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Extensive calculations based on the approximation of
single particle wave functions (the Hartree method) have
been made for the nuclei between He' and 0" using the
general symmetrical interaction operator given by Eq. (1),
The Coulomb interaction is treated as a small perturbation.
Secular equations are avoided by the construction of space
wave functions in the normal state conhgura'tion belonging
to irreducible representations of the symmetric group.
These functions yield an energy matrix which is diagonal
in the ordinary and Majorana interaction energies. The
contributions of the spin exchange and Coulomb operators
to the energy terms are found by a 6rst-order perturbation

calculation. Although the general symmetrical operator
contains several parameters as yet undetermined, only
those parameters which have been fixed by consideration of
the two, three and four particle problems are involved in
the energy differences within the group of low lying terms
belonging to the normal state con6guration. These term
differences are identical with'those recently computed for
unsymmetrical interaction operators of the saturation
type. New results for mass defects, excitation energies and
energy relations between isobars are compared with
experimental values.

I. INTRoDUcTIQN metrical interaction operator'

i'=Z i' =2((& —g —gi —g2)&THEORETICAL description of many nu-
clear properties is made possible by recent

progress in the knowledge of nuclear forces.
Extensive calculations based on the approxima-
tion of single particle wave functions (the
Hartree method) have already been made' for
the nuclei between He' and 0". This method
yields results for mass defects, excitation energies,
energy relations between isobars, spins and mag-
netic moments which are on the whole very
encouraging. In the present paper we present
additional calculations based on the Hartree
approximation for the same series of nuclei.
Our procedure differs from that of reference j. in
two respects:

1. Ke employ throughout the general sym-

+O'' Q'+g~~+g~Q' I ~(r') (~)

which does not distinguish between like and
unlike particle interactions. The Coulomb re-
pulsion between protons is treated separately as
a small perturbation. Although the general
symmetrical operator contains several param-
eters as yet undetermined, only those parameters
which have been fixed by consideration of the
two, three and four particle problems are in-
volved in the energy differences within the group
of low lying levels. For the low terms, in fact,
the separations are identical with those given by

'G. Breit and E. Feenberg, Phys. Rev. 50, 850 (1936).
The operators in Eq. (1) are defined by the equations

P''f{t ~ og'$' ~ ~ tg s ~ ~ 0) f( ~ ~ og.s ~ I og s ~ ~ 0)

Q f{I ~ 0 g $ ~ 4 0 g s 0 ~ 0 ) f( ~ ~ 0 g s 0 0 0 g s t 4 ~ )
* Margaret E. Maltby Fellow of the A. A. U. W.
' E. Feenberg and E. signer, Phys. Rev. 51, 95 (1937).
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the simple symmetrical Hamiltonian containing
only Majorana and Heisenberg forces. From this
circumstance it is apparent that the experi-
mental excitation energies cannot be .used to
reduce the ambiguity which remains in the
interaction operator after the restrictions im-
posed by the two, three and four particle
problems have been taken into account.

2. Ke avoid secular equations by making use
of the "correct" space wave functions belonging
to the normal state configuration to construct an
energy matrix which is diagonal in the ordinary
and Majorana interaction energies. Because
there is no spin-orbit interaction in Eq. (1) the
total spin and the total orbital angular mo-
mentum are. separately constants of the motion.
If the Coulomb and spin exchange forces are
neglected (Wigner's "first approximation")' the
Hamiltonian commutes also with the permuta-
tion operators which interchange the space
coordinates of two or more particles. Conse-
quently, in this approximation, the space part of
an eigenfunction belongs to an irreducible repre-
sentation of the symmetric group and is charac-
terized by a "partition" quantum number in,

addition to the orbital angular momentum quan-
tum numbers.

The presence of Coulomb and spin exchange
forces spoils the "partition" quantum number by
mixing together functions belonging to different
partitions. The contributions of the Coulomb
and spin exchange energy operators to the energy
matrix are small, however, and are given without
sensible error by a first-order perturbation calcu-
lation in which the "partition" functions are
used as zero-order wave functions. Ordinarily
there is only one wave function belonging to the
normal state configuration with a particular set
of partition and angular momentum quantum
numbers. Each set of quantum numbers is
associated in this approximation with an energy
term whose value is the expectation value of
the Hamiltonian operator corresponding to the
appropriate zero-order wave function. The re-
sulting expressions for the term values are
extremely simple. All the excitation energies
computed from Eq. (1) can be expressed in
terms of two integrals with simple rational
(in most cases integral) coefficients.

In reference 1 the sets of functions with

.
' E. signer, Phys. Rev. 51, 106 (1937).

definite pairs of spin and orbital angular mo-
mentum quaritum numbers were used to con-
struct secular equations, often of the second and
third order, for the energy terms. The linear
combinations of these functions which diagonal-
ize the energy matrix are identical with the
partition wave functions so long as the Coulomb
and spin exchange forces are neglected. If the
contributions from these forces are included in
the secular equations the correct linear com-
binations differ only slightly from the partition
wave functions, and the energy values obtained
from the two methods of calculation coincide
except for negligible corrections.

II. MATRIX ELEMENTS OF THE INTERACTION

ENERGY WITHIN THE P SHELL

That part of the energy arising from inter-
actions between particles in the p shell can be
expressed as a linear combination

of the two integrals

I.=j I xinx, 'R„(r,)'R„(r2)'J(ri2)dridr2,

E=) J
"xix2y'iygR„(ri)'R, (rg)'J(riu)dridra,

in which xR„(r), yR„(r), sR„(r) are the normal-
ized single particle wave functions. There exists
a useful approximation in which the range of
the forces is taken to be large in comparison with
the size of the nucleus. In this approximation

I.=J(0), E=O. (4)

Since for a given number of particles in the p
shell the coefficient of I in the expression for a
term value depends only on the quantum
numbers, it is identical with the corresponding
coefficient of J(0) in the approximation of long
range forces. This latter quantity can be de-
termined directly from the number of particles
and the quantum numbers without explicit use
of the wave functions. For a nucleus with n
particles in the p shell:

(v(1) = -,'n(n —1),

~(&) = 2n(n —1)x(&)/x(&)

~(Q) = -,'n(n -1)x'(Q) /x'(6),
~(I'Q) = —2n(n —1)x"(R) /x" (&).
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Here x(P) and x(8) are the characters corre-
sponding to a transposition and the identity,
respectively, in the irreducible representation of
fhe symmetr1c group to wh. 1ch the space pRrt
of the wave function belongs. This also serves as
a definition of the pl imed symbols 1f spi)l is
substituted for space; for the double primed
symbols substitute isa)op@' sp)e for space. The
Rntlsymmetry of the wRve functions 1n the com-
plete set of space, spin and isotopic spin coordi-
nates' s implies the relation PQR = —1 . or
PQ = R. Thi—s relation has been used in writing
the last line of Eq. {5).

