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Quantum Equations in Cosmological Spaces

A. H. TAUs
Princeton University, Princeton, New Jersey*

(Received November 16, 1936)

The Dirac equations for a free electron in a cosmological space are solved by means of separa-
tion of variables. It is shown that the wave functions depend on the angles 0 and y in the same
manner as those of a free electron in flat space time. The radial functions are obtained and it is
shown that they go over into the usual ones in the limit. The explicit form of the time dependence
of the wave functions cannot be obtained until an arbitrary function R(t) is specified. Three
diferent cases are discussed. The energy of the free electron is then determined for each of these.
Finally the connection between the equation used here and that proposed by Dirac for the
DeSitter space is discussed. It is shown that they are similar and that the imaginary part of
the complex mass that he was forced to introduce has a geometrical origin.

1. INTRoDUcTIQN

ds' =c'dt' R'(t)du'—
where R(t) is an arbitrary function of t and

du' = h;;dx'dx& (1.2)

defines a three dimensional space of constant
Riemannian curvature, p', which may be posi-
tive, negative or zero. The angular functions are
the same for the three cases. The radial functions

V ARIOUS extensions of the Dirac equation
for an electron in arbitrary gravitational

and electromagnetic fields have been proposed
by Weyl, Fock, Schrodinger, Pauli, Schouten and
Van Dantzig, and others. The relations between
these equations and the class of equations of the
Dirac type (linear, equations which are first
order in the derivatives with respect to the coor-
dinates, and which are invariant under arbitrary
spin, gauge and coordinate transformations)
were discussed in "The Dirac Equation in Pro-
jective Relativity. "' There it is shown that one
equation of the class reduces exactly to the Dirac

.equation for a charged particle in the special
relativity case.

In this paper we obtain exact solutions of that
equation for the free electron in any cosmo-
logical space, i.e., a space time whose metric is of
the form'

are obtained explicitly for p' positive and those
for the flat spaces are obtained by taking the
limit as p~~. The radial functions for spaces of
negative curvature are obtained by making an
imaginary transformation (p=ip, and a=in)

The time dependence of the wave functions
cannot be obtained until some assumptions are
made regarding the arbitrary functions R(t). In
the Einstein universe R is a constant and p') 0,
it is shown that the wave functions contain a
factor e'~' where ) depends on the energy of the
electron. The case where p')~0 and R(&) =e"'
includes the DeSitter universe and the wave
functions are obtained explicitly for this case.
When R(t) =ct and p' is negative, ' the time de-
pendence of the wave functions are obtained
explicitly and the radial functions are obtained
by an imaginary transformation.

Recently Dirac4 proposed an equation for an
electron in DeSitter space. He used the fact that
the DeSitter space may be imbedded in a fiat
five space and used the coordinates of the latter
space in his equation. The equation used here,
when written in terms of the coordinates of the
flat five space, gives an equation different from
Dirac's but very similar to it.

The equation given in D.P.R. is invariant
under abitrary spin, gauge and coordinate trans-
formations, where the coordinate transformation

* Now of the University of Washington.
~ A. H. Taub, O. Veblen and J. v. Neumann, Proc. Nat.

Acad. Sci. 20, 383—385 (1934). Hereafter this paper will be
referred to as D,P.R.' H. P. Robertson, "Relativistic Cosmology, "Rev. Mod.
Phys. 5, 62 (1933).Hereafter referred to as R.C.
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' Robertson has shown that this case is equivalent to
Milne's world structure: Zeits. f. Astrophys. 7, 153—166
(1933).Professor Schrodinger discussed the Dirac equation
in such a space in lectures at Princeton University during
the spring of 1934.' P.A.M. Dirac, Annals of Mathematics 30, 657 (1935).
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does not induce a spin transformation. This
equation is' (1 4)

where y is the electromagnetic four vector,
p=ipppc/2h, m is the mass of the electron, e, its
charge, h is Planck's constant divided by 2~, and
in a proper choice of spin coordinate system'

The matrices y, are defined by means of the
gravitational metric tensor g p as solutions of

p h ~YB+ Ypv'a) —p gap' 1 (1.5)

are the Christoffeland the quantities

symbols of the second kind formed from the g p.

