
552 KATHARI NF WAY

The subscripts 1, 2 refer to the polarizing plate
and scatterer, respectively; Kp and K are the
propagation vectors of the incident and scattered
wave; and r is the distance from the scatterer to
the point of observation.

The best experimental conditions are obtained
when

(t ~).= —(e2).= 0
Ko —K Kp —K

Under these circumstances, the intensity is given
by
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The asymmetry, defined in this case as the differ-
ence in intensity between antiparallel and parallel
orientation of magnetizations divided by the
average intensity, is:

8p„3fa
I
(y.).

I
tanh pl

It is interesting to note that the maximum inten-
sity occurs with antiparallel orientation of mag-
netizations, in agreement with what one would
expect by elementary considerations.

If both polarizer and scatterer are saturated,
x&

——0.7 cm, and O&=30', the asymmetry is 81
percent. With given values of

I
(p~), I, I (p2) „and

x&, the maximum asymmetry is obtained at
OI ——90'. For example, under the above condi-
tions, but with O~& ——90', the asymmetry, as cal-
culated from Eq. (61), is 92 percent.

There is still a fourth possible type of experi-
ment in which a neutron beam is polarized by
scattering, and then allowed to pass through a
magnetized iron plate. If the iron plate, is of such
dimensions that it is permissible to neglect the
fact that the scattered waves are spherical and
not plane waves, the intensity is given by a for-
mula identical with Eq. (59).

In conclusion, the author wishes to express his
indebtedness to Professor I. I. Rabi and Professor
E. Fermi for helpful discussions and suggestions,
and to Professor F. Bloch for an interesting con-
versation on this subject.
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Photoelectric cross section curves for a Majorana-Heisenberg potential of the type
U= —Uoe "" ' and a velocity dependent potential determined by Jo ———(2B/a)e &"+»' are
compared with a cross section curve for a square hole Majorana force calculated by Breit,
Condon and Stehn. In each case the values of the constants used are those which have been
determined as the best for accounting for the binding energies of H~, H3, and He4. Results show
that the cross section values for the first two potentials differ considerably from the third but
very little from each other. A general formula for the area under the cross section curve, which
holds for exchange as well as for ordinary forces is derived. For exchange forces Jo(v)d(hv)—(~e2h/23fc)(1+an) and this depends only on a, the range of interaction, a being defined by
a252/3f =e, the binding of energy the deuteron. The addition of a. long range repulsive force to
the velocity dependent interaction is found to decrease the cross section for this potential type
considerably. The classical equivalent of the velocity dependent potential operator is
determined.
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CRoss SEcTIQN CURvEs

HREE hypotheses about the law of interac-
tion between neutrons and protons have

been shown to be consistent with the observed
binding energies of H', H', and He'. The require-
ment that the interaction account for these bind-

ing energies establishes a best value for its depth
and range. It is interesting therefore to compare
the photoelectric cross sections predicted by the
best values fear these three types of interactions
to see if they are sufficiently different so that an
experimental determination could furnish a cri-
terion for deciding in favor of one of the interac-
tions, and to consider further what general in-

formation about the neutron-proton interaction
the cross section can give.

The three types of interaction considered are

(1) the square hole ordinary force, (2) the bell-

shaped Majorana-Heisenberg force, and (3) a
velocity dependent exchange force.

(1) Mohr and Massey' show that for the square
hole ordinary force the masses of H', H', and He4

are reasonably consistent if the range of interac-
tion is between 1.7 and 2.2X10 " cm, and the
attraction between like particles between 0.2
and 0.3 of that between unlike particles. In what
follows the width 2.0 X 10 "cm has been used.

(2) Bethe and Bacher' find that for a potential
U= —Upe """,the values a =2.32 X 10 "cm, and

Up =34.1 Mev are consistent with the observed
binding energies of H', H', and He4. The depth of
the like-particle interaction is 21.0.Mev and that
of the unlike-particle force in singlet states
20.5 Mev.

(3) Way and Wheeler' show that a velocity
dependent force4 whose potential is defined by
VP= J' J(x, s) P(s)ds, where Jo ———(2B/a)e &"+v&'

will account for the same binding energies if
a = 1.17X 10 " cm and the depth B=48.3 Mev
for 'S states and 26.2 Mev for 'S states. They as-

sume equivalence for 'S states of interaction
between like and unlike particles.