The derivation of Eq. (5) for orcHnary forces
is trivial since there are n(n —1)j2 interaction
terms and each contributes J'(0) to the total.
For the exchange forces the derivation given in
reference 1 (Eqs. (4)—(8)) is applicable to all
three types of exchange if J(r») is replaced by
J(0) in Eqs. (4) and (5) and the coordinates
x~, ~ » ~, x„suitably interpreted Rs space, spin or
lsotoplc sp1n coord1nates Rs the cRse requ11es.

The values of x(P)/x(8) for 2=n=6 are to be
found in Table II, reference i. To compute
cu(P) for 6 &n=12 one may use the relation con-
necting the energy values corresponding to I
particles ln the p shell with those corresponding
to 12—n particles. This relation is given by Eq.
(9) of the present paper. The coefficients co(Q)

may be found d11 ectly by R straightforward
comp utRtlon:

~(Q) =Z Q'i =2K(1+a'.ai)

=k))())—1)—I I Za" —(Z~')'I
=5(5+1)+-'n(n —4).

Similarly

&o(PQ) =P P "Q = T(T+1)—"-'))()—) —4)

Here 5 is the total spin and T the total isotopic
spin. The possible spin and isotopic spin values
which can be associated with a given partition
1n the spRce coordinates Rr e l1mlted by tlM

exclusion principle. The allowed quantum num-
bers can be found by a systematic procedure'
which is merely an extension of the usual one

4 J. H. Bartlett, Phys. Rev. 49, 102 t'1936).
~8. Cassen and E. U. Condon, Phys. Rev. 50, 846

(j.936).
6 P. A. M. Dirac, Quentin Mechanics I'Oxkird Univer-

sity Press, j,930) p, 215.

for atomic spectra. This procedure is described
ln Appendix 2.

The coef6cients of X vary from term to term
wlth1n R pRrtlt1on. TlMre exist) howeve1, two
relations connecting the coeKcients of I. Rnd E;
which are independent of the quantum numbers. '

v(1) —v(P) =8 I ~(1)—~(P) I

y(Q)-~(PQ) =3( (Q)- (PQ)I.

To prove Eq. (8) we examine the integral

(8)

8

ga;P„„J * ~ .
) xi;x);R„(ri)R„(rm)

XJ(rim)(1 —Pig)xi xg.R„(ri)R„(rs)dridr),

1n wh1ch &~I =&~) &~2=/~) &~3 =~~) takes the
values 1 and 2 and the summation extends over
i,j, ))), n The g.eneral quadratic tensor (Pa;;xi,x);

Q

for example) may be written as the sum of two
terms, one symmetric and the other Rntisym-
metric in the subscripts 1 and 2. It is clear that
th.e 1ntegI Rl VRO1shes lf e1thel tensor 18 sym"
Inetr1c, so thRt the two tensoI"8 may be replaced
by their antisymmetrical parts and the operator
(1—Pin) by the factor 2. Thus the integral takes
tlM form

I"

Constant X) ) (xiy) —xmyi) xiy)R„(ri)'

yR„(r))'J(r»)dridrm ——Constant X (I.—3X).

This sufFices to prove both parts of Eq. {8)since
the presence of a spin exchange operator does
not RRect the argument.

The energy 'matrix for a conhguration con-
sisting of a closed P shell minus I particles is
related to th.e corresponding matrix for the
con6guration p" by the equations

(il ilj)» „——(jl1li)„+(6—n)(11L—18K)b;;,

()IPlj)»- =(jlPI)) +(6—N)(L+12&)~i.
(9)

('IQI j)»-.= VIQI')-+(6 —)(4L —12&)~'

('IPQI j)»-.=(jlPQI')-
+(6 n) ( 4L+ 12K)b;—,. —

The states designated by the quantum numbers
)', and jmay be any states of a p shell conffgura-
tion subject to the conditions that their wave
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functions are orthogonal for i 4j and that the
exclusion principle is satisfied.

The complete set of matrix elements of the
interaction within the p shell for the "low"
partitions together with the spin and isotopic
spin quantum numbers is contained in Table I.
Table II gives the same quantities for the
partitions consisting of fours and two additional
addends. The "partition" wave functions used in

computing the energy matrix are discussed in

Appendix 1.

Very often the matrix elements of Q and IQ
can be found without explicit use of the spin
functions. The interchange of ordinary and
isotopic spin variables in the wave functions
simply interchanges the spin and isotopic spin
quantum numbers. Therefore the matrix ele-
ments of I'Q= —R are just the negatives of the
corresponding matrix elements of Q with spin
and isotopic spin interchanged. The low terms
of the configuration p' will serve as an example.
Since both quantum numbers have the value 1/2

TABLE I. Matrix elements and quantum numbers within the group of lou terms.

coL+yK

n PARTITION T

1/2

0

5 4+1 1/2

4+2 0

6 4+2 1

NUCLEUS

L16

He' Li' Be'

Li', Be'

Be'

Be', B'