2. CDMPUTATIQN oF Sp AN& y S;

The quantities So and p'S; will now be computed. The nonvanishing Christoffel symbols formed
from the g ~ are7

RR' tp
kg) )c' Oj

(2.1)

where the asterisk on the Christoffel symbol indicates that it is to be computed from the coefficients
Ip;; of the line element (1.5) and R'=dR/dt Hence we. have from (1.2)

Sp yp8yP/B——t+ y; (R'y'/R+ Bp '/Bt)

Since gpp is a constant, po and p may be taken independent of x . Therefore

Let

where

Sp y;y'R'/R——+y;By'/Bt

y; =iRO-;,

p (~;~;+a;~,) = -.'Ip;;.

(2 2)

(2.3)

Then 0-; is independent of t. Also we have

Hence
From Eq. (1.2) we have

y'=g"y; = Ip'&y~/R'= io&—/R-
Sp ——y p'R'/R+y;(8/Bt) ( —ip'/R) =0.

(2.4)

(2.5)

In virtue of Eqs. (2.1) and the fact that yP is a constant matrix this reduces to

R'
S;= 2yivo + vn '+ vi

c'R ji Bx'
(2 6)

From this we obtain

R' / Bp'
p Si—2p piano + 7 YL7 +7 p&

c'R ji Bx

The summation convention is used throughout this paper. Also, we shall use the convention that Greek indices take
on the four values: 0, 1,2,3, whereas Latin indices take the values 1,2,3.

This spin coordinate system is characterized by the fact that the spinors pzz and y4zz are constants in it. See O.
Veblen, "Spinors in Projective Relativity, " Proc. Nat, Acad. Sci. 19, 979—989 (1933) for a discussion of these spinors.' R. C. p. 83 (Eq. A. 6).
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But y'y;=-,' 1 and y'y(=(-,'-8(' 1 —y(y').

Hence

or

Since

3 R' 1
J

I 1 t By'
y'S' =-vo +-v' )

—-v ig" +v'v I—
2 c~R 2 '~~V 4 i~ Bx'

3 R' (3 B log hl 1 Bh'" By'q
y*S; = yo- +y-'I —— +—h~ +y~—.

I

2 c'R E4 Bx' 4 Bx~ Bx&)

(Bh" k
+O'1

( Bx' jh

(2.7)

In case p =0 Eq. (1.1) becomes

3. No FIELD

( B 3 R') ~o& (B '3 B log hl 1 Bh'" Bo'q
y'f —+——

/

——
/

+- +—h, i +a i

(Bt 2 R) R (Bx' 4 Bx' 4 Bx" Bx'j
(3 1)

EVe can introduce a coordinate system such that'

du = p dn +p sin nd8 +p sin' n sin' Ody (3.2)

where p is a real constant, if the space defined by du' is a space of positive curvature.
In this coordinate system

Bh'"/Bx' =0

since h'~ =0 for I g h and h'" is independent of x". In this coordinate system a solution of the equations
(2.3) in a spin coordinate system in which S is given by Eq. (1.4), is

o'= (1/p) (sin 8 cos y8~+sin 8 sin y82+cos 88&),
o'= (1/p sin a)(cos 8 cos y8~+cos 8 sin rp82 —sin 883),
o'= (1/p sin n sin 8)(—sin yB~+cos p8~),

(3.3)

where
It is readily found that

,'(8,8g+Bg-8, ) =-,'B,g. (3 4)

Bo' 1 cos n 1 cos 0
o., = —— —8„'+ 283(cos rp8, +sin y82) ——— 8 2+28,828,';

Bx' 2 sin n 4sin 0
(3.5)

hence
(3 B lpg ks Bo'p cos n o'

E4 Bx' Bx't sin n p sin n
(3.6)

