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Perturbation theory is applied to nuclei in the cen-
trally symmetric representation in which the neutrons and
protons have the wave functions of three-dimensional har-
monic oscillators. In first order the particles are indepen-
dent, but the second-order calculation removes this over-
simplification. In order to calculate the kinetic energy
correctly, a transformation to the coordinate system in
which the center of gravity is at rest is introduced. The
question of convergence has two aspects: whether the
successive contributions, first, of more and more highly
excited states, and second, of the successive higher orders,
diminish rapidly. One of the many interaction assumptions
which are equivalent for He? is used in calculating the
binding energy of He* ~with a result only slightly less than
that given by the equivalent two-body method, a satis-
factory proof of both methods. The calculation of the Li¢
binding energy with one form of interaction is carried far
enough to include the second-order contribution of the

sextuply excited states and the third-order contribution
of the doubly excited states, the convergence being ap-
parently sufficiently rapid that further contributions would
be negligible. The change in some of the smallest of these
contributions effected by altering the interaction assump-
tion is also neglected, in calculating the Li® binding energy
with other forms of interaction. All forms of interaction
considered have a radial dependence resembling the error
curve, and all but one ‘treat like-particle and unlike-
particle interactions symmetrically. Of these, the only
forms which satisfy the demands of scattering and of the
H? and He* energies, and which also give enough binding
energy for Li%, involve combinations of all types of permu-
tation operators with rather large positive and negative
coefficients. The influence of the second order on the calcu-
lation of nuclear mechanical and magnetic moments, in
particular those of Li¢, is also discussed.

ETHODS for the calculation of the energies
of the two-, three- and four-particle nuclei
from assumed interactions of the particles have
been developed.! With them and from scattering
data? it has been possible to get valuable indica-
tions of the probable approximate nature of the
interactions. But the number of accurately
known data depending critically on the assump-
tions is hardly greater than the number of
arbitrary constants involved, so that adequate
verification of the assumed interactions by pre-
diction of independent results has not been
1 See especially Feenberg and Knipp, Phys. Rev. 48, 906
(1935); Feenberg and Share, Phys. Rev. 50, 253 (1936).

? As analyzed most recently by Breit, Condon, and
Present, Phys. Rev. 50, 824 (1936).

possible. The statistical method (Thomas-Fermi)
has been applied to heavy nuclei to test certain
assumptions, but has not furnished very definite
criteria.? It will therefore be important to develop
a method for treating the binding and other
properties of nuclei consisting of more than
four particles.

The success of the perturbation theory in
atomic problems* suggests a similar attempt in
nuclei. The convergence in the atomic case
permits no certain prediction of convergence in
the nuclear case, for the atom is favored by the

3 C. v. Weizsicker, Zeits. . Physik 96, 431 (1935); Breit
and Feenberg, Phys. Rev. 50, 850 (1936); et al.

¢ Cf. Condon and Shortley, Theory of Atomic Spectra
(Cambridge, 1935).
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stationary (although, comparing with celestial
mechanics, relatively very weak) field of a
central particle. In atomic calculations, however,
one uses a central field which is, in a Hartree
type of approximation, at least directly at-
tributable about as much to the average of the
perturbations as to the central particle, and a
similar average field enters nuclear calculations
also. The manner of carrying out the average,
in the atomic case, is strongly influenced by the
stabilizing effect of the central particle, and
there is no question of disintegration, such as is
known in nuclei and might manifest itself as
divergence in a calculation with localized wave
functions. Formally, in investigating conver-
gence, one has to ask whether integrals H.s, of
an interaction multiplied by products of different
wave functions of the same variable, are con-
siderably smaller than integrals (or differences
of integrals) H,, of a sum of interactions multi-
plied by squares of wave functions. H, is re-
duced by cancellation of positive and negative
parts, somewhat more effectively if the inter-
actions vary only slightly within one wave-
length, but considerably in any case. H,, is kept
within bounds in the atomic case by the screening
of the nuclear charge by other electrons, and in
nuclei presumably by the exchange nature of
the interactions which reduces the effectiveness
of the interaction of one particle with many
others. The two cases have, then, considerable
similarity in the question of expectation of
convergence. There are indications that the wave
function of a nucleus is not with any accuracy
separable into simple, single-particle, wave func-
tions, a sort of complexity which has been dis-
cussed in connection with scattering by Bohr,’
and which one would expect from a naive picture
of the problem. There is the alternative picture of
a heavy nucleus as a group of alpha-particles
intact, but this is probably an over-simplification
in the other direction.® In cases where an
assumption of extreme simplicity has proved
satisfactory, as in the Gurney-Condon-Gamow
correlation of alpha-emission data, all the
simplicity assumed is, of course, not essential to
the result. Thus, although one may reasonably
hope for convergence, one may also expect that

5 N. Bohr, Nature, 137, 344 (1936).
¢ W. Heisenberg, Zeits. f. Physik 96, 473 (1935).
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at least the second order of the perturbation
theory, which represents a mixing of the simple
wave functions of the initially almost inde-
pendent particles, will be important for some
problems.

In selecting a type of initial wave functions
with which to calculate, it is essential not only
that they bear some resemblance to the true
wave functions, but that they lead to integrable
expressions when combined with the assumed
interactions. At least for light nuclei, with
interactions assumed to resemble the Gauss
error function, e~*7%" both requirements are
met in the representation in which each particle
is given the wave function of a three-dimensional
harmonic oscillator. Since ‘the perturbation
theory assumes that the initial wave functions
satisfy a zero-order wave equation, we introduce
a fictitious zero-order potential

V0= 3(0a)’2r?, (1)

summed over all particles. Due to the separa-
bility of 72 into x?, 92, and 22, we might use either
a Cartesian representation with wave functions
separated in Cartesian coordinates, or a spherical
representation with wave functions expressed in
spherical harmonics. The former seems to be
simpler for computing binding energies.

The initial wave functions are still not com-
pletely specified, the value of the ‘‘inverse-
square width’’ parameter o being arbitrary. The
result of a complete perturbation calculation is
expected to converge to the correct energy as
rapidly as possible when the initial wave func-
tions are chosen to make the first-order energy
as good an approximation as possible. The
second-order contribution being negative, the
true energy is surely considerably below the first-
order energy. We therefore select our initial wave
functions by variation of ¢ for minimum first-
order energy. It will be seen, in the cases treated
below, that this leads to practically the same
second-order energy as does variation of ¢ for
minimum second-order energy.

