are easily evalu-
ated in terms of the initial conditions, By Eq.
(38) we have

C~(0) = Q(m~e'~~s~m')C„',

represented in terms of the Pauli matrices, i.e.,
J=-',e. Since (o, cos O' —o, sin O~)'=1, we have

W(m, m'; t) =
~

m' cos—(
E. 25

'Y~

+i(a. cos 0—o sin 0) sin —m
~

. (45)
2k i

Therefore,

whence we obtain

P (m
~

e-'~ s
~

m') C„(0)
m'

(m~e ' [m')(m'~e* )m")C„'
m' m"

W(-,', ——,'; t) = W( ——'„-', ; t) =sin' 0 sin'—
2k

5'co' sin2 8
sin'—

g pp~FI +2gppIIA, M cos 0+5 (g' 25

X (g'tlo'H'+2guoHko& cos 8+5'ooo) l. (46)

=C ',

by the matrix law of multiplication. Hence,

C„„(t)= P (m(e' ~s&m')e "'"&e "'

(40) If these transition probabilities are written as
sin' -', ~, it is evident that

W(-,', o; t) = W( ——',,
——', ; t) =cos' -', n. (47)

The uncorrected Giittinger equations result in

,z„s
~ ) C (0) (41) an umklaPPu&akrsheinlickkeit which dePends only

upon 2 namely
e ("~) ' is the diagonal matrix element of the
operator e&@"»'~~ where 7 denotes (g'u 'H'
+2guoHho& cos 0+koo&o)'*. Therefore,

$2~2 sjn2 g
WP, ——,';t)=

g'p 'II2+5'aP sin' 8

tsin—2

If the system is initially in a state with mag-
netic quantum number m, i.e., C„(0)=1, the
probability that the system is in a state m' after
a time t is:

W(m, m', t) =
)
(m'&e' e&'~"»' 'e ' o )m) (

m~ [e&'&k»'( -' s—~ "" & [m) ~'. (43)

It is immediately verified that

P W(m, m', t) = 1.
m'

(44)

In the simple case of j=-,', the matrix element
(43) is easily evaluated. An angular momentum
with j=—,

' can be considered as a spin and

C (t) =P(m)e' o (m')(m')e&""»' &m")

X (m"
~
e '

~

m"') C„~ (0)

=P(m~e' e"'"»' *e ' ~m')C„(0). (42)
m'

X (g't&o'H'+5'o&' sin' 8)&. (48)

A discussion of the measurement of magnetic
moments by means of a precessing field, which
depends upon the fact that the transition proba-
bilities involve co explicitly, has been given by
Professor Rabi in an accompanying paper.

The evaluation of the matrix element (43) may
be carried out, for an arbitrary j, by a method
which will not be given here. The results are in
complete agreement with those obtained from
Majorana's general theorem (see the accom-
panying paper of Professor Rabi).

In conclusion, the author wishes to express
his indebtedness to Dr. Lloyd Motz for pointing
out the contradiction between the results ob-
tained by Professor Rabi and those obtained
with the Giittinger equations, and to Professor
I. I. Rabi for his continued interest throughout
the course of this investigation.