Thus Eq. (3.1) may be written

( B 3 R l i ( ( B cos ~ 1
y'] —+-—

/

——
/

a'] —+ —,/+a' —+0'—
f

EBt 2 R/ R 0 EBn sin n p sin nf B9 By)

If P'=R'p sin cx1t, Eq. (3.1) becomes

(3 7)

B ~ (B 1 ) B B
f+~'—+~'—

8& R EBn p sin n) B8
(3.8)

SR C &84(Eq B
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The replacement of the wave function P by g' means that any normalization condition of the type

" 2 14"1'g'«'«'«'=1
8=1

is replaced by
Q 1P"1'da sin BdBdy=1.
A=1

Multiplying (3.8) by y and dropping primes we have

1 B 1( (B
1

i+0&11 1+zan'~' +zv'~' —pv'
1

4'—=o—.
(4c' Bt R & &Ba p sin a) BB By

Now let y'= (1/2c) a4-,

iy'o'=P /p= (1/p)(sin B cos yaz+sin B sin yaz+cos Baz),

iy'o' =Pe/p sin a = (1/p sin a) (cos B cos yaz+cos B sin yaz —sin Ba3),

iy'o' =p~/ p Sin a Sin 0 = (1/p Sin a Sin B) (—Sin yaz+COS yaz),

(3.9)

where a, =4riy'8, .
Since y anticommutes with 8„and since the 8 anticommute among themselves, we have

and

~(a,aI,+aI,a,) =B,I, (a, f1=1, 2, 3)

a4a +a.a4 ——0, (a4)'=1.

(3.10)

(3.11)

The matrices e, and 0.4 are the usual Dirac matrices. '
Eq. (3.8) may now be written as

(h/i) (1/c) (B/Bt) P =II&, (3.12)

1-P iz(B 1 i 1 lz( B P„B)
1+ —

1
pg
—+ —1+mca

Z p i (Ba ipse apsinai t BB sin eBy)

4. ANGULAR MOMENTUM INTEGRAL

A 6rst integral of Eqs. (3.12) may be obtained by noting that the operator

( P~a'P
I Pe+

Sill B By/
(4.1)

commutes with II; To prove this we fzrst write Eq. (3.13) as

1 /z B kPa4II= P ———— X+zzzca4 .
Rp i 8n i sino.

(4 2)

Slllce a4 ls a collstallt and alltlcoIIlllllltes wit}1 tile p s, It colIIIIlutes w1fll II, . We nlust Ilow plove
that P commutes with X.

From Eqs. (3.9) we see that

BP,/BB=i4 and BP /By=sin BP,. (4.3)

' E. U. Condon: G. H. Shortley, Theory of Atomic Spectre I,'Cambridge Press, 193S), p. 126, Eq. (3),
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Hence
( cl P~ 4l l (. tl.

l
f14 +— —I-1 l3.=2 l3.+f3. 4'. I ~4——

418 sin p By) 0 Be sin 8 Bp)

( 8 Pq 41 )
P=.n4 P.

I P4 +-.
ae sin tl aqi

The operator defined by Eqs. (4.1) is the operator

n4((2/k')I. S+1), (4 4)

which occurs in the usual treatment of the Dirac equation as may be seen from Eqs. (3.9). Thus we
see that the angular momentum integral of the Dirac equation in flat space holds in the cosmo-
logical spaces. That is, the dependence of the wave functions in these spaces on the variables 0 and
p is given as in the flat case by solutions of the equations

(4 5)

where k is a constant. It follows that k is an integer and equal to 3+1 where l is the orbital angular
momentum quantum number whose s component is labeled by the integer m.