B10

Bel0 B10 ( 10

S STATE

3S
3D

0 'S
1D

1/2 2P
2P

p
1D
16

1/2 'P
2D
2P
2G

1 3S
3D$
3Dn
3P
36

P lS
1DI
'Dzi
lp
1G

L+2K
L —X
I.+2KI —X

3L+2K
3L—3X

6L,+4K
6L,+K
6I.—6X

SL+9K
SI.+7X
5I.+4K
SI

SI.+16X
5L+13X
5L+13X
5I +10K
SI.+6X
SL+16K
5L,+13E
5L+ 13K
SI.+10X
5I.+6X

I.+2K
I.—K
L,+2K
L—K

3I.+2X
3L,—3X

6L+4K
6L+K
6I.—6K

10I.—6K
10L—8K
10L—11E
10L—15K

15L,—14K
15I.—17K
15L—17K
15L—20K
15L—24E
15L—14E'
15L—17E
15I.—17K
15L—20X
15L—24X

L,+2K
L—K—I.—2K—L+K

—2L, +6K—2L+6K—2L+6K-—2L, +6K
—3L+29X/2—3I.+13K—3L+53E/5—3I.+10X—3I.+12K—5L,+19X/2—SL+11K—5I.+67X/5—5L+14X—SL+12X

L+2K
L, —X—L—2X

—L+K

0
0
0

2I.—6K
2L —6K
2L —6E
2L —6K

5L—19X/2
5I.—11X
SI.—67K/5
5L—14K
SL,—12E
3L—29E/2
3L—13E
3L—53K/5
3I.—10K
3L—12K

4+3 1/2 B11 Cll 1/2 2P
2D
2P
2g

6L+21K 21L —24K
6I.+19K 21I —26X
6L+16K 21I.—29X
6L+12K 21I.—33X

—6L+ 18K—6L,+18X—6I.+18K—6I +18K

6L—18X
6L —18X
6I.—18X
6I —18E

9 4+4+1 1/2

1P 4+4+2 P

10 4+4+2 1

11 4+4+3 1/2

12 4+4+4 0

C12

N14

C14 N14 Q14

N15 Q15

Q16

0 'S
1D
16

1/2 2P
2P

1
'D

0 1S
1D

1/2 2P

0 lS

8I.+28K
8L+25K
8L+ 18K

6L+38K
6L,+33X

5L+SOK
SL,+47K
SL+50K
51.+47X

28L —32K
28L —35X
28L, —42K

36L,—52X
36L,—57K

45L—70X
45L—73X
45L, —70X
45L—73X

—8L+24K—8L+24K
—8L,+24K

—12L+36K—12L+36X

—15L+SOK—15I +47X—17L+46X—17L+49X

8L—24K
8L —24E
8L —24K

12L—36E
12L—36X

17L —46K
17L—49K
15L—SOX
15I.—47X

5L,+60X 55L —90E —20I.+60K 20L —60K

6L+72K 66L,—108K —24L+ 72K 24I.—72X
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TABLE II. 3XIatrix elements and quantum numbers for the partitions consisting of 4's and two additional addends.

n PARTITION T

2 1+1 1
2 1+1 0

3 2+1 3/2

4 3+1

4 3+1

4 3+1 0

3 2+1 1/2

3 2+1 1/2

NUCLEUS

He' Li' Be'
Ll'

He', Li', Be', B'

Li', Be'

Li', Be7

Li', Be, B

Li', Be, B

Be'

3/2

1/2

4p
4D

3p
3D
3F
1P
1D
1F
'P
'D
3F

S STATE

1 3P
0 'P

1/2 5K
3X
SK
3K
SX
3X

2L+7K
2I +5K
2L+2X
2I +7K
2L+SK
2L+2K
2L+7K
2L+5K
2L+2X

L—3E
L—3K

3L—4X
3L—6K
3L—4K
3L—6K
3L—4E
3I.—6X

6I —SK
6L—7E
6L —10X
6L, —SK
6L—7E
6I —10X
6I —SX
6I.—7X
6I.—10K

—I.+3K
L—3K

—3I.+4X—3L+6X
SX
3K
0
0

—2L+6K—2L+6X—2L+6K—2I.+13K/2—2I.+X—2I.+4X——,'K
5X
2X

L—3K—L+3E'

—SX—3E
3L—4K
3L—6X

0
0

2L —6X
2L —6K
2I —6X

-', X—SK—2X
2L —13K/2
2L —X
2L—4K

3+2 3/2

5 3+2 1/2

5 3+2 1/2

6 3+3
and

4+1+1
6 3+3

and
4+1+1

Li', Be', B', C'

Be', B'

Be', B'

Be10 B10 C10

B10

1/2

3/2
2F
4P
4D
4F
2P

3p
3F

1P
lF

2L+ 12K
2L+ 10K
2L+7K
2L+ 12K
2I.+10X
2I.+7K
2L+12X
2L+ 10K
2L+7K

3L+17K
3L+12K

3L+17K
3L+12K

10I.—12K
10I.—14K
10L—17X
10L—12X
10L—14X
10L—17X
10L—12X
10L—14X
10I.—17E

15L—19X
15L—24X

15L—19X
15I.—24K

—SL+39E/4—SL+25K/2—SL+11K—2L+45X/4—2L+17X/2—2I.+10X—2L+6K—2L+6X—2I.+6K
—SI.+15K—5L+ 15K

—3L+9X—3L+9E

2L, —45X/4
2L —17E'/2
2L —10X
5L—39X/4
5L —25X/2
5L—11K
2L —6X
2L—6K
2L —6K

SL—15X
SI —15E

3L—9K
3I —9K

7 4+2+1 1/2

7 4+2+1 1/2

B11 Cll

Bll C11

7 4+2+1 3/2 +pi& Bii 1/2

3/2

1/2

2P
2D
2F
4P
4D
4F
2P
2D
2F

3L+24K
3L+22E
3L+19K
3L+24K
3I.+22K
3I.+19X
3I.+24K
3I.+22K
3I +19E

21L—30X
21L—32X
21L—35X
21I —30K
21L—32X
21L—35K
21I.—30K
21L—32K
21L,—35E

—9L+87X/4—9I +49E/2—9L+23X—6L+93K/4—6L+41X/2—6L,+22X—6I.+18X—6L+ 18K—6L+ 18K

6L —93K/4
6L—41K/2
6I.—22K
9I.—87X/4
9L—49X/2
9I.—23K
6L—18X
6I —18X
6L —18X

8 4+3+1 1

8 4+3+1 1

9 4+3+2 3/2

9 4+3+2 1/2

9 4+3+2 1/2

10 4+3+3 1
10 4+3+3 0

B12 . ( 12 N12

B12 C12 N12

C12

B13 C13 N13 Q13

C", N"