The center of gravity of all the particles is
not at rest in the coordinate system of the wave
functions (the oscillations of the individual par-
ticles about the origin being independent in zero
order, for example). This coordinate system has,
then, an irregular ‘shuttling” motion. The
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correct Hamiltonian includes the kinetic energy
Sp"/2M in a coordinate system x', ¥/, in
which the laboratory or center of grav1ty is at
rest. For purposes of calculation, this kinetic
energy may be expressed in terms of the same
coordinates x, y, 2, as are the wave functions.
We calculate, in a “shuttling” coordinate system
for convenience, the average value of the energy
in a stationary system (in nonrelativistic approxi-
mation). The slight difference between the
kinetic energy which we calculate and the
kinetic energy of the zeroth order wave equation
enters the perturbation procedure just as does the
corresponding difference in potential energies, the
familiar perturbation term. From p’=p—Zp/N,
N being the number of particles of equal mass
M, we have the wave equation

(E—I)y= {;(1—%)&“ S g

a>b
+U- V+E}1,b=0. (2)

Here — U is the total binding-type interaction
between all particles and V is the Coulomb
potential of the protons. The units used (as in
Feenberg’s papers, from which we shall take
parameters) are mc? for energy (0.51 Mev) and,
to eliminate this and the factor #%2/M from the
kinetic energy terms, fAc'(mM)~t for length
(8.97X107 cm). In these units the Coulomb
energy is

V1840 1 /27

’

137 r 8 r

summed over proton pairs.
term in the Hamiltonian is

1 1
=H-— HO_MZV(IQ‘{"_‘ Vo'V
eV Ty &Y

a>b

The perturbation

—U4+V—-3%(c0)2Xr2. (3)

Although the perturbation potential is not small
(V° being zero, and — U, as we shall specify it,
having its deepest negative value when all the
coordinates are zero) the effective ‘‘perturbing
force” is rather small: Considered as functions
of one 7 for example, averaged over the others,
— U and V° have roughly a constant difference
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in the region where the wave functions are
large, and a constant in H’ does not affect the
calculations, because of orthogonality. (The
rapidly increasing perturbation at large distances,
the term V?, does introduce a tendency for the
calculation to diverge in nuclei, but it may be
more than compensated, in the comparison with
atoms, by the fact that V° also keeps the de-
generate sets of highly excited levels relatively
farther apart than they are in atoms.)
The zero-order wave equation is

(B — )y = (3 V.t~ (s0)rat]+ P =0. (4)

Using the variables ¢=(ca)ix, n=_(ca)ly,
= (O'C()'%Z, it has the “Cartesian’’ solutions

N
Y= II II }[nga(£<t)e_£u2/2 (S)
a=1 §n{

simply products of harmonic oscillator wave
functions, wherein we normalize the Hermite
polynomials thus:

Hy(§) =n"%, Hy(§) =21,

II(§) =2"1r4 (282 - 1),

H(8) =3 71288 —3¢),

I1,(§) =2716" r4(4¢+12£2+3),

II5(§) = 271157 i (48 — 20£84-15¢),
H(§) =12"15" r#(8£5—60£'+90£%—15).

(6)

The zero-order energies are

E'=EQ+3 00
£ a

It is convenient to introduce antisymmetry
immediately by forming

N
2 (=) AP0 PP oo, (0a),
P,P, a=1
™

where P, is an operator permuting coordinates
(including spin) of the N, neutrons, and P, of
the N, protons, and P in the exponent is the
order of the permutation P. du,,(cs) is of course
a Pauli spin wave function. The usual high degree
of degeneracy is apparent. It is only in such
cases as the ground states of the alpha-particle,
wherein two protons and two neutrons each have
three »n's equal to zero, or of O'%, having as many
particles as possible with no n greater than 1,

‘1’0 = (N,,N,r)_%
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that there is no degeneracy. The perturbation
may be diagonalized within a degenerate set,
yielding wave functions ¢ which are linear
combinations of the y's within a degenerate set
and which approximate the proper functions of
the perturbed system. The first-order energies
are then E®W = f¢H¢. In deriving an expression
for the second order energies E® it is usual to
seek ¢ expanded in terms of all the ¢'s, which
gives E® in terms of integrals S ¢.H'¢;. But
the degree of degeneracy of the excited states of
nuclei is sufficiently high that the selection of
the ¢'s may become quite involved. This may be
avoided, however, in calculating properties of a
state arising from the lowest degenerate set, for
example, by expanding ¢ in terms of the ¢’s of
that set and the ¢’s of all other sets. The second-
order energy is then expressed in terms of
integrals Hu' = S ¢ 00 thus:

E®=3% (H)/(EL—EY).
b

The evaluation of the integrals is, of course,
unaltered and considerably simplified if one
omits the antisymmetry from either ¢, or ¥,
modifying the normalization accordingly. The
third-order term in the energy is

Hod' (H o' — 8apIL oo’ ) [0

E® =313 . (8
Z% (Eo—Ed)(Eo—Ey) ®

The quadratic array of matrix elements involved
makes the computation of E® impracticable
when many excited states must be taken into
account. But an estimate using a limited number
of the lower excited states will serve as an
indication of the rate of convergence of the
method in individual cases.

TyYPES OF INTERACTION

For a preliminary explanation of the trend of
the mass defect curve within the limits of
accuracy of the statistical model” and also for
reconciling the mass defects of the deuteron and
alpha-particle? (with very narrow wave func-
tions), the assumption of binding-type inter-
actions between unlike particles only was suffi-
cient. But the greater stability of even numbers

" W. Heisenberg, Zeits. f. Physik 77, 1; 78, 156; 80, 587

(1932); E. Majorana, Zeits. {. Physik 82, 137 (1933).
8 E. Wigner, Phys. Rev. 48, 252 (1933).
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of protons and of neutrons’ and, recently and
more directly, the scattering of protons on
protons,!® indicate the existence of like-particle
binding interactions. The proton-proton and
neutron-neutron binding interactions are pre-
sumably the same, but the former has super-
posed on it the Coulomb repulsion. Since the
like-particle interaction is to be taken of the same
order of magnitude as the proton-neutron inter-
action, it must also be mostly of an exchange
nature to avoid collapse of a heavy nucleus.
One interaction assumption that satisfies these
demands is that used by Feenberg and Knipp :!

U=B ¥ e {(1-g)Pu@+gPu)
proton-neutron
pairs, ab
2P 041
+C L et (9))
like-particle 3
pairs, ab

The permutation P(? operates’” only on space
coordinates; P is the more familiar permutation
which operates on spin coordinates also.” It
happens that the values of the parameters B, C
and g chosen to fit the neutron-proton and
proton-proton scattering data and the binding
of the lightest nuclei by the equivalent two-body
method" are of such a magnitude as to suggest
that a simpler interaction is equivalent to (9,)
in problems concerning the ground states of
three- and four-particle nuclei.! It is

U=B Y e {(1—g)PD+gP.}.

all pairs

(9)

This interaction is formally the same between
like and unlike particles, so we may call it a
symmetric form of interaction (in contrast with
(9.), which is unsymmetric). It is in effect weaker
between like particles than between unlike par-
ticles because of the antisymmetry of the wave
function in like particles; in the nuclei mentioned,
the pairs of like particles have opposite spin, and
between them the term in +gP enters only in
the “‘exchange integral,” which has a negative
sign and is otherwise the same as the direct
integral when the ground state of a three- or
four-particle nucleus is involved. This with the
factor (1—g) in the direct integral makes
the effective depth of like-particle interaction

? L. A. Young, Phys. Rev. 48, 913 (1935); Guggenheimer,
J. de phys. et rad. 5, 475 (1934).
( 10 Tuve, Heydenberg and Hafstad, Phys. Rev. 50, 806
1936).
1 E. Feenberg, Phys. Rev. 47, 850 (1935); Feenberg and
Knipp, reference 1.
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(1—2g)B. If this is equal to C, (9.) and (9,) are
equivalent in these nuclei. It is apparent that
the same equivalence does not exist for heavier
nuclei, so we shall be able to decide which type
of interaction is more nearly satisfactory. Find-
ing neither adequate, we shall also consider other

types (Eq. (17)).