Morse, Fisk, and Schiff' consider a potential of
the form —DL2e'&"&—'&'"0 —e'&"' """oj with essen-

tially four parameters r„r„D, (singlet), D&

' Mohr and Massey, Proc. Roy. Soc. A156, 634 (1936).
2 Bethe and Bacher, Rev. Mod. Phys. S, 145 (1936).
3 Way and Wheeler, Phys, Rev. 50, 675 (1936).
4 John A. Wheeler, Phys. Rev. 50, 643 (1936) f or

notation and discussion of velocity dependent forces.
' Morse, Fisk, and SchiE, Phys. I&ev. 50, 748 (1936).

FI(y. 1. Photoelectric cross section of the deuteron in units
of 10 "cm' plotted against E, the total kinetic energies of
the neutron and proton after dissociation, for three different
neutron-proton interactions.

(triplet). D. and D& are determined in terms of
rp and r~ so that they will give a fit for the singlet
and triplet levels of the deuteron. Since the value
of the other parameters necessary to account for
the binding energies of H' and He4 have not been
determined, this type of interaction is not
included.

The photoelectric cross sections of the deuteron
for the best values of the other different interac-
tiori types are plotted against B, the total kinetic
energies of the neutron and proton after dissocia-
tion, in Fig. 1. The graph shows immediately that
there is very little difference for the bell-shaped
Majorana-Heisenberg (2) and the velocity de-
pendent (3) interaction. The square hole cross
section curve (1), however, is considerably lower
than the other two and experiment might make
it possible to decide between it and either one of
the others. The best energy to work at would be
about X=2 Mev or about hv=4 Mev.

The ratios of the different cross sections at
8= 15.3 Mev and 0.48 Mev (hv=2. 62 and 17.5
Mev) are given below. Here again it turns out
that experimental determination of this ratio
would help only to decide in favor of (1) or
either (2) or (3).

&2.62

017,6

SQUARE (1)
1.55

BELL (2)
1.95

VELOCITY (3)
2.07

DETAILS OIi CALCULATIONS OF CURVES

Curve 1

Although Mohr and Massey consider a square
hole interaction of an ordinary type, the cross
section curve given (curve 1, Fig. 1) is for a
square hole potential of Majorana type since
this seems the more logical type and its use
would probably not have greatly altered the
binding energy calculations. Moreover, for the
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width a = 2 )& 10 "cm, the cross section curves for
the two types differ very little. For energies up to
A=8.8 Mev the points on this curve have been
calculated by Breit, Condon, and Stehn' from a
formula given by Breit and Condon. 7 It should
be noted that the corrected values of the Majo-
rana curves are given in the first paper referred to.
The point at E= 15.3 Mev has been added. Breit
et al. take the value of e, the binding energy of
the deuteron as 2.2 Mev. For the calculation of
the other curves the value used was 2.14 Mev.
The lower value of c would slightly increase the
ordinates of Breit's curves.

Curve 2

Four points on this curve were calculated by
numerical integration of the wave equations and
subsequent numerical integration of the matrix
element. The point at E= 15.3 Mev is from extra-.
polation with the help of the theorem about the
areas under the curves given below. In the course
of the work it was noticed that the wave func-
tions obtained were almost identical with those
for a Majorana square hole of width 1.5 times
that of the 1/e-width of the bell-shaped hole,
i.e. , 3.48)&10 " cm. It would be interesting to
know if this were true in general.

Curve 3

The points on this curve can be obtained by
direct integration from the well-known equation
for the cross section

8~'v 4
o = —[cVf'

c hv

where

velocity dependent force considered by Wheeler
1s

h2 —28
fp—"(r) —pf p(r) =—

~I e ~"+~~t'fp(p)dp
M 6

and fp(r) =&p[e « —e '~'].

Integration of the matrix element then gives
for the cross section

gm e' an(1+an)
0 =—— (a'n—'+a'k') a "k"a'

3 kc (1 —an)'

X
(a'n'+a'k')' (1+a k')'

Increasing the value of a increases this cross
section considerably. For a = 1.17 )& 10 " cm,
the best value, and hv=2. 62 or K=0.48 Mev,
0.= 1.57)&10 ' cm'. At this same energy, with the
same orders of magnitude, 0.=2.66 for @=1.87
and a. =5.31 for a=2.80.