C13 N13

C14 N14
N14

1/2

3/2

1/2

3P
3D
'F
1P
lD
lF
'P
3D
'F

2P
2D
4P
4D

2D

'P
1P

4L+31E
4I.+29X
4L+26X
4L+31K
4I +29E
4L+26K
4L, +31E
4L+29X
4L+26K

3L+41K
3L+39X
3L+41X
3I +39E
3L +41K
3I.+39X

3L+51K
3L+S1K

28L —41X
28L —43K
28L —46E
28I.—41X
28L —43X
28L, —46K
28L, —41E
28L —43E
28L —46K

36L—58K
36I —60X
36I.—58E
36L—60X
36L—58K
36L —60X

45L —75K
45I.—75X

—10L+30K—10L,+30X—10I.+30K—10L+61K/2—10I +25K—10L+28K—8L+47X/2—8I.+29X—8I +26E
—15I.+40K—15I.+42E—12L+41K—12L+3.9K—12L+36X—12L+36K

—17L+51K—15L+45K

10I —30K
10L,—30K
10L—30K
8L—47K/2
8L—29X
8L —26K

10L—61K/2
10L—25K
10L—28K

12L—41E
12L—39X
15L —40E
].SL—42K
12L- 36K
12L—36K

17L—51X
15L—45K
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TABLE III. Energy differences +I&bin the'group of lou terms.

'n NUCLEUS
TRANSI-

TION ENERGY DIFFERENCE

2, 10 Lio, N'4

Heo, Lis, C14, N14
3, 9 Liv, Bev, Cis, Nis
4, 8 yes

5, 7 geo, Bo, Bii, Cii

6 810

Beio Bio Cio

sD —sS
iS-sS
iD sD
iD iS
sp sp
iG
1D iS.P
2P 2P
sD —sp
sG sS
sp sS

sDz SS
sDzr —sS

sS
iDz —sDz

iDzr —sDzz
1F sp
iG sG
iG 1S
ip is

1Dz iS
iDzr —iS

—3K—Gi (2L +4K)
-Gi(2L —2K)—(1—2Gi) 3K—(1—Gi) SK—(1—Gi) 10K—(1—Gi) 3K—(1—Gi,)9K—(1 —Gi) SK—(1—Gi) 2K—(1 —3Gi/4) 10K—(1 —Gi/4) 6K—(1 —Gi/2) 3K—(1+3Gi/10) 3K—Gi(2L+SK)—Gi(2I +2K)—Gi(2L —14K/5)—Gi(2L —4K)—Gi2L—(1—5Gi/4) 10K—(1 —7Gi/4) 6K—(1—3Gi/2) 3K—(1—23Gi/10) 3K

4.8 mes
6.3
4.2
2.7
6.3

12.6
3.8

11.3
6.3
2.5

13.4
9.1
4.3
5.2
6.6
5.6
3.9
3.4
49

11.7
5.9
3.2
2.4

III. REDUcTIoN oF THE NUMBER oF FREE PA-
RAMETERS IN THE INTERACTION OPERATOR

We interrupt the discussion of the energy
matrix to show that the total energies of the low
terms involve the exchange parameters g, g1, gq

in only two linearly independent combinations
and furthermore that only those parameters
which have been fixed by consideration of the
two, three and four particle problems enter into
the expressions for the excitation energies within
the group of low terms. Let

61=g+g2)
62= g —g2i

G3 ——1+g—Sgc —3g2.

the matrix elements of Q and Ic! are identical, and

~(Q) = —~(PQ) v(Q) = —v(PQ).
According to Eq. (8) and the already determined
values of c0, 2y(Q) =6co(Q) = 12. Thus the matrix
elements of Q and PQ are 2I. 6E and 2I.—+6X, —
respectively. In other cases it is convenient to
compute the interactions between like and unlike
particles separately using the relations

= —P
(like particles),

Qc2= (1+~i ~2)/2
P Q P (1+ ) /2

(unlike particles)

If the total spin of either group of like particles
vanishes the terms in 01 o2 contribute nothing
to the matrix elements. When this happens only
the space wave function is needed for the
evaluation of the energy matrix.

The parameter Gr determines the singlet-triplet
splitting in the deuteron the binding energy of
the deuteron and the scattering cross section of
hydrogen for slow neutrons require Gr 0.22.
The inequality G3~0 must be satisfied if the
theory is to give the binding energy of heavy
nuclei proportional to the number of particles. '
Nothing is known about 62. By direct substitu-
tion we find

(1—g —gc —g2)P+gPQ+gci+g2Q
= (1—'Gr)P+GgPQ+Gg(1 —P) Q/2

+ (1—Gc —G3) (1 P) /5— (12)

+Gm(1 —P) (4 —SQ)/10.

The matrix elements of P(1—P;;)(4 —5Q,,)J(r;;)

vanish for the group of low terms. The truth of
this statement is obvious for the contributions
from the interactions within the s shell. For the
interaction between shells it follows from Eq.
(16). Finally the reader can readily verify by
the use of Table I that the statement also holds
for the interaction within the p shell. Thus, so
long as only the low terms are considered, the
operator in Eq. (1) may be replaced by an
e6'ective interaction operator

V'=
Q I (1 Gg)P„;+Gr—Pc;Q;;
i)j

+ 5 (I+Gr Ga) (1—P'~) I
—I(r ~) (13)

For an s'p" configuration the matrix elements of
the last term in Eq. (13) depend only on the
partition quantum number and can be com-
puted at once from the cu's and Eq. (8). Can-
sequently the separations of the low terms in the
Hartree approximation depend only on the
simple interaction operator

This symmetrical operator containing only
Majorana and Heisenberg interactions has
already been discussed in reference 1.

In Table III the separations of the low levels
are given in terms of the single parameter 61,.
The numerical results are computed from the
values of L, and X given in Section V.

These results (as deduced from the secular
equations) have already been discussed and
compared with experiment in reference 1, Some
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additional remarks supplementing the earlier»B« IV. Ma/re elements 0f the Coulomb interaction
nothin the p shell.

discussion will be found in Section VI of this
paper.

