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we see that the higher orders contribute no
correction to the orbital part of the magnetic
moment. This rule is quite general, for all
nuclei, and is of course independent of the error-
curve shape of the interaction function here
employed. It follows also from conservation of
orbital angular momentum, if one thinks of
expanding in the p's.

We have therefore to consider only excited
states with 3Is u ——3/2, M s.————', or with
Me„———2, Me ——3/2. The former are exactly as
numerous as the latter, in the special case of
Li', and have exactly corresponding elements
II„,so their contributions to the projected spin
magnetic moment, fP*(g„o,„+g o„)/dr, c. ancel
one another. In Li' the zero-order result, which

makes the magnetic moment of Li' equal to
that of the deuteron (as observed), " is exact
(insofar as V is negligible in Ii,„,cf. reference 14:
note added in proof).

In other nuclei correction terms appear due to
states analogous to the last four types of Table
IV. These are small, of order g', for the forms of
interaction (9), but may be quite large for (17)
with large g, . There is a remote possibility that
they might furnish an additional means of
testing the interaction assumptions.

I am especially grateful to Doctors H. Bethe,
E. Feenberg, and L. A. Young for discussion of
this and related problems, and for communica-
tion of certain of their results before publication.
"Manley and Millman, Phys. Rev, 50, 380 (1936).
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The scattering of slow neutrons by atoms is considered,
assuming that, in addition to the ordinary nuclear forces,
there is a magnetic interaction between the neutron and
the atomic electrons. It is found that the neutrons scattered
from an unpolarized beam will be partially polarized in

virtue of this magnetic interaction. Since the scattered
intensity depends not only upon the intensity, but also

upon the spin density of the incident beam, the polarization
thus produced can manifest itself by a second scattering.
An expression is derived for the neutron intensity after
double scat tering from magnetized iron plates. Under

optimum conditions, it is found that the scattered in-
tensity with parallel orientation of magnetizations is 15
times that with antiparallel orientation. The partial
polarization of the scattered neutrons indicates that the
undeviated neutron beam will also have a nonvanishing
spin density. Expressions are derived for the intensity
and spin density of a neutron beam after traversing a
certain thickness of magnetized iron. These results are
used in the discussion of three types of experiments for
producing and detecting a polarized beam of neutrons.

INTRQDUcTIQN

HE magnetic moment of the neutron has not
been measured directly, but has been ob-

tained from the magnetic moments of the proton
and the deuteron. ' The assumption of simple
additivity of magnetic moments, involved in this
indirect deduction, is, however, open to some ob-
jection from the point of view of the P-ray theory
of heavy particle interactions and magnetic
moments. ' Since the neutron and proton are sym-

~ J. M. B. Kellogg, I. I. Rabi and J. R. Zacharias, Phys.
Rev. 50, 472 (1936).' G. C. Wick, Lincei Rend. 22, 170 (1935); H. A. Bethe
and R. F. Bacher, Rev. Mod. Phys. 8, 82 (1936).

metrical with respect to interaction with the
electron-neutrino field, the magnetic moment of
the deuteron should be equal to the "elementary
moment" of the proton, ek/2'. The observed
value is 0.85 et't/2', which is probably to be ex-
plained by the additional moment arising from
the process of neutron-proton interaction, and by
the fact that the proton is decomposed and does
not possess its "elementary moment" during a
large fraction of the time.

Recently, Bloch' has suggested a direct method
of measuring the magnetic moment of the neu-

3 F. Bloch, Phys. Rev. 50, 259 (1936).
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tron which depends upon the fact that an atom
may scatter a neutron either in virtue of the
nuclear interaction with the neutron, or the mag-
netic coupling between the atomic electrons and
'the neutron spin. It is this magnetic scattering of
neutrons which we shall investigate. It will ap-
pear as a result of this calculation that the ex-
pression for the scattering cross section given. by
Bloch is in error. The difference between the
results to be presented and his results arise from
the use of the correct Dirac value of the current
density and the corresponding magnetic field
rather than the "classical interaction" between
two magnetic dipoles.

perturbed state of the atom, and 1t(r,) is to be
regarded as a matrix in the spin variable of the
neutron.