AREA UNDER CRoss SEcTIQN CURvEs

For ordinary forces it is well known that the
area under the cross section curve, J'a(v)d(kv),
is independent of the range and type of interac-
tion and is given by the f sum rule as ~e'k/2'.
Several writers have pointed out that this rela-
tion does not hold for exchange forces. It is
interesting to examine, therefore, the general
expression for J'o(v)d(kv) for any type of force. P

For other values of /, J&(r,p) is assumed equal
to zero, so that the wave functions for the upper
states have the simple form

fs(r) =sin kr/ kr —cos kr.

The notation used is the same as that of Breit et al
and is as follows: n'fz'/2'= p, the binding enei gy
of the deuteron; &=mass of proton; hv =energy
of photon; Np ——normalization factor for ground
state; k'k'/cV =E, sum of kinetic energies of
neutron or proton after dissociation; a ="width"
of interaction, either 1/e-width or end of square
hole; v = relative velocity of proton and neutron
after dissociation.

When l=0 the radial wave equation for the
' Hreit, Condon and Stehn, Phys. Ilev. 51, 56 (1937).' Breit and Condon, Phys. kev. 49, 904 (1936).

co 87r'v 4 e 2

o(v)d(kv) = ————
~

Pp'sPpdr d(hv)
c k v 2~

on rearrangement

—Xe2

]l Po"gsdr I Ps*zPpdr
CZ p

)I Pp*sPgdr)~Ps*z—Ppdr dk.

' I am indebted to Dr. John A. Wheeler for pointing out
the possibility of deriving the following relation.
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Applying Parseval's theorem

—7r 8
i/0 Lzz sz]hodr

2cz

and on substitution of sf= (i/h)(IIs —ell)P

3II

,
~ PO*L Vss —2s Vs+ss V]god~

2k~

I1+T~I
23IIc

when V represents the potential function. If V
and s are commutative operators the second term
is seen to vanish leaving the familiar expression
of the f sum rule.

fn the general case, expressing Vf as J'J(», e)
P(e)de the second term becomes

3II
T, = —

I

~
P,'(x) J(x, e)(» —e)'P, (e)dedx.

6h»

For Majorana forces J(x, e) = V(x)8(x+e). For
a square hole potential the integration gives for
the second term

T— (a2p2(a2n2+a2p2)
9a'P'(1+ an)

+3(1+an) (a'P' an) +3—a'P'an I,

where h' p'/Jd =D e, D being the co—nstant depth
of the hole. For the bell-shaped Majorana a
numerical integration is necessary.

For the velocity dependent force for which J is
given above

T2 an (7+4a——n+ a' n') /6 (1+an)

Table I gives values of T~ for these three types
of potentials for different values of a.

It turns out that in all cases T~ is very nearly
equal to an so that J'o(v)d(hv) = h7r(e1+ )a/n

2 Mc for any of these three exchange forces. A
determination of the area under the cross section
curve would thus establish the width of the inter-
action without giving any information as to its
type, provided, of course, that the true interac-
tion is any of the three considered here. An
ordinary force could be detected by the absence of
the extra term, an. Curves (2) and (3) can thus be
distinguished by the different areas under them,
the ratio being A3/A2 ——1.526/1. 286=1.2. For
the curves shown, extrapolations can be made
beyond E= 15 Mev with fair accuracy by assum-
ing that they fall oR either as 1/E' or 1/E'".

LOWERING OF VELOCITY DEPENDENT CROSQ

SECTION

The only experimental value of the cross sec-
tion determined so far is that of Chadwick and
Goldhaber' who And ~=0.5&10 " cm' with a
possible error of a factor of 2 for kv =2.62. It must
be remembered that this value includes the
magnetic dipole cross section which for low

energy y-rays (2.62 Mev) may be -', or —', the
photoelectric cross section depending upon
whether the '5 level of the deuteron is stable or
unstable, according to calculations of Breit and
Condon in the paper already mentioned. For
p-ray energies above 4 Mev the ratio is 0.05 at
most. All the calculated cross sections are thus
above this experimental limit, the square hole one
being nearest to it. However, more accurate ex-
perimental determinations are needed to show
whether there is really a serious contradiction
between theory and experiment. It seems inter-
esting in the meantime to calculate the effect on
the velocity dependent cross section of adding a
long range repulsive force to the assumed inter-
action, and it is found that such an addition does
lower the theoretical cross section for this inter-
action type consldel ably.