IV. REMAINING CONTRIBUTIONS TO THE TOTAL

ENERGY M.ATRIX

The diagonal matrix elements of the operator
V for interactions within the s shell are simply
6(1—Gi)B where

B=J"~ ~ ~ )IR,,(ri) R, (r~) J(rg2)drgdr2, (15)

the average value of J(r) in the s shell. From
the interaction between a, single p particle and
the closed s shell we obtain the matrix elements

STA.TE

P
P

P
Dr
G

S
Dr
Dzx
p
G

Bea
Lc+2KC
Lc —Kc

Be'
Lc+2Kc/3
Lc —Kc

Be'
L +2K /3
Lc+Kc/6
LC-Kc

Bes
Lc+2KC/3
Lc+2Kc/5
Lc -Kc
Lc —Kc

Be'o
Lc+3Kc/2
Lc+Kc/2
Lc 3Kc/10
Lc —Kc
LC —Kc

C14
6Lc —8Kc
6Lc —11Kc

C13
6LC —28Kc/3
6L c —11Kc

6Lc 28Kc/3
6Lc 59Kc/6
6LC 11Kc

B0
3Lc —14Kc/3
3Lc —76Kc/15
3Lc —14Kc/3
3LC —6Kc

B10
3Lc —19Kc/4
3Lc —5Kc
3Lc 23KC/5
3Lc —5Kc
3Lc —6Kc

N14
10Lc 20Kc
10Lc—20Kc

N13
10Lc—20Kc
10Lc—20Kc

Bl1
3Lc —14Kc/3
3Lc 76Kc/15
3Lc —14Kc/3
3Lc —6Kc

C10
6Lc 17Kc/2
6Lc —19Kc/2
6LC —103Kc/10
6Lc —11Kc
6Lc —11Kc

014
15Lc 30Kc
15Lc 30Kc

C11

6Lc —28Kc/3
6Lc 48Kc/5
6Lc —1 1Kc
6Lc —11Kc

E,„(1)=4C—D, E,„(Q)=2C 2D, —

E,„(P)=4D C, E,„—(I'Q) =2D 2C, —

where

C= t xi'R„(rr)'R, (r2)'J(ri2)dr&dr2,*

D=)f )t x,x,R„(r,)R„(rm)R, (rg)

(16)

(17)

states resulting from the spin exchange forces,
and can therefore be neglected.

The correct kinetic energy operator is the
difference between the sum of the single particle
operators and the kinetic energy of the center of
gravity:

—2Z~'+ (E&')'=
2(n+4)

XR,(r,)J(r„)dr,dr2.

The contribution to the energy terms from the
interaction between the s and p shells is then.

E,„(V)=n{3(1—Gg)D+Gg(D —C) I. (18)

The Coulomb energy matrix can be expressed
in terms of the integrals already de6ned with the
interpretation of J(r&~) as e'/r&~. We shall denote
this particular choice of J by adding the sub-
script c to the symbols used for the general
integrals. It is clear that the Coulomb interaction
within the s shell gives rise to the energy B.,
and that between the closed s shell and a single

p proton to 2C, —D,. The matrix elements of
the Coulomb interaction within the p shell are
given in Table IV for the group of low terms.

The matrix of the Coulomb interaction is
diagonal in the two D states of B", but not of
Be" and C". For the latter nuclei. the non-
diagonal matrix element connecting the two D
states has the value (21/20)iE'. , which is small
in comparison with the separation of the D

( iE~'+- 2 ~' ~ (19)
n+4) n+4 ~) i

Here, as in reference 1, the unit of length is
h/(3llrn)''c and the energy is measured in units
of rnc'. The last term of Eq. (19) is well known
in atomic spectra. ' lt has nonvanishing matrix
elements only when i and j refer to like particles
having parallel spins and "azimuthal" quantum
numbers differing by one unit. The contribution
to the energy is therefore one term per particle
in the p shell, so that the total effect is pro-
portional to n/(n+4)

V, NUMERICAL CALCULATIONS

The numerical analysis is most conveniently
carried through using the familiar oscillator
functions

R,(r) =ce " R„(r)=c'e
' D. S. Hughes and C. Eckart, Phys. Rev. 36, 694 (1930).

J. H. Bartlett and J. J. Gibbons, Phys. Rev. 44, 538
(1933).,
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together with J(r) = —72e "', a ''=2.25&(10 '3

cm, as in reference 1. A variational calculation
using these functions was'made for the ground
state energies of the series of nuclei Li' to 0".In
this calculation the terms proportional to G3
were omitted. The energy has a broad minimum
for values of 0 and v. ranging from 0.55 to 0.70; no
sensible improvement results from varying both
o- and 7 independently. It thus seems reasonable
to take 0 = r=0.6 throughout. With this choice
of . parameters the integrals occurring in the
potential energy have the following values:

B= —16.53
C = —11.37
D = —5.17
I.= —11.04
E'= —1.61

52c, B,= 1.10 mc',
L„=0.89
E,=0.055

2C, —D, = 1.64
(20)

A variational calculation for the total energy of
Li' using this function gave a small improvement,
in no case greater than 4 mc'. This result is in
agreement with the work of Inglis' who finds
that about half the binding energy of Li' is
accounted for by the effect of excited configu-
rations. It thus appears necessary to consider the
interaction with excited configurations to obtain
an appreciable increase in the theoretical binding
energies. One result of interest which emerged

' D. R. Inglis, to appear in the Phys. Rev.

The general expressions for these integrals in
terms of 0 and r are to be found in reference 1.
The kinetic energy is also discussed there, with
the exception of the last term in Eq. (19). This
term makes only a small contribution to the
total energy, being equal to 9.6n/(33+4) 9)3(:3 if
0.= 7.=0.6.

It is, however, not necessary to use separate
wave functions for the individual particles within
a shell. An attempt was made to improve the
energy calculation by the use of functions of a
more general character involving a greater
number of parameters. A symmetrical linear
combination of oscillator functions with different
values of ~ may be substituted for the simple
product functions without affecting the validity
of the general analysis. For example, the radial
wave function for Li' may be

&(&1 +&2 +&3 +&4 ) {S &&(&5 +&6 )+$S a7 (&5 +&6 )
I

from the calculations with the more general wave
function was the essential constancy of the
integral X over a wide range of 0, r, v' values.

VI. D IscUss loN

'tttIte add a few remarks here supplementing the
discussion in reference 1. The theoretical total
energies calculated by the Hartree method are all
so small that a direct comparison with the
experimental values is useless. To obtain a
significant comparison the theoretical values are
modified by the addition of a linear function of n
chosen to fit the experimental binding energies of
He' and 0". Results obtained in this way are
shown in Fig. 1. The ground state of the most
stable nucleus of each mass number is plotted
for two values of G3, namely G3=0 and G3=1,
represented by the two solid curves. The curve
labeled "coeKcient" of G3 is constructed by
subtracting a suitably chosen linear function of n
from the actual computed coefficient of G3.
Unquestionably the whole procedure is arbitrary;
nevertheless we venture to state the plausible
conclusion that G3 must be small in comparison
with unity.