Inserting (3) into the wave equation (2), we
obtain the differential equation:

(h, '/2M''+E U(r))—P(r) =

Xn;ttp(r, , r,)dT, . dT. P(r). (4)

With the introduction of the abbreviation:

Van Vleck4 has shown that, despite the ex-
change nature of the forces between nuclear
particles, the interaction energy of a neutron and
a nucleus may be approximately described by an
ordinary potential V (r„).' Consequently, the
Hamiltonian of a neutron and an atomic system
of Z electrons may be written:

1 r, —r„
X, =Xp+—P.'+U(r„)+ey„Pn. — —Xn;,

2M *'=&
I
r, —r„I ' (1)

SC+ = (Ep+E)@, (2)

which can be solved approximately by neglecting
inelastically scattered waves. We therefore write

0= 1t (r„)pp(r„r,), (3)

where Pp(r&, r.-), a matrix in the spin variables
of the electrons, is the wave function of the un-

4 J. H. Van Vleck, Phys. Rev. 48, 367 (1935); see also C.
H. Fay, Phys. Rev. SO, 560 (1936).

~ In general, it would be necessary to take into account
the eff'ect on scattering of the virtual levels of the system:
neutron+nucleus. However, in what follows we shall be
primarily concerned with the interaction of iron nuclei and
neutrons of thermal energy, for which no such level is
known.

where Ko is the Hamiltonian of the unperturbed
atom, p„o„ is the magnetic moment operator of
the neutron, and e„, e; are, respectively, the
Pauli spin-matrix vector of the neutron and the
Dirac matrix vector of the i "electron.

If we denote the unperturbed energy of the
atom and the energy of the incident neutron by
E'0 and E, respectively, the wave equation for the
system becomes:

where

and

Since V(r) is independent of the neutron spin,
a solution of (8) can be found in the form of a
spatial wave function &to(r), times a spin wave
function which may be expanded in terms of the
eigenstates x of the s component of the spin.
Hence,

and
4'"(r) = (Ctx, +C-tx-:) tt o(r),

(fi'/2M%'+E V(r)) Po(r) =0. —

If we choose the direction of motion of the
incident neutron as the axis of our polar co-
ordinate system, the wave function Pp(r) can be
expanded in a series of Legendre polynomials,

r —r;
H(r) =eZ ' At(r& r.)- ——

Ir —r I'

Xn;Po(r„r, )d&. , d „&(5)

Eq. (4) becomes

(f't'/2Mq'+E —V(r)) f(r) = —p„n„H(r) P(r), (6)

which is the wave equation of a neutron interact-
ing with the nuclear field and the static magnetic
field of an atom.

In order to solve this equation we shall treat
the right side as a small perturbation, that is,
we write
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with

zz &(r)
Pp(r) = P(2l+1) i'e"—P&(cos 0),

I,=O kr 4"'(r) =4 "'(r)X,+1k-.-'"(r)X-.. (19)

Since P"&(r) is a matrix in the spin variable of
the neutron, it can be written

12

k = (1/iz) (2 i') '*.

The functions zz&(r) satisfy the equation

(13) Substituting this and the similar expansion of
f"&(r) into Eq. (9), we find

, (d, l(i+1)1 t 2ilE

u (r&)+(F V(r)—)z«(r) =0 (14) I
&'+'-

2
~(r) lit„„'"(r)

2~idr2 r2 )
and have the asymptotic form

zz, (r) —sin (kr —-'2l pr+ 5&) (15)

2' p, „
P H(r) (m,

l
pp

l
z&z, ') C,„,gp(r). (20)

52 m. '

We shall confine our attention to slow neutrons
since it is only in this case that the long duration
of the collision compensates for the small magni-
tude of the magnetic forces. Under these circum-
stances the neutron wave-length 'A= 2&r/k is very
large compared with the range of the nuclear
forces, and it is well known that all the "phase
shifts, "

b~, will be small except that of the s
partial wave, 8o.