The solutions of Eqs. (4.5) are'4

(k+m ~
i

4 =A (n, &)I I q(k —1, m),
(2k —1)

(k —m) '
l, (k, m),

42k+1)

(k —m —1) ** (k+m+1) i
42=A (n, &)

I

—
l P(k —1, m+1), 1k =A (n, ~)

I l, (k, m+1),
2k —1 I & 2k+1

(4.6)

where &p(l, m) is the normalized spherical harmonic and A& and A4 are arbitrary functions.
It is readily verified that

18ap = p~ (4.7)

where p is the spinor whose components are p~, p~, p3 and y4.
The angular part of the wave functions in an arbitrary spherically symmetric electromagnetic

field (i.e. , one that depends on n and t) are the same as for the free electron, since the operator X
will still commute with IX if such a field is present.

as

5. RADIAL FUNCT ION S

We now proceed with the determination of the functions A 4 and A &. Eqs. (3.12) may now be written

k1a 1 ( ka kP.n4k

I p,———— +mcn4 lp.icBt RpE i Bo. i sinn
(5.1)

In virtue of Eqs. (4.6) and (4.7) these equations reduce to

1k(B k ) (k1 4l ) 1k(cl k
~(t)

I
—.———mc IA4=--.

1

—+ . IA4 ~«)
I

—.——+mc IA4=--.
I

——
.Ef c Bt & pi (Bn sinn) 4i c Bt ) pi EBn sinn)

Let 1 i.
R 8

that is
R(t.) c Bt Bu

Reference 9, pp. 127—128.
"Then u as the spatial distance light has traveled during the time t —to, See R.C. p. 68.
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Eqs. (5.2) become

(k 8 h(a k i (ha h(a k

I

——-~«(u) IA~= —
I
—+ IA3 I

—.—+~«(u) IA~= —
I

——
&i Bu ip Can sin n) Ei au ) ip &an sin n)

(5.3)

We may now obtain a second-order differential equation by eliminating A3 from the Grst of these.
Thus

(h a 'l (h a —h'(a k y (a k

I
—.—+~«(u) lI

——-m«(u) IA~=
I

—+ .
Ei BN i Eiau p' I an sin n) &an sin n)

Let A&(n, u) =A&(n) T&(u), then by separating variables we have

sin' np dn2

—h' d' k' —k cos o.
+ A g

——S'g'A )) (5.4)

(hy' d' hdR—me-
&i) du' i du

—R'm'c' TI = ~y Ty (5 5)

where TV~ is a constant.
If we are given the function R(t), R(u) is determined and we can solve Eq. (5.5) for T& and thus

determine the time dependence of the wave functions. Later we shall asst me R(t) has a definite
form and solve Eqs. (5.5). The function A &(n) may be determined from Eq. (5.4). Thus if we set
r=cos n, Eq. (5.4) becomes

d'Ag dAg (p'WP k' —
kryo

(»' —1) +»——
I

+
& h~ r' 1)— (5.6)

A nonsingular solution of this Riemann I' equation is

(pW~ 2k+1 —pW& 2k+1 2k+1 1 —rq
A ~

——C~(1 r) "~'(—1+r)"+'~'F
I +, +

h 2 h 2 2 2
(5.7)

where C& is a constant and F denotes the hypergeometric series and k is assumed to be positive.
Since A~ must be finite for —,'(1—r) = +1, the series must contain only a finite number of terms

and we must have either

—p W, /h+ (2k+ 1)/2 = nor —p Wq/h+ (2k+ 1)/2 = —n, (5.8)

where n is a positive integer. That is,

(p W&/h) ' = (u+ (2k+ 1)/2) ' (5.9)

Thus the allowed values of 8 are determined in terms of k. Since k must be an integer, we see that
(pW&/h)' is the square of a half-integer. We shall show later that the kinetic energy of a free electron
is expressible in terms of O'I.

Similarly we may eliminate A & from Eqs. (5.3) and we obtain

(h 8 (k 8 -h'(a k q (a k

I

———m~R(u)
I I

——+~«(u) IA3=
I

———
II

—+
KiBn ) Iiau ) p2 Can sin n) &an sin n)
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Now let A~(a, u) =A3(n) T3(u); then by separating variables we have

k~ d2 /Ht,'2+tt' Cos n

p da s1n

— /k)' d' kdZ
+mc-

&iJ du' i du

A3= g 3'A3, (5.10)

(5.11)