INTEGRATION

In the calculation of matrices of these inter-
actions, we encounter integrations of the type
S, 00Uy - -dry. Because of the separa-
bility of such integrals in Cartesian coordinates
and the absence of more-than-two-particle inter-
actions, they reduce to products of integrals
which we designate thus:

Favea=(r/0)} j H.(O)Hy(x)
X GO T (£) I o X)dEd X

= U/G)*[ AEIT ()1 (£)eErito+D

xf dvILy(E/(o+1)+7)

XH (&) (0+1)+v)er*otDlo]

where r=0+42. We note that fioca=faaco =fcvaa-
Instead of writing a closed form for these, which
would, it seems, be rather intricate, we find it
convenient to list the integrals which we shall
need in subsequent calculations:

Soooo=1,

f1100=1/7'y

f1010=1—1/’f:

fzono= —1/(297),
fin=1=2/r+3/72
f2uo=(2/‘f—3/7'2)/23y
f2101=(-1/‘r+3/‘r2)/2*,
f2200=3/(272),
fzo20=1—2/72+(3/2)/7'2,
f3100= —(3/2)5/1'2,
f3010=(3/2)5(—1/7+1/TZ),
f4000=(3/2)9/(272)y
f2211=2/T"'6/7'2+(15/2)/T31
fon=@/DH—1/r+4/r*=5/%),
f3210=(3§/2)(3/7'2—5/73)y
fra=34(—1/724-(5/2) /7%,
f3300=5/(27'3), .
fa=(3/2)X(=2/72+(5/2) /7%,
f1101=(3/8)§(1/7'2_5/73)1
Sao00= —315/(4r%),
f5100=(15/8)*/73,

fovoo= —5%/(473).

(10)
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THE BINDING ENERGY OF THE ALPHA-PARTICLE

An impression of the extent and convergence
of the perturbation calculation can be had by
examination of the details of this example,
using, explicitly, the unsymmetrical form of
interaction.’? A zero-order state of the alpha-
particle can be described in all detail by giving
sixteen quantum numbers, describing the x, v,
and z oscillations and the spin of each particle.
For a certain excited state, we have for example
the list 1004, 000— ; 0004, 100— where the
numbers give #’s and the signs give the sign of m,
those before the semicolon (;) referring to
neutrons and the others to protons. This can be
abbreviated 1, 0; 0, 1 if omitted #,’s and #»;'s are
understood to be zero and + is understood to
come before —. In calculating the diagonal
energy for a state, the symmetry between the
particles and the separability into x, y, and z
integrals, reduces the integration to simple forms.
For example, for the ground state, 0, 0; 0, O,
we have

(0,0;0,0[2v.2|0,0;0,0)
=12(0|d?/dx?|0)= —6oa.

The terms in V.-V, here give nothing, being
products of odd functions of different variables.
The average binding potential is

(0,0;0,0|U|0,0;0,0)
={(4—2g)B+2C}(0, O\f—aﬂab]o, 0)
={(4—2¢9)B+2C}(s/7)".

The Coulomb term is reduced by a factor 1/2 be-
cause of exchange, leaving® (as)*/4. We have,
then, for the first-order energy of the alpha-
particle,

EO®4E®=(9/4)ac
—2{(2—g)B+C}(s/7)} +(a0)i/4. (11)

The second-order energy consists of contribu-
tions from many excited states. The integrals
H,,' are zero between the ground state and any
excited states for which the sum of the #’s is an
odd number, because H’ is odd in an even number
of coordinates and the wave function is odd in

an odd number of coordinates. The states of the

12 Preliminary results for the still simpler case of unlike-
particle interactions only were given in an abstract: Inglis,
Phys. Rev. 50, 399. More accurate calculation shows those
results to be about two percent low. The first order only
was given by Heisenberg, reference 6.
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TABLE 1. Doubly excited states of He*.

Hod’
TvypPE Nr. Hod' (o =2.6, etc.)
+ - + -
2,000 12 {2—eB+C)u/r—3as/8}//2 -—0.19
1, 0; 1,0 6 —Bu/7+as/8 —1.45
1, 0; 0, 1 6 —(1—g)Bu/7+ad/8 —0.09
1, 1; 0, 0 6 —Cu/r+ac/8 1.27
+ + - =
0, 1; 1,0 3 —gBu/T —1.36

system which do contribute to the second order
may then be grouped as doubly excited states
(degenerate with E,%=E,°+2as), quadruply ex-
cited states, sextuply excited states, etc. Of
these, only those with Zn Zn,, and Zn; sepa-
rately equal to even integers have nonvanishing
nondiagonal elements H,,”. The number of con-
tributing states is further limited by the fact
that no term in the Hamiltonian involves more
than two particles, so only one or two particles
may be excited in a contributing state, and by
the selection rule AM s=0 which confines our
attention to one value of total spin projection,
because our operators in this approximation
introduce no spin-orbit coupling. The Coulomb
term is for light nuclei very much smaller than
the rest of the Hamiltonian, so we neglect it
beyond the first order, which leaves H’ sym-
metrical with respect to protons and neutrons.
Because of the equivalence of the particles and
of directions in space, there are several doubly
excited states of the same type, having the same
value of H,,’. The number of states of one type
is the product of the number of permutations of
its set of #'s in x, y, and 2, multiplied by two if
protons and  neutrons are not .excited sym-
metrically, and again multiplied by two if the
excitation is not symmetrical relative to -+
and —. The types of states, with the number of
states of each type and the corresponding ex-
pressions for H,, in terms of the parameters,
are given in Table I. The sequence of m, is the
same as for the ground state, except for the last
line, as indicated. For brevity, we introduce
u=(c/7)'=(c/(c+2))}. Terms in ac do not
occur in H,, beyond the doubly excited states
(cf. the selection rule for the harmonic oscillator)
The third, fourth, and fifth types listed in Table I
have matrix elements I,, quite similar to that
of the second type, differing, aside from the
terms in ao, in the replacement of B by (1—g)B,
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C, and gB, respectively. The same similarity
recurs through the higher states, and we shall
shorten the tables by listing only one of the
four similar types explicitly and indicating the
omission by an asterisk (*). With this under-
standing, the types of quadruply and sextuply
excited states are indicated in Table II. In order
to be able to compare the contributions of the
various groups of states, we shall’split the second-
order term in the energy of the ground state
into a part due to all doubly excited states, a
part due to all quadruply excited states, etc.,
thus: E®@=FEp@4+Eq@4+Eg®+.... Adding
the contributions from the types of states listed
in Tables I and II, we have

—Ep® =3{(F+G)u2/(%a0)
—[(2—g)B+Clu/v+3as/16,

—Eq®=3(31F45G)u*/ (874a0),
—Es®=(815F4+33G)u?/(24r%0),

where
F=2(1—g+3g2/4)B*+C?

G=[(2—-gB+C].