The interaction is assumed to be

1.17 0.267
2 32 .529
3.00 .684
4.00 .912

Tg (sQUARE}

0.242
.495
.654
.892

Tx (BE~LL} T2 (VE&L}

0.286
.542
.691
.913

TABLE I. T2+100 percent is the percentage increase in
J'o-(v)d(hv) for exchange forces as compared with ordinary
forces.

Jo ———(28,/a) e &"+»'+ (2B~/h)
—
e & "+&~"

Three of the constants Bj, B~, a, and b can be
chosen arbitrarily. The fourth is then determined
by a relation with the binding energy of the
deuteron. The expression for the cross section is a

' Chadwick and GoIdhabcr, Proc. Roy. Soc. A151, 479
(1935).



556 K A I' H A R I N F EV A Y

TABLE II. Velocity dependent cross sections for hv = 2.62 For
for attractive force alone and attractive force plus tao diferent
additional repulsive forces. J(x, e) = —(2B/47rrpa)e &"+'&'

a X10»

1.17
1.17
1.17

Bz (Mev)

48.3
49.3
49.3

b X10»

0.0
12.0
16.6

Bp (Mev)

0.0
0.268
0.307

0 X 102'I

1.57
0.386
0.187

U(y p)=
—8Bh ap—e '~~' tan

CP h

the integration can be carried out for the case
sin (y, p) =0 giving

simple extension of the one already given. In the
following 81, c and b were chosen arbitrarily, a
being taken as the best value width, 81 a depth
very near to the best value depth 48.3 Mev and 6
a width large in comparison with a. o- for h v = 2.62
is given for two different values of b in Table II.

2y 1 /2y~
' ap ap

+ —+—
I

—
I

tan
a 2!(a) . i'i h

-1 t2y)' 1 (2yq' —
ap ap

+ —
I

—I+—
I

—
I3!E a ) 4! ( a, ) h

CLASSICAL EQUIVALENT OF VELOCITY

DEPENDENT POTENTIAL

The velocity dependent cross section curve is
very similar to those of the other interactions and
the area beneath it obeys the 1+a&x rule where a
is the 1/e-width of the operator

Jo ———(2B/a)e &"+»'

although this width does not seem to be exactly
comparable to that of more familiar interactions.
It is interesting, therefore, to determine the
classical equivalent of the velocity dependent
potential operator.

Dirac has shown that the best quantum-me-
chanical representation of a classical interaction
potential U(y, p) dependent on position and
momentum is given by an integral operator con-
nected with U(y, p) by the following equation

U(» p)4 = "J(» s)4 (e)de,

where y= —', (x+e). In equivalent form we have

U(y, p) =~I J(x, e)e'i« &&~&d(x -e), —

where Y is to be kept constant in the integration.

If sin (y, p) =1, the integration is more difficult
but the resulting expression reduces to a similar
series of which the first two terms are identical
with the first two of the above terms.

For ap/5 small, say 0.1 (this would require a
relative velocity of about e/30)

U(y p) =——8Be-'"'

This approximation to the interaction has
1/e-width of a/2 or 0.585 X10 "cm and a depth
8 times the "effective" depth 8 or 386.4 Mev.
Bethe and Bacher" show, however, that for a
strictly exponential hole of 1/e-width 0.5X10 "
cm, the depth would have to be 310 Mev to fit
the binding energy of the deuteron. Wider holes
require smaller depths. The above approximation
is therefore not justified. The velocity dependent
interaction of Wheeler can be thought of as a
deep and narrow exponential type of interaction
modified in a complicated way by the relative
momentum of the particles.

The writer is very grateful to Dr. John A.
Wheeler for much helpful advice during the whole
course of the work as well as for the suggestions
about the area under the cross section curves.

"13ethe ancl Bacher, Rev. Mod. Phys. 8, 111 (1936).