Setting r=cos o/, Eq. (5.10) becomes

d'A~ dA3 pk'+kr W&'p'~
(r' —1) +r —

! -+ !A,, =0.
dr' dr E r' —1 k'

(5.12)

A nonsingular solution of this equation is

//pWs 2k+1 —pWg 2k+1 2k+3 1 —r)
Q (1 r) i+i/2(1+r) i/»P!

k 2 k 2 2 2 )
The condition that A3 be finite at —,(1—r) = &1 implies

(pW3/k) ' = (n+ (2k+ 1)/2)'

(5.13)

(5.14)

The functions Ai(0) and A3(a) given by Eqs. (5.7) and (5.13) will be solutions of Eqs. (5.3) if
S'1= TV3. We shall henceforth set 8'= 8'1——8"3.

In the above we have assumed that k is positive. However, from Eqs. (5.3) we see that if (A i, A3)
is a solution for positive k then (A3, A i) is the solution for negative k.

The constants CI and C3 may be chosen so that

!A,['dn=1. (5.15)

This is readily done by expressing Ai and A3 as Jacobi polynomials, and using their orthogonality
relations. "We readily see that Eqs. (5.15) are satisfied if

1
/
I'(pW/k+(2k+1)/2)i '* pW/k pi'(pW/k+(2k+1)/2)i '

!C1 —— 1!. (5.16)
2 "r((2k+1)/2) Er(pW/k —(2k —1)/2)) 2~r((2k/3)/2) Er(pW/k —(2k —1)/2)i

The neighborhood of the point 0, =0 on the three dimensional sphere of radius p goes into a Hat

three dimensional space as becomes inhnite. Ke shall now show that the functions A1 and A3 go
over into the usual radial functions as p becomes infinite (i.e. , Bessel functions).

Let o = 11m p sin a =Ho,'.

1 —COS 0. CX n cr

= s1n

In virtue of Eq. (5.16) we have
1 t'Wo~» /W y

lim A, =—
!
——

1
J/, ~;! —o!,

2" &k 2P (k )
where J„is the Bessel function of order n.

'~ H. Bateman. "Purva/ Differential Equations of Mcthemetical Physics (CB.mbridge Press, 1932), p. 392.

Then
2 2 4 4p'

and Ag ——C3(o'/4p') '+'/2F(n+2k+ 1, n, (2k+3) /2; o '/4 p'),—where I= Wp/is+ (2k+ 1)/2.
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Similarly we can show that

1/W~~-: /W q
iim A, =—

I

——
I
~. , I

—.I.
2" Eh 2) Eh )

But 0 is the distance from the origin to the point whose coordinates are x, y, s. Hence the radial
functions we have obtained go over into the usual radial functions as p—+ ~.

6. EINSTEIN UN IVERSE

To obtain the time dependence of the wave
functions we must make some assumptions re-
garding the arbitrary function R(t) The .simplest
assumption, namely R(t) is constant, corresponds
to the Einstein universe. " When the radial
functions given by Eqs. (5.7) and (5.13) are sub-
stituted into Eqs. (5.2) they become

h1d
————mc

I
Ti= —$ T3, —

Eicdt 2 R

/h1d y W
I

———+mc IT~ z T&. ———
Eicdt ) R

solutions of the Dirac
space. They are of the

—g e~i/hxtA (~) ~ (g

i//g = age f /""'A, (ci) yg(g,

i//3 a,e——"""'A3(a)p3(g,

equations in an Einstein
form

~) g e~i/Ax/(y (~ g ~)

~) —g ~ei h/k @i(~ g ~)
(6.4)

~) —g e~i/%xi@ (~ g ~)
—ii

equi/khiA

(~) ~ (g ~) —g equi/Ak g) i(~ g ~)

where y's are given by Eqs. (4.6), the A's are
given by Eqs. (5.7) and (5.13) and ai and aq are
constants.