Now we are in a position to obtain a numerical
second-order result for the binding energy by
assuming values of the parameters «, g, B, and C.
It has been stated that the unsymmetrical form
of interaction (9,) and the symmetrical form (9;)

and

TaBLE II. Quadruply and sextuply excited states of He'.

TYPE a NRr. (72/u)Hod’

+ -+ = .

4, 0; g, 0 12 (3/8)3{(2—¢)B+C}
22, 0; 0, 0 12 —(1/2){(2=g)B+C}
3, 0 1, 0 12* (3/2)B

12, 0; 1, O 12% (1/2)*B

2, 0; 2, 0 6* —(3/2)B

2, 0; 02, 0 12* —(1/2)B

11, 0; 11, 0 6* -B

6, 0; 0, 0 12 (53/4){(2—g)B+C}/r
42, 0; 0, 0 24 (31/4){(2—g)B+C}/r
222, 0; 0, 0 4 (1/2)¥{(2—g)B+C}/r
5, 0; 1, 0 12* (15/8)iB/r

32, 0; 1, 0 24* —(3%/2)B/*

122, 0; 1, 0 12% —(1/2)B/*

4, 0; 2, 0 12% —(5/4)3*B/r

4, 0; 02, 0 24* (34/4)B/r

22, 0; 2, 0 24%* 3(1/2)4B/r
022, O0; 2, 0 12* (1/2)B/+

112, 0; 11, 0 12% (1/2)'B/+

3, 0; 3, 0 6* (5/2)B/r

3, 0; 12, 0 24* —(3%/2)B/~r

21, 0; 21, 0 12% —(3/2)B/r

012, 0; 21, © 12* —(1/2)B/r

111, 0; 111, 0 2% —B/r
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are approximately equivalent, with the values of
the parameters found by Feenberg and Knipp.
We shall alter those values very slightly, so as
to make the two forms of interaction exactly
equivalent in this calculation, while altering the
results very little, by taking a=16, B=72,
C=42.5, g=0.205. (With these values, the
equivalent two-body method gives the binding
energy of the alpha-particle —FE=56mc®. The
values of @ and B were kindly suggested by Dr.
Feenberg, as better fitting newer mass determina-
tions.) In varying ¢ for minimum (first-order)
energy, numerically, it is more instructive, and
somewhat easier, to calculate energies directly
than to use the equation for the derivative. In
Table III are given values of the separate terms
in the energy, calculated in units mc? with these
parameters, for values of ¢ about the minimum.
From these values it is apparent that it makes
practically no difference in the second-order
energy, whether we vary ¢ for minimum first-
order energy and calculate the second-order
term with the value of ¢ so determined, or vary
o for minimum second-order energy directly.
The most striking feature of the results given is
that the quadruply excited states contribute
much more than the doubly excited states. This
does not mean, however, that the calculation
will not converge, since there is a good reason
for this exception to the expected rule that each
group should contribute much less than the
preceding group. The reason is that the terms in
ac, which are found for the doubly excited states
only (see Table I), enter the matrix elements
with opposite sign to that of B or C, and greatly
reduce their values. (The value of +—Ep®
listed for ¢ =2.6 is calculated as 44.8 —44.5=0.3,
for example.) So the convergence does not seem
to commence until after the quadruply excited
states. We take the small value of Eg® as
sufficient indication that we have quite a good
value (—EW — E® =53.0mc?) of the second-order
binding energy without proceeding further.

The third-order term in the energy (8) is
laborious to calculate, so we shall not make as
careful an estimate of it as we have made of the
second-order, and shall do it only for our present
choice of parameters and for ¢=2.6. First we
confine our attention to the doubly excited
states, and evaluate the elements H,,’ for them,
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TaBLE I11. Terms of the second-order binding energy of He!
(4n units mc?) for values of o about the minimum.

' 2.4 2.5 2.6 2.7 2.8
—EW 50.4 50.7 50.8 | 50.7 | 50.5
—Ep® 0.1 0.3 0.6
—Eo® 2.0 1.7 1.5
—Eq® 0.2; 0.1, 0.1,

as entered in the last column of Table I. Ex-
amining these numbers, we see that we may, as
an approximation, neglect the first and third
types. The second, fourth, and fifth types have,
respectively, the following wvalues of the ex-
pression H,,'— H,,’ which enters (8):

1,0;1,0: [20—g)—g/7+3/7*]B
+2(1—1/7)Cu—Sac/4=136mc?,
1,1;0,0: {22—g)(1—1/7)B
—(2=3/7)C/7}u—Sac/4=138mc?,
1+, 0t;1—,0-: {[22—-g9(1—2/7)—3/7*]B
+2[141/(37)]C}u—3as/2 =99mc?.

The nondiagonal element I{,," between the first
two of the states here listed is (¢+1)Bu/r
=24mc?; all other nondiagonal elements between
these types of states, or between states of the
same type, are smaller at least by a factor g or
1/7 (and are not all of the same sign), so-we
may neglect them. Substituting these values
and those of Table I in (8), enumerating the
states of each type, and remembering that the
‘“nondiagonal’’ terms enter twice because the
two summations in (8) are independent, we have
for the part of the third-order term in the energy
due to doubly excited states only:

Ep® =0.5¢mc?.

Of this about —0.04mc? is due to the ‘‘non-
diagonal” terms. A rough estimate of the total
contribution to (8) of all terms involving both
doubly and quadruply excited states is —0.01mc?.
The ‘‘nondiagonal” terms being apparently neg-
ligible, we estimate further only the ‘“‘diagonal”
terms of the quadruply excited states, and find
roughly
Eq® =~ —0.05mc?,

the principal contributions (—0.1mc¢?) coming
from the types 4, 0; 0, 0 and 22, 0; 0, 0. The
result is at least accurate enough to show that,
contrary to the situation in the second order,
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the third-order contribution of the quadruply
excited states is considerably smaller than that
of the doubly excited states. Eq® is also much
less than E¢®, which seems to indicate that the
convergence is rapid.

Combining the various terms, we have for
the binding energy of the alpha-particle, as
calculated with our choice of parameters,
— E=352.5mc?. The same parameters give 56mc?
by the equivalent two-body method, which
probably indicates an upper limit.! Considering
the binding energy as the difference between an
average potential and an average kinetic energy,
the agreement is really quite close, and the slight
difference between the calculated binding energy
52.5mc? and the observed value 55mc? indicates
that the parameters probably should be re-
adjusted slightly.

THE BINDING ENERGY oF Li1°

A calculation of the binding energy of Li® is
complicated, compared to the above, by the
degeneracy of the lowest states in zeroth order.
The first-order calculation consists of selecting a
linear combination of those states in such a way
as to diagonalize the submatrix of the energy
between them. There are no matrix elements
between states with different total projection of
spin angular momentum, because the operators
in (9) do no more than interchange spin co-
ordinates, without changing their sum. We
therefore have small submatrices for M =1 and
for M s=0. The neglect of spin-orbit coupling
further means that the total spin and total
orbital angular momentum separately commute
with the Hamiltonian, as in atomic spectra, so
.that the states with diagonalized energy are also
characterized by the quantum numbers L and S
of Russell-Saunders coupling. The same first-
order result has been obtained independently by
Feenberg and Wigner!® and by Bethe and Rose,!*
by first diagonalizing the angular momenta and
then calculating the energy in terms of certain
parameters, for Li® and other light nuclei. The
diagonalization of the energy may be carried out
directly for Li®. The energy may also be had
from the secular problem with our wave func-
tions, as we shall now show.