If r be greater than the range of the nuclear
forces, r„Eq. (14) reduces to:

d' l(l+1) l—
l
zz, (r) +k'zz, (r) = 0,

I dr' r' )
whose solution, having the desired asymptotic
form (15), is

p~kr~ '*

u&(r) =
l l (cos 6,J,+, (kr)&2)

+ ( —1) ' sin 8&J &;(kr)). (17)

Hence, if l 00, z«(r) (r )r, ) is approximately
(2'prkr)V&+&(kr), i.e. ; the wave function of a free
particle with angular momentum t. 6o, however,
is not small and zzp(r) becomes sin (kr+8p). The
wave function which describes the nuclear scat-
tering is, therefore, for r )ro.

oo (
4'p(r) = F(r, z&) = P(2l+ 1)i 'l

I,=O E2kr)

ei,k, r

&&J&+,(kr) P, (cos e) +—(e2*' —1)
2ikr

ei1 r

~ipr pop y + (~2ipp 1) (18)
2ikr

These equations must be solved subject to the
boundary condition that they contain only scat-
tered waves. The asymptotic form of the desired
solution is

llIp„e'~"
&'&(r) — ——F(r', pr —0)QH(r')

2~5' r ~

(m, la„lm, ')C,„,,F(r', 6')dr', (21)

whe're

cos ()=cos z& cos 6'+sin @ sin 6' cos (p&p
—'

22').

Here, (r, z&, p) and (r', 27', p') are the polar co-
ordinates corresponding to the vectors r and r'.

The integral occurring in (21) can be approxi-
mately evaluated by using the expression (18) for
F(r, 2&) since the region in which this formula fails
gives a negligible contribution to the integral.
Furthermore, we can, by the same reasoning,
replace F(r, zt) with e'"" -' ~ since, for slow neu-
trons, the scattered wave in (18) is comparable in
magnitude with the plane wave only if r is of the
order of nuclear dimensions. Replacing e'~"' "'~'

by exp (ippp r') and e '""' '"' H by exp —(ipp r'),
where xo and x are, respectively, the propagation
vectors of the incident wave and the wave scat-
tered in the direction of r, we obtain

M p„e""'
P„,, "&(r) —

~
exp (z(ppp —

pp) r') QH(r')
2mA2 r ~ mi

(2&Z, pp„lm, ) Cm, dr'. (22)

From the expression (5) for H(r) we find, after
a simple calculation,

"' Mott and Massey, The Theory of Atomic Collisions
(Oxford Press, 1933).
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1Cp K
I exp (z(«p —«) r)H(r)dp. =4~ez

Ko —K 2

Since the average magnetic moment of the atom,
p, is given by the expression

XQ exP (z(«P —«) r,)PP)e,PPdzg. dz, . (23) „P,t(r, . . .r )(Pr Xi=1

We shall restrict our considerations to the slow
neutrons which are strongly absorbed in cad-
mium, the so-called C neutrons. These neutrons
have energies i.n the thermal region, 7 so that the
corresporiding de Broglie wave-lengths are of the
order of $0—' cm. If the neutron temperature is
su%ciently low, the C neutron wave-lengths will

be large compared with atomic dimensions. s The
term exp (z(«p —«). r, ). will, therefore, not vary
appreciably over the atom and can be replaced
by the hrst term in its expansion which gives a
nonvanishing contribution to the integrals in (23).

With this approximation, Eq. (23) becomes

Kp 1C

exp (z(«p «) r—)H(r)dr = —4me——
KO —& 2

X Q l~fp t(«p «) 'rjGjlP pdTy' ' 'dTg. (24)

Xkp(ri, .r.)d» d~„(28)
we obtain, hnally:

,
jexp (z(«p «)—.r)H(r)d r =

'Ko 1C 1Co

tz+4~tz (29)
1Co —1C 'Kp —'K

This expression is valid when the neutron wave-
length is large compared with atomic dimensions.
The value of the integral decreases rapidly with
decreasing wave-length.