The experimental binding energy differences
(C"—B") and (N" —C") are very nearly equal
while the corresponding quantities for other
adjacent pairs of isobars with odd mass differ
appreciably. ' This fact finds a simple explanation
in the Eqs. (21) and (22) which are constructed
from the normal state energies listed in Table IV:

(N"—C")—(C"—B")=I. —6X (21)

(O15 N15) (N13 C13)
—(Cll Bll) (B9 Be9) (22)
=I.,+ -'3X,.

In Eq. (21) the Coulomb exchange integral E, '

' Reference 1, Table VIII.
Added in proof: All the" experimental" energy differences

in Table VIII except that for H3 —He3 are incorrect. The
correct values are 1 mc' larger than those given in the table.
The discrepancies between the calculated electrostatic and
the corrected experimental energy diff'erences average about
thirty-five percent. This discrepancy can be reduced by
using more concentrated wave functions, but at the expense
of exaggerating the four-shell structure and the Li8 —Be'
energy difference. The corrected experimental energy differ-

ences, ,however, reduce materially the disagreement be-
tween the theoretical and observed singlet-triplet separa-
tions in the ten and fourteen particle systems.
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below the singlet is g2&0.015 or G2~0.19. The
necessity of this condition is weakened somewhat
by the existence of small spin-orbit interactions
which lower the 'P2 level while leaving the
singlet level unchanged " "

For the Li'('P), Be'('S) mass dilference we find

—-', (1 —Gi) (16I.—3E) —5(Gg+2G3) (L, —3E)
—L,——,'E,—2 C,+D,+nI —II'

~25.8 mc'+2. 5(G2+2G3) mc' (25)

This agrees very well with the total energy
release of 14 Mev found experimentally, if 62
and 03 are small in comparison with unity. The
analysis also leads to the equation

I Li'('P) —Be'('S) }—{B"('P)—C"('S) I
=2L, —21E',/4 1.5 mc'. (26)

Fro. 1. Binding energy against nuclear mass. The
calculated values lie on the solid curves; the circles mark
experimental points.

effectively cancels an appreciable part of the
or'dinary Coulomb repulsion, while in Eq. (22)
the exchange integral has the opposite effect.
The equality stated in the first line of Eq. (22)
is not verified experimentally, ' but the apparent
failure of the theory is probably closely connected
with the small binding energy of the particle
outside of the two alpha-particle groups in Be'
and B'. The small binding energy implies a large
volume and consequently an exceptionally small
Coulomb energy difference between Be' and B'.

In a recent discussion of the 8-ray spectrum of
Li', Breit and signer' reach the tentative
conclusion that the normal state of Li' is 'P~.
An examination of the theoretical 'P, 'I' energy
difference reveals that the order of the levels
depends primarily on the sign of the parameter
g2. From Eq. (12) and Table II the p shell
potential energies are

E('P) = —,'(1—Gi) (14L+23E)
—-,'(G2+2Gg) (I.—3E),

2('Pl = -', (1—Gi) (14L+23E)
—-', Gi(2I. —7E)+-,'(3Gg —4G3) (I.—3E'). (23)

The triplet-singlet energy difference is

8('P) —Z('P) =2gg(L 3E)—
—i2GiE —12.4gp+0. 18. (24)

A sufficient condition for the triplet level to lie
"E.Wigner and G. Breit, Phys. Rev. 50, 1191 (1936).

Eq. (26) cannot be expected to hold with great
accuracy because L and E are not accurately
independent of the number of particles in the
nucleus. The observed difference between the
total energy released in the 8 and in the 12
particle reactions" "is not known with sufficient
accuracy to provide a test for Eq. (26).

The singlet and triplet levels discussed in the
preceding paragraph occur also in Be, but
displaced upward relative to the Li' levels by
the amount

' L,+-,'E,+2C, D, (n' —H')—1.0—mc'. (27)

There exists a 'I' level which belongs to Be' alone
(T=O, s=1), and differs from the normal state of
Li' by the amount

—Gi(L —7E/2) —G2(L —3E)+ (n' —II') I., —
——,'E,—2C, +D,. (28)

Both this state and the 'D belonging to Be' alone
will fall below Li'('P) if G2)0. In this case
radioactive transitions from the ground state of
Li' to these states of Be' should occur. Recently
long range alpha-particles have been observed in
connection with the radioactive disintegration of
Li' with about the right energy to come from the

"E. Wigner, private communication.
"M. E. Rose and H. A. Bethe, Phys. Rev. 51, 205

(1937).
"W. B. Lewis, W. E. Burcham, W, Y. Chang, Nature

13', 24 (1937)."L.H. Rumbaugh and L. R. Hafstad, Phys. Rev. 50,
681 (1936).

"W. A. Fowler, L. A. Delsasso, C. C. Lauritsen, Phys.
Rev. 49, 561 (1936).
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breaking up of these highly unstable Be' nuclei
into alpha-particles. " The short range alpha-
particles which are observed in the same experi-
ment probably result from the disintegration of
Be' nuclei formed in the 'D state by the beta
decay of Li'. Additional evidence for a 'D state in
Bes with an excitation energy of 2 or 3 Mev is
supplied by the short range alpha-particles ob-
served in the disintegration of B" by protons. "

It is probably safe to assume that the order of the levels
is generally given correctly by the Hartree approximation,
but there is some reason for believing that exceptions do
occur. The group of low terms in B" contains two D
levels which prohably interact strongly with each other
through excited configurations. For this reason, the possi-
bility that the normal state of B"is 'D cannot be excluded.

According to the first-order calculation the ground state
of N is 3S with a magnetic moment equal to that of Li
and H' 0.85 nuclear magnetons. " '~ Experimentally the
total angular momentum is unity in agreement with

theory, but the magnetic moment appears to be much
smaller" than 0.85. The assumption that the normal state

'6 P. I. Dee and C. W. Gilbert, Proc. Roy. Soc. AI54,
279 (1936).