13 Feenberg and Wigner, Phys. Rev. 51, 95 (1937).
14 Bethe and Rose, Phys. Rev. 51, 283 (1937).
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The nine states with M g=1 may be grouped,
according to their four small submatrices of the
interaction, thus: (1; 1), (01; 01), (001; 001)
with a three-row matrix, and the pair (1; 01),
(01; 1) having the same submatrix as has the
pair (1; 001), (001; 1) and the pair (01; 001),
(001; 01), all of which may be seen from sym-
metry. After subtracting (0, 0, 1; 0, 0, 1|H|0,
0, 1; 0, 0, 1) from the diagonal elements, the
submatrices are

0 —a —a
—a 0 —a and b —d (13)
—a —a 0 —d b

where 0«=Bf21100, b=B(f1111 —f21100), and d=Bf21010.
using either of the forms of interaction (9). The
three consequent two-row secular determinants
each have the roots b+d, and b—d=a, using
(10). The three-row secular determinant is easily
factored by adding rows and subtracting col-
umns, yielding the roots a, @, —2a. The fivefold
root a corresponds of course to the energy of
the 3D, b+d to 3P, and the lowest root —2a to
the 3S. The latter root in the three-term secular
equations leads to the wave function

do=3"*{(1;1)+(01;01)4(001; 001)}. (14)

This is the ground state, since the interactions
have been chosen to make triplets lie below
singlets in cases like this and the deuteron, where
essentially only one proton-neutron interaction
is involved.

The energies of the singlets may be had explicitly by
considering the states with M s=0, which fall into groups
twice as large as those just considered. The D and P are
had as {fiu— (1—2¢)(fH100=f%010) } B from one of the four-
row submatrices (factoring by adding rows and subtracting
columns in blocks of two) and the 1S as {—2fun+(1—2g)
(fioi0—f0m) } B from the trace (=0) of the six-row sub-
matrix, knowing the other terms, and using the sum rule

The ground state has, then, the first-order
energy (0, 0, 1; 0, 0, 1|H|0, 0, 1; 0, 0, 1) —2a.
Using the symmetrical form of interaction (9),
this is?®

EO4+ED=5500/12—{5—8g+(8—2¢g)/7
+5/72}uB+0.7(ac)?.  (15)

15 The Coulomb energy is calculated here to first order,
and roughly for other nuclei from He to O having 24\
protons, by taking (reference 6) p(r,r")=2(ag/m)%?
(14ao\r-7'/3)e~ast®4r 02 to be (24+3N+4372/72)(ac)?/8.
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Using the unsymmetrical form (9,), we have
instead

EO4E®M=5500/12—{[5—2g4+2(3—g)/r
+5/7]B+2(14+1/7)Clu+0.7(ac)t.  (15,)

In calculating the second-order contribution to
the energy of the ground state, we may again
group the doubly excited states, for example, in
types such that all states of the same type have
the same value of H,,’. This follows from the
isotropic nature of the wave function of the
ground state (14), which means that exchange
of directions, as well as exchange of all protons
with all neutrons, in the description of the
excited state, does not alter the integral. As an
illustration of the difference between this calcu-
lation and that of the alpha-particle, which has
been given in detail, we list in Table IV the types
of doubly-excited states which we take into
account. The matrix elements H,,” are listed in
a general form for future reference, and they are
reduced to the matrix elements of our present
calculation by putting g;=g,=0.

Adding the squares of the matrix elements of
these states, and dividing by 2a¢, we get their
contribution to the second-order term in the
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energy:

Ep®=—{52—62g+59g°— (704+40g+10g?) /7
+(180—85g+27¢g%) /72— (704 35g) /73
+214/ 74} (Bu/7)?/ac+ {64 —126g
+ (154 —60g)/ 74203/ 72} (Bu/7) /12

—(323/288)ac. (16:)

The corresponding computation using the un-
symmetrical form of interaction (9,) (for states
having both a neutron and a proton excited,
the calculation is of course unaltered) gives

Ep®=—{[(63—38g+25g%)0%+2(91—71g
+32g%)0+237—172g+74g2+20(20 —1—¢g)
X(7/27)+435(7/27)*]1B*+[2(12—20g/3)qa?
+(53—85¢/3)0+63—40g+35/7BC
+[120%24+4804+63]C?} u?/(2aar4)
+{[(46—11g)c+89—52¢+29(7/27) B
+[380¢/34527]C}u/(67%) —323a0/288. (16,,)

Using the parameters a=16, B=72, C=42.5,
and g=0.205, as for the alpha-particle above,
we evaluate (15) and (16) for the symmetrical
form in Table V and for the unsymmetrical form
in Table VI, for values of ¢ about the minimum.
We see that there is here considerable difference
in the behavior of the two forms of interaction.

TaBLE IV. Doubly excited states of Li®.

TYPE NRr. V/3H,o
+ - 4+ + - +
0, 0, 3 0, 0, 1 6 /2)’l[(—g+5gx+3gv)/7+(1‘—g—10g1—9gu)/72+7/f"]3u—5a0/12}
0, 0, 12 0, 0, 1 12 27H[(—g+5a1+3g,) /r+(1—g—10g1—9g,) /74 7/73 ]Bu—5ac/12}
2, 0, I 0, 0, 1 6 274 (—2—3g+921+6g0) /7 +9(1 —2g1—2g,) /7> ]Bu—Sac/12}
0, 2, 1; 0, 0, 1 6 27H[(—1+621+3g,)/7+3(2—g—4g1—3g,) /7*]Bu—Sas/12}
02, 0. 1: 0, 0 1 12 2-4{[(2—3g+3g1) /r+3(1— 20— 2g,) /7> ]Bu—5Sac/12}
0, 02, 1: 0. 0 1 12 2-H{[(3—4g+2g—3g,)/r+(2—g—4g1~3g,) /r*]Bu—Sac/12}
1, 0, 1 0, 0, 01 12 [(=2+43g1+3g,) /74-3(1 —2g1—2¢,) /7> ]Bu
0, 11, 1; 0, 0, 01 12 [(=2+42g+281+3¢g,) /74 (2—g—4g —3g,) /7*]Bu
0. 0 2: 0 0 2 3 ([=2/r+6/7—21/(2:%) IBu-+ac/6)
0, 0, 11; 0, 0, 11 3 {[—=2/r+4/72—T7/7*]Butac/12}
0, 0, 2 0, 0, 02 6 2/72=17/(2r%)Bu
0, 1, 1; 0, 0, 2 6 274 [(1—¢g—3g1—g)/r+3(—14g+2a+2,) /7*]Bu+tac/6}
o, 1, 1, 0, 0, 02 12 27 (1—g—g1—go)/7+(—14+g+2g+g,) /7% Bu
01, 0, 1; 0, 0, 11 6 0 .
0, 01, 1: 0, 0, 11 12 [—g/r+(—=1+g+28+8,) /7] Butas/12
01, O, 1; 01, O, 1 12 —2Bu/r+ac
01, 0 1. 0, o, 1 12 (—1+g+2,)Bu/r+ac/12
0, 1 1: 0, 1 1 9 —Bu/r+ac/12
0, 1, 2 0, 0, 1 6 27H[(1+g—321—2¢g,) /7 +3(—142¢1+2¢,) /7> ]Bu+ac/6
0, 1. 02; 0, 0, 1 12 2 (+1—g—g1—2g0) /r+(— 1 +2g,+2g,) /72 ]Bu
0, 01, 11; 0, 0, 1 12 {(g— gx)/r+(—1+2g1+2ga)/r”}Bu+aa/12
01, 01, 1; 0, 0 1 12 (—1+2g+2¢,)Bu/r+ac/12
+ + + + - =
0, 2, I 0, 0, 1 6 274{(2g—go)/7—(3g—3g,)/7*} Bu
0, 02 1; 0, 0 1 12 274 g, /r+4(g—g,) /72| Bu
0, 11 1; 0, 0, 01 12 {—g/r+(g—g)/m*}Bu
0, 1, 01 0, 0, 11 12 {—go/m+(—g+g)/m*}Bu
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TABLE V. Symmetrical form (Eq. 9;).