The current vector whose divergence vanishes
as a consequence of the Dirac equations is"

~ =4+vV (6.5)Two linearly independent solutions of these
equations are

where P+=P*y' (P* is the complex conjugate of
(6.2) P) and P is a solution of Eqs. (1.3). Hence73 je3gi/hXt

T jd g
—i/h)'t

T c gi/hxt
7

d gi/J'At (6.3)and
I J'dU= I Q Ii/ I'dU, (6.6)

W'y l
m'c4+ c'

R')
where

where d V is an arbitrary three dimensional

c'h' 2h+1q 'q l
m2ci+.

I
ri+

I I

In virtue of the normalization conditions we
R'p' E. 2 ) ) imposed we have

and cI, c3, dI and d3 are constants.
The constant ) is the energy of a free electron

in an Einstein space. The existence of the two
solutions (6.2) and (6.3) means that both positive
and negative energy states are allowable as in
flat space. Since n and k are integers we see that
the square of the kinetic energy is proportional
to the square of half an odd integer.

The existence of two linearly independent
solutions for each value of 'A corresponding to the
two orientations of spin for given energy is ob-
tained as in the usual theory.

Thus there exist four linearly independent

uRC p 69

"J'd U= 2(l ~i I'+
I
n3

I

') (6.7)

It is evident that we may normalize our con-
stants so that the left member of Eqs. (6.7) is
unity.

The form of the wave functions given by Eqs.
(6.4) was to be expected since the space with the
metric

du' =h;;dx'dx&

is a three dimensional sphere. The wave functions
must therefore be a representation of the group

"D.P.R. p. 384. The matrix yA'z may be taken equal to
the matrix y'.



7. DESITTER UNIVERSE

The DeSitter universe is a cosmological space
in which R(t) =e"' and the three dimensional
space whose metric is dN'=h;;dx'dx& is a flat
space. " Hence we may obtain the solutions of
the Dirac equations in a DeSitter universe by
solving Eqs. (5.2) where R(l) =e"' and passing
to the limit as p—+~. We have already seen that
the radial function~ go over into those of the flat
space as we pass to the limit. Hence the only
difference between the wave functions in this
space and iri the flat space-time is in the time
dependence of the wave functions given by the
functions T&(t) and T3(t).

Eqs. (5.5) and (5.11) which determine T&(t)
and T3(t) become

(7.1)

and (7.2)

mc h t' 2k+1)
where p=~, W= &—

[ n+
h p( 2

and

u 6
e
—c~ladt tc

—ciladt —
C
—et/a (7 3)

t,p t C

We must choose such solutions of Eqs. (7.1) and
(7.2) which are solutions of Eqs. (6.1).

Eqs. (7.1) and (7.2) are the differential equa-
tions for the Bessel functions. Hence for each

which leaves this space invariant, namely, the
rotations in a flat four space. However, the rota-
tion 'group in four dimensions is a direct product
of two three dimensional rotation groups. Hence
the representations of this group are obtained by
taking the direct product of representations of
the three dimensional groups. The Jacobi poly-
nomials and the spherical harmonics are such
representations. Hence we expect that the wave
functions for the Einstein space should have as
factors Jacobi polynomials in cos u and spherical
harmonics in 0 and y.

value of W' we have as the two linearly inde-
pendent solutions of Eqs. (6.1) the functions

Tg ——cpu J„.+)(Wu/h);

T, =cpu J„.)(Wu/h)

and T, =dguJ „, )(Wu/h);

T3 ——dQu J „.~)(Wu/h),

(7.4)

(7.5)

where c and d are constants and J„ is a Bessel
function of complex order. Thus we again find
four linearly independent solutions to the Dirac
equations. This corresponds to the fact that there
are two orientations of the spin for each of two
possible values of the energy.