Collecting our formulae, we may write for the
asymptotic solution of Eq. (4):

P(r) exp (z«p r) QC„,x„,
ms

Thisexpression for J'exp (z(«p —«) r)H(r)dz may
be put in a more convenient form by using the
approximate relation:

(«p —«) r;e, = —-';(«p —«) X (r„Xn„)

+ ((«p —«) r;rPCp —Xp(«p —«) r,r;). (25)
2ikc

eikr ~2 i60 2M@& 1Cp —K

r 2ik ~ Izz
~

«p —«
~

'p Q xm,. )
~s

m, m,

1Cp —'K

/«p —«/
s.m, '

~C,„,,
J

23IIp, „
+—— P x( peztzzp. [nz, ') C...; . (30)

ms, rus2 I

The diagonal matrix element of this equation
referring to the ground state gives

~I lgpf(«p «) 'fj'pzqfpdTz' ' 'dz'q= p(«p «)

The intensity of the neutrons scattered in th' e
direction of the vector r is given by

Therefore,

X,I Ppt(r;Xe;)Ppdr, dz, ). (26)
I=v|t'(r) y'(r). (31)

P'(r) denotes the scattered wave in Eq. (30) and
v is the neutron velocity. It is easily shown that:

Ko —K

)t exp (z{zpp —«) r)H(r)dz =2~e———
f«p-«['

X («p —«)X ~4pt(Zr;X~~)fgpd» dz. (2&)

7 E. Amaldi and E. Fermi, Phys. Rev. 50, 899 (1936).' The ferromagnetic elements occupy a singular position
in this respect, since their magnetic moment arises from an
incomplete inner shell.

I, ~sinp bp 4M'y„p t «p —«
I
——tl

k 4[«,— [
)

43f2p '
p 4 2p,

a
a ) r a

Kp —K Xp —K

X I
——S —(«).—t (~p). ~, (32)

( [«p-«i [«p-«i i



where Io v+——IC, I',
274 $

27' s) 277 $

(33)

are the intensity and the spin density, respec-
tively, of the incident beam. According to the
above formula, the total cross section for scatter-
ing from an unpolarized beam ((eo),=0) is greater
than (4ir jk') sino So. All experimental scattering
cross sections are very small compared with 4vr/k'

at C neuter'on energies, which indicates that
8Q&& 1. If we write 5Q = ka and neglect squares and
higher powers of 5o, Eq. (32) simplifies to:

Ip(I=
I

a' ——
r24

tially polarized. Furthermore, Eq. (34) indicates
that this polarization is detectable by a second
scattering. Consider, therefore, the following
double scattering experiment: A beam of neu-
trons, whose propagation vector is Kp, is incident
upon a magnetized plate of iron. The neutrons
scattered in the direction of K1 fall upon a second
magnetized plate of iron, placed at a distance of
r1 cm from the first, and the intensity of the
neutrons which are rescattered in the direction
of K, say, is measured at a distance of r2 cm
from the second scatterer.

If there are
¹

atoms in the first piece of iron,
considered for simplicity of negligible dimensions,
the intensity of the singly-scattered neutrons
will be 9

4M2p, ,„2

r2

Bloch's formula, however, has while their spin density will be:

Ip 4MP, c
(oi).= IiIi—

5 v

for the term in the scattered intensity which de-
pends upon the spin density of the incident beam.

The spin density of the scattered beam at the
point r is:

Kp 1C 4JIfp„a
&&

—t Io+— t Io+ii'(~o) „
I xo —x

I

fi'v

Ke have denoted averages over the atoms by the
subscript a, so that (tii), for example, is the

average magnetic moment per atom.
The expression for the intensity of the doubly-

scattered neutrons is:

4M2p, „2
I=So—

I
a' ——

I

— ti I

ro'E O' E fbi —v.
f

(38)

( X1—K 1C1 —K

&
I

———(tio).——(&i).—(tio). (iii)

4iV'ii„' ( ( xo —x
Substituting the expressions (36) and (37) for Ii

Ii'