v 0.8 1.0 1.2 1.4
—E®—E® 12.6 13.3 12.7 8.7
—Ep® 19.3 221 24.1 25.6

TABLE VI. Unsymmetrical form (Eq. 9,).

2 1.2 1.4 1.6 1.8
—EO—FE® 26.9 274 26.9 25.1
—Ep® 18.1 17.9 17.6 17.5

At least to this order of accuracy, the nucleus
seems to be more unstable and larger (smaller o)
with the symmetric form of interaction than
with the unsymmetric. This ‘“‘repulsive’’ effect
of the symmetrical form may be traced to the
interaction between like particles with like spins:
the entire operator {(1—g)P(?+4gP} annuls the
exchange nature of the ‘‘exchange integral”
introduced by antisymmetry, thus augmenting
its magnitude without changing its sign.
Comparing these results with those for the
alpha-particle, we see that the second-order
contribution to the energy is of a larger order of
magnitude for Li%. On the other hand, they are
both calculated as differences of quantities of
the same order of magnitude (the value —Ep®
=17.9 in Table VI is found as 75.6—57.7 for
example; cf. 44.8—44.5=0.3 for the alpha-
particle, in Table III above). This may be
interpreted as an illustration of fact that the
zero-order potential V° can be chosen to fit all
the particles in the alpha-particle very well,
since they are equivalent particles (namely,
s-particles), whereas in Li® the size of 7 must
be adjusted as a compromise between the
tendency of the four s particles to congregate
closely and the tendency of the more loosely-
bound p particles to spread out. Thus 1° is not
as good an approximation to the true average
potential in Li% and the correction introduced
by the second-order contribution is larger. In
more detail, Ep® is easily seen to depend
essentially upon a mean-square difference be-
tween the “U part” and the “V° part” of the
elements H,, (the kinetic energy correction also
enters here, but in a secondary rdle). This is not
true of the further contributions E¢®, etc., a
selection rule excluding the “V° part,” as we

INGLIS

have seen. Since the positive part of —Ep®
alone is of the same order of magnitude in Li®
as in the alpha-particle, we may expect contribu-
tions of the quadruply excited states, etc., to be
of the same order of magnitude in the two nuclei.
In further investigation of the convergence,
the types of quadruply excited states have been
listed (but the reader is spared the sight of
them!), with the number of states of each type,
and a numerical evaluation of the matrix ele-
ments H,./, for each form of interaction, and for
approximately the value of ¢ which gives a
minimum value to E®+4 E®, Computation with
these elements leads to the following values:

—Eq® =6.9mc?

Unsymmetrical form of U, c=1.4,
—Eq® =5.mc’.

To give an idea of the slope of —Eq®(s), the
value for the symmetrical form and ¢=1.2 was
found to be about 6.gmc?. The second-order
contribution of the sextuply states we only
estimate very roughly, by analogy with the last
calculation, by noting that half of the contribu-
tions to —Eq® (symmetrical form of U) are
made by states in which the s particles alone
are excited, and a quarter by the types 04, 0, 1;
0,0,1and 0,04,1;0,0,1and 2,0,1;2,0,1and
2, 0, 1; 0, 2, 1. The six analogous types of
sextuply excited states contribute 0.05, and this
is apt to be roughly the same fraction of the total
(a survey of the details that make one type of
state contribute less than another may be
‘necessary to convince one of this), which leads
to the estimate —Eg®=0.,. Experience with
the alpha-particle has shown that the ‘‘non-
diagonal”” terms of the summation may be
neglected in reckoning the third-order contribu-
tion to the energy. Doing this, and proceeding
otherwise as for the alpha-particle, we find
—Ep®=—1;, as calculated with the sym-
metrical form of interaction. This we take as
sufficiently definite indication of rapid conver-
gence. Since the neglected nondiagonal terms
are apt to oppose in sign the neglected fourth-
order contribution to the energy, we take as our
(most probable!) result the sum of the terms
we have cited, or

Symmetrical form of U, ¢=1,

— E=40.ymc?, for the symmetrical form of U
—E=49.ymc?, for the unsymmetrical form.
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The approximations made in estimating the
contributions of some excited states and neg-
lecting others lead to errors in the result of
probably not more than 1mc?, in the judgment
of the writer.

The parameters here used were essentially
those previously determined by the equivalent
two-body method. By our method they gave
52.5mc? instead of 55mc? for the binding energy
of the alpha-particle. If, in order not to alter
the deuteron results, we simply change C to make
the alpha binding S55mc¢? by our method, it
becomes C=46. The consequent change in the
first-order energy of Li® is —9.1m¢? and in Ep®
is 1.0mc®. With the parameters B=72, C=46,
a=16, g=0.205, the binding energy of Li® is
then —E=2357.¢mc?, for the unsymmetrical form.
The result is thus quite sensitive to this small
readjustment of a parameter to fit the data on

the lighter nuclei. This particular readjustment

seems to be incompatible with the newest
scattering results.!® Other readjustments are
possible. Fitting the He* energy by a change of
g does not alone have much effect on the Li¢
energy; (0E/dg) being about 60mc?® for He* and
70mc? for Li®. Change of B, a and g simultane-
ously (approximately scattering requirements)
is a possible means of fitting the binding of He*
(keeping C=(1—2¢)B if desired), but it also
increases the Li® binding not much more than
the He* binding. Values of the parameters
selected to bring about agreement with the
binding energies 4.3mc? of H?, 55mc? of He* and
62mc? of Li®are a=16, B=172, C=47.7, g=0.238,
but here C is considerably greater than (1 —2¢)B,
which definitely disagrees with the scattering
results.'® This unsymmetrical form of inter-
action, although comparatively flexible, seems
then to be not quite adequate to explain both
the binding energies and the scattering data.
The binding energy of Li® calculated by the
symmetrical form (9;) with our original choice of
parameters was in more marked disagreement
with experiment than was the result we have
just discussed. Furthermore, it is a less flexible
form of interaction, containing fewer parameters,
and less can be altered in the Li° result by
adjusting the parameters to fit He* by this

16 Breit, Condon, and Present, reference 2, especially
pages 844-435.
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method: we alter a from 16 to 17, and then
change B from 72 to 75.3 to fit the deuteron
binding"” and g from 0.205 to 0.198 to keep the
excited level of the deuteron at zero.!® With the
new parameters we find the He* energy to be
—55.1, while for Li® the value of —E®—-E®

_has been lowered by only 0.3mc? and —Ep® by

0.9mc¢* below the values given in Table V. The
final value of the binding energy of Li® is thus
45mc®. This seems to exclude the interaction
used as inadequaté (see discussion below).