Added in Proof: The maximum kinetic energy of the
electrons produced by the beta-decay of B"is at least 2 mc'

greater" than the corresponding quantity in the case of Li'.
This fact is noteworthy because the Coulomb interaction
reduces the B"—C"mass difference more than the Li' —Be'
difference {Eq.26) and thus would be expected to make the
energy available for beta-decay smaller for B"than for Li'.
There is, however, no difficulty if the reactions involved are

Li'('P~) ~Be8('D2) +e
B12{3P)~( i2(1S )+e-

since the 'D —'S energy difference is at least 4 mc~. The
selection rules for the beta-decay (G. Gamow and E.Teller,
Phys. Rev. 49, 895 (1936)) fix the total angular momentum
of the Li', B~ normal states once the quantum numbers of
the decay products are known. The interpretation of the
beta-decay in this manner requires that the fine structure
pattern in B"be inverted with respect to the pattern in Li'.
An inversion is to be expected from the general theory of
"holes" for systems symmetrically situated on opposite
sides of the center of the shell. Professor G. Breit has
pointed out that the resonance level observed when C"
is bombarded with protons (L. R. Hafstad and M. A. Tuve,
Phys. Rev. 48, 306 (1935)) can be identified as the 'Il level

of N'3. From the masses of C' N' and H1 and the kinetic
energy (0.0004 mass units) at which resonance occurs we

calculate the excitation energy of the resonance level to be
0.0024 mass units or 4.4 mc~. This value compares favorably
with the theoretical value of 6.3 mc'. There are also indica-
tions of a fine structure in the resonance level.

'~ J. H. Manley and S. Millman, Phys. Rev. 51, 19
(1937).' R. F. Bacher, Phys. Rev. 43, 1001 {1933).

is 'D leads to agreement with both the observed total
angular momentum and the observed magnetic moment.
Because of the spin-orbit interaction the level 'D splits
into three, 'D1, 'D2, 'DB. Ke expect the inverted order
D3 &'D2 &'D& in Li' (this follows from the theory of
Inglis" and Furry" ).The fine structure pattern is therefore
normal in N'4 (two particles missing from a closed shell)
with the order 'D1&'D2&'D3. The magnetic moment has
the value

&=0.5 I J(J+1)+L{L+1)—S{S+1)I/O{J+1)
+0.85 I J(J+1)+S(S+1)—L(L—1) I/2(J+1) (29)

=0.33 nuclear magnetons.

These speculative considerations on the order of the levels
in B"and N' can be tested by studying the fine structure
in the energy distribution of the particles emitted in

transmutations in which B"or N'4 is formed.

A noteworthy property of the term differences
within a partition is revealed by Tables I and II.
The Majorana and ordinary interactions together
give rise to the term differences

—,
' Il(k+1) l'(1'+1)—I (1—Cg)Z, (30)

in which l and l' are the orbital angular momenta
of the initial and final states, respectively. The
inclusion of the spin exchange forces leaves Eq.
(30) still correct for those transitions in which
$=T=S =T . The same expression holds also for
the arithmetic mean of the energy differences
associated with the paired transitions

s=s'=0,
$=$ =1s

and also, in the same manner, for the pair

s —s' —-'

$=$ 2t

This last statement follows from the relation

Z(PQ, l, s, r) +P(PQ, /, T, s)
=Z(PQ, l, s, T) —Z(Q, l, s, T) (31)

since the right-hand member of Eq. (31) is inde-

pendent of l.
It will be necessary to extend the Hartree

calculations to the first excited configuration.
One level belonging to this configuration is
already known, namely an excited state of N"
with an excitation energy" " of 10.5 mc'. A

"D.R. Inglis, Phys. Rev. 50, 783 (1936).
'0 W. H. Furry, Phys. Rev. 50, 784 (1936),"E.O. Lawrence, E. McMillan and M. C. Henderson,

Phys. Rev. 47, 273 (1935); J. D. Cockcroft and W. B.
Lewis, Proc. Roy. Soc. A154, 261- (1936).
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simple calculation, using the oscillator wave
functions with 0 =T=0.6, yields the result that
the single excitation of a particle in N" should
increase the kinetic energy by the amount
14no/15=9 mc'. This value is in satisfactory
agreement with the experimental excitation
energy since it leaves some margin for the
decrease in potential energy which is to be
expected in an excited con6guration.

In conclusion we wish to record our indebted-
ness to Professor E. Wigner for many valuable
disc usslons.

APPENDIX 1

Construction of functions belonging to irreducible repre-
sentations of the symmetric group

The single particle wave functions for the P shell may be
classified according to the component of orbital angular
momentum in an arbitrary direction:

(a, b, c) = I(x+iy)/2&, s, (x—iy)/2'IR~(r). {32)

The set of product functions

f/) =I Ira(1) .a(~1)b(n1+ 1) b(n1+n2)
X4(~1++2+ 1) ' ' 4(+1+02++3) (33)

in which the arguments of the various factors designate the
space coordinates of the particles and PI, is a permutation
operator, subtend the linear manifold (e1+n2+n3) in the
total function space of n particles. The total space wave
functions for the p" configuration are then linear combina-
tions of the functions

A =Qc&aA (34)
k

where the summation extends over all permutations. We
wish to determine the coefficients c~j„so that the P~'s belong
to irreducible representations of the symmetric group.

In order to do this we introduce the symmetrical "dis-
placement" operator

+~a Z&~pi&=i
f=l

(3S)
D p(1): a(i) p(1), p(1) 0, y(1) 0,
a, p, y =a, b, c in arbitrary order,

and note that D p commutes with the elements of the
permutation group. By means of the displacement oper-
ators it is possible to express any manifold as a sum of
invariant subspaces, each subtended by a definite set of
functions which generates an irreducible representation of
the symmetric group.

To illustrate the method we give a complete discussion

of the three particle system. The manifold (3+0+0)
contains only one function, $1=a(1)a(2)a(3). This func-

tion is completely symmetrical and generates the irre-
ducible representation denoted by the partition f3(. The
application of the operator D b to &1 transforms it into the
function

f2 =a(1)a(2) b(3) +a(1)b(2) a{3)+b{1)u(2) a{3)

which corresponds to an invariant subspace of the mani-
fold (2+1+0). The complementary invariant subspace
(the space of functions orthogonal to the completely
symmetrical function) is subtended by

p3 ——a(1) I a{2)b(3) —a(3)b(2) I,
P4 ——a(2) Ia(1)b(3) —a(3)b(1) I.