Evidently the neutrons scattered from a beam 'The following formulae, although derived for amor-
phous solids, are approximately applicable to crystalline

whose average spin density is zero will be par-
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and (eq)„, we obtain

Ip ( 4''p ' ( xp —riI=Ps—
I

a' ———
I p I

r, 'r, '
4~2' 2

q ( 4~2' 2

+— Llt l~'1. I! a'—
A,

4 e4

( x, —x q
'- 4M'p„'

&&
I

—
w I

+- -Llt I.']. I) ~ .
(4M@~a) ( rp —xg xp —xg

+I ——
I I

— — —(») —(»). I) (Imp —~il l~p-~~l

( Ki-X Ki-K
(tp) -(tp).

I
(39)

A convenient set of experimental conditions is
described in part by the equations:

Kp=K)

(xp —v. g) (pg). =0,

(xp —xg) (pp). =0.

Under these circumstances, the resultant inten-
sity depends upon the angle between the direc-
tions of magnetization of the two scatterers. The
asymmetry e, defined as the difference in inten-
sity between parallel and antiparallel orientation
divided by the average intensity, is then given by

(4M@„a) '
2I ——

I l(t ).Il(t ) I

fi'

4M'P„' ( vp —xg ) ' 4M'P„'+-
( xp —v. gl ) g, fi' )

4M'p„' ( xp —xg ) ' 4M'P„'
xl a' —

I

— ~ I + Clsl'3.
I

K imp
—~zl ~ & „ fs'

(40)

2p gy. y „'(e'/amc') '

(1+ —'yy'p '(e'/a)))c') ')

&& (1+imp'v '(e'/a~") ')

(41)

where p„=y„(ek/2Mc) and y, !,, 2
——p~, p(ek/2mc).

The saturation value of the intensity of mag-
netization is about 1700 gauss for iron at ordinary
temperatures, which corresponds to a value of

2.2. Adopting provisionally the atomic
beam value of y„= —2, and utilizing the experi-
mental result 4m'' 10—"" we obtain 6=1.75.
From the definition of e we see that the intensity
of the double scattering with parallel orientation
Of magnetizations is 15 times that with anti-
parallel orientation. However, despite the large
magnitude of the asymmetry, this effect will be

"A. C. G. Mitchell, C. J. Murphy and M. D. Whitaker,
Phys. Rev. 50, 133 (1936).

If the magnetizing fields are suAiciently strong to
produce saturation, it is permissible to neglect
L(Kp xy/ !1cp—leg

I
p)'], and replace ( p I

'), with

lp, l'. The expression for the asymmetry then
becomes

difficult to detect with present methods because
of the small intensity of the doubly-scattered
neutrons if conditions of single scattering obtain
in both iron plates.

i7i—P = ~'+ 2 1'(r —r')
2iV

—p e QH(r —r;) P. (42)

r; is the position vector of the i" iron nucleus,

We have seen that the neutrons scattered from
an unpolarized beam will be partially polarized.
It is apparent that, as a result of this effect, the
undeviated beam will also become polarized, the
amount of polarization per neutron increasing
with the penetration of the beam. In order to
investigate this effect, suppose that an unpolar-
ized neutron beam of intensity Ip is incident upon
a magnetized sheet of iron. The neutron beam
will be described by the solution. of the wave
equation:
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and the symbols V(r), H(r) represent the same
quantities as in Eq. (6). The resultant conserva-
tion theorem, applied to a section of the iron of
area A and of thickness dx, such that dx is large
compared with atomic dimensions but yet so
small that I and o, do not vary appreciably
over it, is

8—1~4 f4dr =
8t~

We may at this point take into account the
neutron absorption in the iron caused by nuclear
capture by replacing the left side of Eq. (43)
with:

becomes

dI 47rnp„gapa ( «7)
dx k k )
Returning to Eq. (42), we easily derive the

relation:

8—
) Pf(r„/dr+no, vAdxe,

'tA
' {/fan„VP VPfa„—P} dS

2M~

2@~
+ e„XP fH(r —r;)dr, (48)

8
PfPdr+no, IAdx, .

Bt~

where n is the number of atoms per cm and cf„ is

the capture cross section. When the stationary
state is reached,

which, in the stationary state, gives approxi-
mately

de, 4znMp„. a ( xp xp
—+fTEFa I e. ——-3S. lI

dx 5'v

~k
no, IAdx=

~ {/fry& rIpfp} dS—(44). .