OTHER SYMMETRICAL FORMS OF INTERACTION

A symmetric form of interaction would add
to the elegance of the theory of nuclear binding.
Such an interaction is compatible with the
scattering results, which seem to require practi-
cally equal singlet interactions between like and
unlike particles. Although the special and com-
paratively simple form (9;) seems to be inade-
quate, a more general symmetric form may still
be successful. The general symmetrical form of
interaction

U: Z J(rab)oab

all pairs

with

an
Oun={(1—g—g1—2)Pu'?+gPu+gi1+g,Pus'”}

(where P.,(? is a permutation -operator ex-
changing spin coordinates only!?) is equivalent??
to the forms already used for the two-, three-,
and four-body problems if g4g,=g,=~0.2, the
constant determined by scattering. We continue
to specialize J(7.,)=Be *"w. The first-order
energy of Li® with this form of interaction is

E®4E®=5500/12— {5—8g+10g,
+(8—2g—20g1—18g,)/7+5/72} Bu-+0.7(ao)’.

The matrix elements H,, calculated by use of
this form of U in (3) (neglecting V) have already
been listed in Table IV, for the doubly excited
states. The contribution of these states to the

17 Feenberg and Knipp, reference 1, Table II1.

18 As an approximation. Cf. Feenberg and Share,
reference 1 Table IV. According to reference 16, the values
of gy should be larger, thus demanding an increase of B
and «, to fit He!, which does, however, not improve the
calculated Li® binding appreciably. )

19 J. A. Bartlett, Phys. Rev. 48, 102 (1936).

20 Breit and Feenberg, Phys. Rev. 50, 850 (1936). The
equivalence does not extend to our third order.
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second-order energy is

Ep®=—{52459g24+175g2+111g,2—62¢
—50g1—102¢,—70gg:1+ 38g¢,+210g1¢,
— (70410g2+700g,2 4 394¢,2+40g — 350g,
—240g,—70gg1— 124¢g,4+1050g:12,) /7
+(180427¢%+4-700g,2+587g,2—85g — 325¢:
—345g,+140gg:+86g¢,+1260g:¢,) /
—35(2+g+10g,+9g,) /73 +214/ 74}
X (Bu/7)?/ac+ {64 —126g+270g,+ 845,
+ (154 —60g — 540g, —480g,) / 74203/ 7%}

X (Bu/7)/12—(323/288)ac. (18)

We wish by use of these expressions to compute
the binding energy of Li¢, after determining the
parameters, as far as possible, from other
considerations. The recent paper on scattering
by Breit, Condon and Present!® indicates that g,
should exceed (by about 0.04) the value selected
to make the excited level of the deuteron zero.!®
This increase of g, effects a decrease of the
alpha-particle binding, which may be compen-
sated by shortening the range of the interaction
and increasing its strength.®! Parameters thus
selected to satisfy the new scattering require-
ments and to give the observed H? and He*
energies (the latter by this method) are

a=22, g=022  B=92. (19)

The limits placed on the selection of the g’s
by Breit and Feenberg’s consideration of extreme
cases of heavy nuclei?® may, for our purposes be
summarized

1.25=145g:4+4¢,

(which is the second of their Egs. (7.3), allowing
0.03 for the Coulomb term). It appears from the
foregoing that our present task is to try to find
values of the parameters which will give a low
enough energy for Li® Since (20) is a condition
that certain extremely heavy nuclei will not
have too much binding, we will obtain as much
binding as possible by selecting the g’s to satisfy
(20) as an equality. This limits us to a one-
parameter family of choices of the g’s, the rela-
tions between them being

(20)

g=0.22—g,,

g1=0.25—‘0.8g0. (21)

Using (19) and (21) we proceed to compute
the binding energy of Li® for various values of g,.
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The first-order energy is independent of g, and
has its minimum E@+E® = —239mc*at ¢ =1.2.
Introducing (21) in (18) yields

Ep®=—{35.8—5.3g,+20g,2— (31.7
—19.4g,+80g,2) /7+(132.8—17.6g,
+80g,%) /12 —166.2/73+214/ 74}

X (Bu/7)?/ac+ {103.8—6g,+(5.8
+12g,)/ 74203/} (Bu/7)/12

—(323/288)a0.  (22)

This is evaluated for ¢=1.2 and for several
values of g, in Table VII. The contribution of
the quadruply excited states is more tedious to
compute, but was found, using (9;), to be rather
small. We notice that Ep® does not differ very
much, for rather small values of g,, from the
value computed using (9;), and we shall here
assume that this is also true of the contribution
of the quadruply excited states, and of the other
smaller contributions to the energy. We thus
subtract about 5mc? from the sum of the values
just computed, or about 29mc? from the values
of Ep® in Table VII, to obtain the energy of
Li® (experimentally —62mc?) for these para-
meters. It thus appears to be necessary to go to
rather large values of the g's (g,~=+2 and the
others from (21)) in order to find a symmetrical
form of interaction, of a single error-curve radial
dependence, which satisfies the demands of the
scattering data, of the upper limit of nuclear
masses, and of the H?, He?* and Li® energies. It
is still possible (but does not seem very likely)
that this conclusion would be altered by more
complete evaluation of the higher order contri-
butions.

Note added in proof: The g's here required are incom-
patible with further limitations, implied by an extension
of Wigner's considerations of the stability of isobars.*
This seems to exclude (17) as inadequate for a detailed
theory of nuclei. A symmetrical form of interaction with
different ranges a~* for various P’s, or with another radial
dependence, is, of course, still a possibility.

