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If instead of Eq. (9.7) we had used the equation
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which is obtained from (9.7) by a constant spin transformation with r= 1/v2(1+fo4), we would
have obtained instead of Eq. (9.23) the equation
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This is Eq. (9.24) except that m is replaced by im
In conclusion I wish to thank Professor H. P. Robertson for his valuable aid and inspiring advice.
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ECENTLY Wigner' has derived some inter-
esting results relating the lowest values of

the mass number A having a certain isotopic
number A-2Z. We have found it possible to de-
rive all of those results in a much simpler manner,
and have extended the calculations to include the
more general interaction

V=ZJ(r, ;)0;;
Oi7' g qI i7 +gpi7'+gl~i7'+geI i7 )

gq+g+g1+g~ = ~

In Eq. (1) the sum is to be taken over all pairs of
particles in the nucleus, I'& is the space-inter-
change operator, I' is the space-spin operator and
P the spin operator. Wigner carried through
calculations only for the special case g =gl ——g.=0.

We approximate the wave function P of a
nucleus containing Z protons, 7I., and A-Z neu-
trons, v, by a sum, antisymmetric in like particles,
of products of single-particle wave functions:

lP = (Z~uy uy u2+um ' ' ' )~

g (ZoQI+QI Q2+82

' E. Wigner, Phys. Rev. 51, 106 (1937),

Single particle states Nl, N2 are each filled with
four particles (two protons and two neutrons) so
long as there are enough particles to fill them.
Such a filled state may be called an n group. In
evaluating (0 I Ul 0) = J'f*Ufdr we may omit the
antisymmetry in P* (making the normalization
factor unity). Since the interaction involves pairs
of particles only, we need retain only those terms
in P arising from single interchanges P of like
particles. We follow Wigner and approximate
(0I UI0) by its high density limit (Ol UOI0) ob-
tained from (Ol UIO) by replacing J(r) by J(0):

(ol Uolo) =x(a)(olzo' lo)

= J(a) }g, (0 I
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We therefore have to compute expressions of the
form

(Ol ZP~
I 0) = I (up+up um+u2 ' ' ' )

(up+up u2+un ), (ZP&)

((1 —ZP) yuug u2+u2 ' )~

((1—ZP)up+up u2+u2 ),d7.
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By "bond" we mean pair of particles in the same
space state.

In using these formulas to determine the
change in binding energy when a proton in state i
becomes a neutron in state j, its interaction with
an u group k(kWi, j) is unchanged. This con-
forms with Wigner's division of all nuclei into
types A =4n, 4n+1, 4n+2, 4n+3.

Still adhering to Wigner's assumptions we
write for the change in binding energy in an
isobaric transition

AW=A(0I U'pIO)+AC

= {J(0)h(OIZO;;I0)/HZ+AC/AZIAZ,

where C is the Coulomb energy. Any such transi-
tion may be described by indicating in parentheses
the types of particles in the same space state
before and after the transition (omitting an arbi-
trary number of a groups, if desired). If there are
nz paired-neutron groups these are indicated by
(vv)". All transitions leading to stable isobars may
be divided into the following three types

(~vv)(vv)" ~ (vv)™+1v,

(mm vv) (vv) ~ (vv)~+p,

'
(prvrvv)(vv) v ~ (mvv)(vv) +'.

(3.1)

(3 2)

(3.3)

For all such transitions we find

~(0I ZO, ; I
0)/~Z= (m+3) g, y(2my3) g. (4)

The quantity AC/AZ increases with Z (approxi-
mately as Z*), so the transitions (3.1), (3.2), (3.3)
should, for m =0 begin to yield stable isobars at
about the same value of Z. Indeed they do, Ca4',

These are easy to evaluate:

(0 I
ZP'I 0) = (number of bonds) —(number

of like-particle, like-spin pairs),
(OI Z&I0) = (number of like-spin bonds)—

(number of like-particle pairs), (2)
(0 I

Z1 0) = (number of pairs),
(OI ZP' 0) =(number of like-spin pairs)—

(number of like-particle bonds).

A4', and Cl" being the lightest products of these
transitions. Similarly for transitions with m = 1,
whose lightest. products are V", Ti" and Ti".
For g) ——',g„Eq. (4) says that 6(OI ZO;;IO)/AZ
increases with increasing m, i.e. , the isobaric
number is an increasing function of Z. This result
is, however, to be expected from any sensible
theory. To facilitate comparison with Wigner's
paper, one may note that the ratio 3/4 of the
critical slopes which he discusses on p. 118 is just
the ratio of the coefficients of g, in (4) for m=0
and pl = 1.

Further, it is possible to derive the general
empirical rule that odd Z does not occur with even

A; a rule which has no exceptions for A &2Z. We
simply compare the value (4) of A(0

I ZO;; I 0)/AZ
for transition (3.2) with the value

6(0I ZO;;I 0)/&Z= (m+4)g, +(2m+2)g

for the competing transition

7I7l VV VV ~ %VV VV V

to see that' the latter does not lead to stable
nuclei (if only g, &g).

Thus far the results seem very satisfactory but,
as Wigner has remarked, this may be partially
fortuitous. Indeed, if we consider the transitions
of Eqs. (3) for general m we find that they first
occur at

Z„L(m+3)g, +(2m+3)g]V(0)& m',

whereas empirically Z m'I'. This disagreement
may perhaps be ascribed to the high density ap-
proximation, rather than to the type of interaction
used. Surely we should, however, consider as re-
markable any success of a theory in which differ-
ences of binding energies of isobars are computed
from theoretical binding energies which have even
the wrong sign, as is the case here for any simple
choice of the coefficients g. It seems that the suc-
cesses which have followed the use of interactions
of the type (1) are very insensitive to the precise
form of tht interaction, and could be achieved
in other ways.