16xnp„
(49)

3kv

If we neglect the waves scattered by other
atoms in the calculation of P'(r —r;) (this is

equivalent to neglecting multiple scattering), we
obtain an approximate solution of Eq. (42), vis. :

1t (r) =exP (inP. r) PC„,X„r+PP'(r —r;). (45)

The C are to be regarded as slowly varying
functions of x in order to describe the decreasing
intensity of the undeviated beam with increasing
penetration. Inserting (45) into Eq. (44) and
evaluating the surface integrals, we obtain:

dI
=n{ a.+4xa-'—

dx

+, { 3{ ltl'3 —
/ t —

Iu) .i)
4vtj. „ka ( Lp np

(46)
E 0 A )

If we denote the quantity in brackets multiplying
Iby p. and neglect the third term therein, Eq. (46)

We shall solve Eqs. (47) and (49) subject to the
arbitrary initial values IP and (eP), . The ab-
breviations:

Pa &O

=63, —=ll, 83'11=cos 0,

4xnMap„l p l

x =& (50)

simplify these equations to

I——=(cos On —3ep) (e').,

d$ v

Il—(e').= (cos On —3ep)—+8(e').Xep,
d& V

(51)

where

I=I'e "'* e =(e') e "'* (52)

These equations can be solved exactly. However,
the complexity of the resultant solution is such
that it is convenient to make certain approxima-
tions which involve the fact that 8 3400 at
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thermal energies. Ke thus obtain:
I' (P 1

&I (rro) 'e'+
v kv

1tPxs"--"o"+—
I

—+(v'). e3
2&v

1
+—slil 0~ cos 0~(rr ) 'e2 fe ( ())8

——sin 0 cos O(4r'). e~ cos 6~

+—sin 0 cos O(4r'). ei sin fif,

1(~P
(-') =--I

I
—-(-)."

2&&v

+—sin 0 cos O(4ro), eq fe3

1 (jD

+—sin 0 cos Oi ——(4r'), e& ie& fer" '"" 4)&&

&v ) )
1((P 1

+—
I I

—+(4r'), e4+—sin 8 cos O(4r') eg le3
2(&v

——sin 0 cos Oi —+( '). e, fe le " "-' ~1'&

Ev ') )
Io

+ I
(4r'). —e3(4r'). e3+—sin 0 cos 8—e2

I
cos 8&

v )
I'

+I (rr'), Xes+—sin 0 cos 0—ei
I

sin ii), (53)
E. v

1
ei = (n —cos Oe3), eg=

sin 0~

e3 Xn. (54)
s1n 0

p Io—e ""sinh

47rnMa44„
f t4, I

Xi (3—cos20)
" '-x I.

I2 )

If we apply these results to the case under
consideration, i.e. ; I'=Io, (4r') =0, we find that
the intensity and spin density of the beam after
traversing a thickness of x cm of iron are given by

I=Ioe-"- cosh

l 4irnMap„
I
t4. I

XI (3 —cos'0) x I,I2

The polarization thus produced can manifest
itself either by an absorption or a scattering ex-
periment. The f1rst procedure, which we shall call
the double transmission method, gives the follow-

ing expression for the intensity of the undeviated
beaIIl:

I=Ioe "'*' "' cosh Pi cosh P2

(t i). (t 2).
Xi 1+ tanh p, tanh p, I, (56)

l(s ).I l(t.) I
)

44rnMap„l (tii, g).
l

pi. 2 (3—cos 01 '4) xi, 2. (57)
A2

The subscripts 1, 2 refer, of course, to the erst
and second sheets of iron, respectively. The
asymmetry e, de6ned as the difference in inten-
sity between parallel and antiparallel orienta-
tions divided by the average intensity, is then
given by

4=2 tanh Pi tanh P, .