DiscussioN oF THE CENTRAL APPROXIMATION

The question arises, whether it would not be
better to attack the problem of Li¢ from the
other extreme of the binding of a deuteron to an

* Cf. Inglis and Young, Phys. Rev. 51, 525 (1937). The
limitations also remain approximately valid as one departs
from the high-density limit.
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TaBLE VIL. Ep® ¢n mc? for o=1.2

—2 —1 0 1 2

144
—Ep® 39.1° 24.7

alpha-particle, assuming that they do not distort
one another very much. One might expect this
approach to be valid if the binding energy of
the deuteron to the alpha-particle were much
less than the ‘“internal” binding energy of the
deuteron itself. In the light of this criterion, let
us compare the situation in Li® and Li’. The
experimental ratio of the ‘external” to the
“internal”’ binding energy of the deuteron in
Li¢ is approximately 3mc?/4mc?, and the corre-
sponding ratio for the triton in Li? is Smc?/16mc2.
It seems from this rough criterion, then, that we
are more apt to have a merged nucleus in Li¢
than in Li". In Li’ there are indications? that
the lowest state is a 2P, the ‘“‘orbital”’ angular
momentum being essentially that of one proton.
We may conclude that our central approach is
probably the more nearly correct in first order.
The problem carried out from that other
extreme would presumably yield the lowest
energy of the system as a function of a parameter
determining the average distance between the
particles. The interactions are so chosen as to
make this energy approach — (5544)mc? asymp-
totically (from above, the Coulomb range being
longest) as the average distance approaches
infinity. If, by our central approach, which con-
verges rapidly enough to be practicable only for
smaller average distances, we compute with
assumed interactions a value of the energy above
the asymptotic value, we may conclude that
these interactions would not lead to a merged

nucleus (if to a stable nucleus at all). The .

physical argument of the preceding paragraph
makes it probable that such interactions are not
the correct interactions.

CALCULATION OF THE NUCLEAR MOMENTS

Until now we have assumed that the, higher
order corrections to the energies of the low con-
figuration do not put some other state below
the 3S. Since the first-order separations of the
states are of the order of magnitude 3mc? and
the second-order corrections are about 20mc?,

2 D, R. Inglis, Phys. Rev. 50, 743 (1936).
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this is not entirely obvious without further
inspection. That the singlets should not descend
below the corresponding triplets seems fairly
apparent because the interactions have been
chosen to make matrix elements smaller between
singlets than between triplets, a characteristic
which would extend to most of the H,. also.
Of the other two triplets, let us consider for
example the 3D, which is next to the %S in first
order. A wave function with which we might
calculate the energy of the D is {(1,1)
— (001, 001)}/V2 (an arbitrary choice of one of
the degenerate functions allowed by the three-
row secular problem above). Using this instead
of ¥, we would construct a table similar to
Table IV. The type of state in Table IV which
makes the largest contribution to the second-
order energy of the 35S is (01,0, 1: 01, 0, 1) for
which H,,’= (2fu00+24)/4/3. The correspond-
ing matrix element in the 3D calculation is
=+ (fuo+4)/V2 for eight of the states of this
type and 0 for the other four. The same tendency
for the second-order correction to be largest for
the S state appears to pervade the rest of the
table. Noting this tendency, we have without
further calculation the result that the %S, which
is the ground state in first order, is the ground
state in second order also. This is essentially a
calculation of the nuclear angular momentum,
I=1.

In calculating the higher order corrections to
the zero-order!* magnetic moment, we take
SY*Z(£0/0n—nd/0E)Ydr, summed over protons
only, where

11/:¢0+ E‘pao-[[aa,/(EO_Ea) +E¢a{]jab/
=6} Hoo'/{(Eo—Ea) (Eo—Ep) {4 - -

The first-order correction includes the terms in
the first power of H,,, products of the form
H,) S ¥.*(£0/0n—nd/3¢)¢.dr. The first factor
H,,/ has nonvanishing values only for states a
with an even sum of the quantum numbers # for
each direction. The second factor has non-
vanishing values only for states ¢ having Zu;
odd .and Z#, odd. All such terms therefore
vanish. In considering the second-order correc-
tion, the argument must be extended to the
case where a nonvanishing term would require a
to differ from zero by even Z#u;, and b from a by
even ZAng but b from zero by odd Zung Thus
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we see that the higher orders contribute no
correction to the orbital part of the magnetic
moment. This rule is quite general, for all
nuclei, and is of course independent of the error-
curve shape of the interaction function here
employed. It follows also from conservation of
orbital angular momentum, if one thinks" of
expanding in the ¢'s.

We have therefore to consider only excited
states with Mg,=3/2, Ms,=—13% or with
Mg,=—%, Ms,=3/2. The former are exactly as
numerous as the latter, in the special case of
Li% and have exactly corresponding elements
H,., so their contributions to the projected spin
magnetic moment, S Y*(g,0.+g-0..)¥d 7, cancel
one another. In Li¢ the zero-order result, which
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makes the magnetic moment of Li® equal to
that of the deuteron (as observed),” is exact
(insofar as V is negligible in ,,’, cf. reference 14:
note added in proof).

In other nuclei correction terms appear due to
states analogous to the last four types of Table
IV. These are small, of order g2, for the forms of
interaction (9), but may be quite large for (17)
with large g,. There is a remote possibility that
they might furnish an additional means of
testing the interaction assumptions.

I am especially grateful to Doctors H. Bethe,
E. Feenberg, and L. A. Young for discussion of
this and related problems, and for communica-
tion of certain of their results before publication.

22 Manley and Millman, Phys. Rev. 50, 380 (1936).

APRIL 1, 1937

PHYSICAL REVIEW

VOLUME 51

On the Magnetic Scattering of Neutrons

J. S. SCHWINGER
Columbia University, New York, N. Y.

(Received January 11, 1937)

The scattering of slow neutrons by atoms is considered,
assuming that, in addition to the ordinary nuclear forces,
there is a magnetic interaction between the neutron and
the atomic electrons. It is found that the neutrons scattered
from an unpolarized beam will be partially polarized in
virtue of this magnetic interaction. Since the scattered
intensity depends not only upon the intensity, but also
upon the spin density of the incident beam, the polarization
thus produced can manifest itself by a second scattering.
An expression is derived for the neutron intensity after
double scattering from magnetized iron plates. Under

INTRODUCTION

HE magnetic moment of the neutron has not
been measured directly, but has been ob-
tained from the magnetic moments of the proton
and the deuteron.! The assumption of simple
additivity of magnetic moments, involved in this
indirect deduction, is, however, open to some ob-
jection from the point of view of the 8-ray theory
of heavy particle interactions and magnetic
moments.? Since the neutron and proton are sym-
17, M. B. Kellogg, I. I. Rabi and J. R. Zacharias, Phys.
Rev. 50, 472 (1936).

2 G. C. Wick, Lincei Rend. 22, 170 (1935); H. A. Bethe
and R. F. Bacher, Rev. Mod. Phys. 8, 82 (1936).

optimum conditions, it is found that the scattered in-
tensity with parallel orientation of magnetizations is 15
times that with antiparallel orientation. The partial
polarization of the scattered neutrons indicates that the
undeviated neutron beam will also have a nonvanishing
spin density. Expressions are derived for the intensity
and spin density of a neutron beam after traversing a
certain thickness of magnetized iron. These results are
used in the discussion of three types of experiments for
producing and detecting a polarized beam of neutrons.

metrical with respect to interaction with the
electron-neutrino field, the magnetic moment of
the deuteron should be equal to the ‘“‘elementary
moment’’ of the proton, e#/2Mc. The observed
value is 0.85 e#/2Mc, which is probably to be ex-
plained by the additional moment arising from
the process of neutron-proton interaction, and by
the fact that the proton is decomposed and does
not possess its ‘‘elementary moment’’ during a
large fraction of the time.

Recently, Bloch® has suggested a direct method
of measuring the magnetic moment of the neu-

3 F. Bloch, Phys. Rev. 50, 259 (1936).