These functions generate the two dimensional representa-
tion L2+1j. Together with f2 they exhaust the nianifold
(2+1+0}.The sum of D, (2+1+0) and Db, (1+2+0)
is subtended by the functions

$5 =a (1)c(2)b(3) +a(i)c(3)b(2) +a(2}c(1,)b(3)
+a(2)c(3)b(1)+a(3)c(1)b(2) +a(3)c(2)b(1) L3j,

hatt 6
——b(3) La(1)c(2)+a(2)c(1)j—b(2) La{1)c(3)+a(3)c(1)j

P~ ——b(3}La(1)c(2)+a{2)c(1)j—b(1}La(2) c{3)+a(3)c(2)j
1Ps=c(3) t a(1)b(2)+a(2)b(1)j—c(2) fa(1)b(2)+a(2) b(1.)j,

~
P9 —c(3)La(i) b(2) +a(2)b(1))

—c(1)fa(2) b(3) +a(3)b(2) j
The subspace of the manifold (1+1+1)complementary to
D„.(2+1+0)+Db, (1+2+0) is subtended by the com-
pletely antisymmetrical function

a(1) b(1) c(1)
u(2) b(2) c(2)
a(3) b(3) c(3)

which generates the representation $1+1+1j.The set of
linearly independent functions p& to &10 exhaust the mani-
fold (1+1+1).These results may be summarized in the
equations

(3+o+o)= L3j,
(2+1+0)= j3j+L2+1j,
{1+1+1)= $3j+2L2+1j+ I 1+1+11,

(36)

which .state the number of times the various irreducible
representations appear in the unreduced rnanifolds. The
Eq. (36) and the corresponding equations for other values
of n can also be derived directly from the orthogonality and
normalization properties of the group characters.

The values of the total orbital angular momentum which

appear in the various irreducible representations of the
symmetric group may be determined by an inspection of
the manifolds and their subspaces. The wave functions
describing definite quantized L, MJ. values are easily

. found with the aid of the angular momentum operators
L,+iLy.

It is often convenient for the calculation of Coulomb
and spin exchange energies to identify the partition func-
tions with linear combinations of products of neutron and
proton functions such as are used in reference 1. This can
be done by inspection if one constructs the states of
reference 1 according to the ordinary methods familiar from
the theory of complex spectra. The resulting combinations
are identical with those which diagonalize the matrices of
the total Majorana and ordinary interactions, as we noted
in the introduction.
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APPENDIX 2

Determination of the ordinary and isotopic spin values be-
longing to a de6nite partition in the space coordinates

The exclusion principle requires that the complete wave
function vanish if more than one particle has a given set of
orbital angular momentum, spin and isotopic spin quantum
numbers. To obtain the total spin and total isotopic spin
quantum numbers associated with the different partitions
we first make a list, for each manifold separately, of the
sets of individual particle quantum numbers compatible
with the exclusion principle, classifying them according to
Zm, and ZmT. Because of the symmetry about the origin,
we may restrict ourselves to Zm„ZmT 0. Since ZmT= MT
and Zm, =llf„we immediately arrive at the total s and T

necessary to account for these projections. To illustrate the
method we again consider the case of three particles:

Manifold ms
(3) a 1

(2+ 1)

mT
a1

a1
2
1

j.

2
1

.2

mT
1

1

1

1

1
2
1

j.

a 1

b
1

1
2
1

1

1

mT
1

1

1

1

1
2

Zms Zm
I 1

X
2

1

1 3

1 1

From the table it is obvious that there is only one pair of
s, T values for the partition L3j, namely s = g, T = g. After
the partition L3j has been removed from the manifold

(2+1) there remains the three sets of quantum numbers
(s= $, T=-', ), (s= —,', T=-,'), (s= -'„T=-',), associated with the
partition $2+1j.A similar table for the manifold (1+1+1)
together with Eq. (36) yields the result that the partition

I 1+1+1)has only two pairs of spin values, (s=-,', T= $)
and (s=-,', T=-',).
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The Disintegration of Cadmium with Deuterons

J. M. CQRK AND R. L. THQRNTQN

University of 3A'chigan, Ann Arbor, Mich~gun

(Received February 26, 1937)

The bombardment of a cadmium target by deuterons of energy 6.3 Mev yields certain radio-
active isotopes. Chemical analysis of the bombarded metal shows the presence of two radio-
active isotopes of cadmium having half-life periods of 4.3 hr and 58 hr, respectively. Both
emit negative electrons. The long-period cadmium activity gives rise to a radioactive indium
of half-life 2.3 hr. This indium isotope in succession emits negatives resulting in the formation of
a stable tin isotope. Successive chemical separations carried out iver a period of sixty hours
showed the indium to be in equilibrium with the long period cadmium. The existence of radio-
active isotopes of half-life periods shorter than about 30 minutes is not precluded.

T has been observed by Fermi' that cadmium
- - is relatively inactive after bombardment with
neutrons. Since cadmium is a very effective
absorber of slow neutrons its large capture
cross section for this process is probably due to
the formation of one or more stable isotopes.
However, many elements not rendered radio-
active by neutrons are readily activated under
bombardment with high energy deuterons, and
it seemed desirable to investigate the disintegra-
tions of cadmium under such conditions.

Targets of chemically pure metallic cadmium
were exposed to a beam of deuterons of energy
about 6.3 Mev. Exposures of the order of four
microampere-hours rendered the bombarded
specimens strongly' radioactive. The deuteron

' E. Amaldi, O. D'Agostino, E. Fermi, B. Pontecorvo,
F. Rasetti, and E. Segre, Proc. Roy. Soc. 149, 522 (1935).

beam was obtained by the multiple acceleration
of deuterium nuclei in the cyclotron.

In order to determine with what elements the
activity was associated, the bombarded specimen
was dissolved in nitric acid. To this solution
small quantities of solutions of the neighboring
elements, silver, palladium, and indium were
added.

The silver was first precipitated from this
solution as the chloride by the addition of
hydrochloric acid. This silver was redissolved in
ammonium hydroxide and reprecipitated by the
addition of nitric acid. The palladium was next
brought down from the original filtrate as
palladium dioxime by the addition of dimethyl-
glyoxime to the slightly acid solution. Ammo-
nium hydroxide added to the filtrate next
precipitated the indium as indium hydroxide.