The magnitude of the asymmetry which may
be obtained experimentally is limited by the un-

desirability of reducing the intensity to such a
large extent that the effect is hidden by the high
speed neutron background. Thus, if' we do not
wish to diminish the intensity by more than 75
percent, we can take 8~ ——0~——30' and use thick-
nesses of 0.35 cm (xi ——x2 ——0.7 cm), since 4r=12
10—"." If both plates are saturated, the asym-
metry, as calculated from Eq. (58), is 37 percent.

The second procedure, which we shall term the
transmission scattering method, leads to the fol-
lowing expression for the intensity:

Io ( 4M'ii '
I=%2—e "'*' cosh Pii a'—

r2

( xo —x q
' 4M'p, „'

x I 1 I +——
I ltl2'l. I

E. f440 —44f ) g A4 )
Io 4@Ma ( 440 44

+%2 e"'*' si—nh p I—
Ii'l(~ ) I

Xo K

(~.). (t i).—(~2). (~i)- I (59)
I

440 —44
f

"J.R. Dunning, G. B. Pegram, G. A. Fink and D. P,
Mitchell, Phys. Rev. 48, 265 (1935).
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The subscripts 1, 2 refer to the polarizing plate
and scatterer, respectively; Kp and K are the
propagation vectors of the incident and scattered
wave; and r is the distance from the scatterer to
the point of observation.

The best experimental conditions are obtained
when

(t ~).= —(e2).= 0
Ko —K Kp —K

Under these circumstances, the intensity is given
by

Io (I=X, e "'c—osh—P,
I
a'—

r2

4' 2p„2

Io 4P„Afar—X2—e " *' —sinh P, (pp). (pg)„. (60)I'
I (t i). I

The asymmetry, defined in this case as the differ-
ence in intensity between antiparallel and parallel
orientation of magnetizations divided by the
average intensity, is:

8p„3fa
I
(y.).

I
tanh pl

It is interesting to note that the maximum inten-
sity occurs with antiparallel orientation of mag-
netizations, in agreement with what one would
expect by elementary considerations.

If both polarizer and scatterer are saturated,
x&

——0.7 cm, and O&=30', the asymmetry is 81
percent. With given values of

I
(p~), I, I (p2) „and

x&, the maximum asymmetry is obtained at
OI ——90'. For example, under the above condi-
tions, but with O~& ——90', the asymmetry, as cal-
culated from Eq. (61), is 92 percent.

There is still a fourth possible type of experi-
ment in which a neutron beam is polarized by
scattering, and then allowed to pass through a
magnetized iron plate. If the iron plate, is of such
dimensions that it is permissible to neglect the
fact that the scattered waves are spherical and
not plane waves, the intensity is given by a for-
mula identical with Eq. (59).

In conclusion, the author wishes to express his
indebtedness to Professor I. I. Rabi and Professor
E. Fermi for helpful discussions and suggestions,
and to Professor F. Bloch for an interesting con-
versation on this subject.
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Photoelectric cross section curves for a Majorana-Heisenberg potential of the type
U= —Uoe "" ' and a velocity dependent potential determined by Jo ———(2B/a)e &"+»' are
compared with a cross section curve for a square hole Majorana force calculated by Breit,
Condon and Stehn. In each case the values of the constants used are those which have been
determined as the best for accounting for the binding energies of H~, H3, and He4. Results show
that the cross section values for the first two potentials differ considerably from the third but
very little from each other. A general formula for the area under the cross section curve, which
holds for exchange as well as for ordinary forces is derived. For exchange forces Jo(v)d(hv)—(~e2h/23fc)(1+an) and this depends only on a, the range of interaction, a being defined by
a252/3f =e, the binding of energy the deuteron. The addition of a. long range repulsive force to
the velocity dependent interaction is found to decrease the cross section for this potential type
considerably. The classical equivalent of the velocity dependent potential operator is
determined.