The constants c and d may be chosen so that
the time component of the current vector is one.
From Eqs. (6.1) it is evident that

t J'd V=2([Tg['+ [T3[') (7.6)

is a constant. This constant is one for the
solutions (7.4) and (7.5) if

(I Wl/h)'1'(pit+ ) (7.7)

The magnitude of the number pa is the ratio
of the radius of the universe to the Compton
wave-length. This number is of the order of
magnitude of 10'". From the asymptotic expan-
sions of Ti and T3 we see that as a—+ ~ Ti and T3
tend to the exponential functions. Since the
functions T& and T3 can be normalized for any
value of pa there is no reason for assigning any
particular value to this number. However, such
might not be the case when there is a field

present.
The energy of the electron in this type of a

universe is a function of the time. The exact
expression for it may be obtained by computing
the time-time component of the stress energy
tensor given by Fock." However, since a is of
the order of 10' cm, we may consider R=e"l"
as a constant and obtain as a first approximation
that

T ~T eihc j
7 (7.8)

where c is a constant and X is the energy and is
given as a function of time by the relation

"R.C. p. 70. "V.Fock, Zeits. f. Physik 5'7, 274 (1929).
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V (Wkq '( 2k+1y '——m'c'=e ""(
( (

n+
)

. (7.9)
c' (pi E 2

Also we see that X may take on positive and
negative values.

The wave functions for a universe in which

R(t) =e"t and p')0 are therefore

has shown' that Milne's theory of world struc-
ture is equivalent to the theory of a cosmological
space in which the three spaces t constant are
spaces of negative Riemannian curvature and
R(t) =ct. We shall now obtain the time depend-
ence of the wave functions for this case. The
equations determining T1 and T3 are

pc= T8'l(&i ei P)i %3 = T3C'3(~i t i 'p)~
7.10

P2= Tlc'2(~~ 'gi 0')i 0'4= T3@4(~i ~i 0')~r

(k1 d
ct) ————mc

~
T, = iWT-„

Eicdt )
(8.2)

(k1 d
ct) ———+mc )T3 iWT~-—,

Ei cdt

h ( 2k+1'
W=~-i n+

pE 2 )
where

The two second-order equations obtained from
Eq. (8.2) by elimination are

pc W')
p'c' ——+ i

T, =O (8.3)
t h't')

(d' 1d
+

(dt2 t dt

d' 1 d pc W'
+ p'c'+ —+ T3 ——0, (8.4)

dt' t dt t h't'(7 11) and7'/c' m'c'=e ""'W—

where W is a constant.

where Ti and T& are given by Eqs. (7.6) and
(7.7), respectively, and the functions C(n, 8, p)
are given by Eqs. (6.5).

The wave functions for the DeSitter universe
are obtained by going to the limit p—+~. They
are of the same type as Eqs. (7.10) but we must
replace the Jacobi polynomials of cos n that
occur in the functions C(cx, 0, p) by the Bessel
functions of 0.= p sin u. The energy in excess of
the rest energy need not be an odd integer since
n~ ~ as p

—+ ~. Hence we have that the energy
of a free electron in DeSitter space is approxi-
mately

8. MILNE CASE

If the three spaces t =constant are spaces of
negative Riemannian curvature, then we can
introduce a coordinate system such that the
metric takes on the form

du = p'(dn'+sinh' n(dP'+sin' Pdp')) (8.1)

instead of that given in Eqs. (3.2). If we make
the imaginary transformation p=ip and n=in,
Eq. (8.1) goes over into Eq. (3.2). Thus the
solutions of the Dirac equation for the case of
3 space of negative curvature can be obtained
from that of positive curvature by replacing p

by i p and 0. by io. in the solutions we have ob-
tained. Since this transformation leaves p and p
unaltered, we see that the angular part of the
wave functions is the same for both cases. The
radial functions differ from those given in Section
5 in that we have Jacobi polynomials in cosh a
instead of cos a.

The time dependence of the wave functions
depends again on the nature of R(t). Robertson

where p=imc/k. The two linearly independent
solutions of Eq. (8.3) for each value of W are

(1) C gy, ctgiW log t/h
1 1

(W 2iW
X&Fi( i , +—1; 2&et (, (8.5—)Ek' k

W iW
X~F~~ i ,

—2 +1, —I—pct—~) (8.6)
k k

where &F&(a, b, x) is the confluent hypergeo-
metric function. The two linearly independent
solutions of Eq. (8.4) are

7 (1) —C ~
—ttct~iW log t/h .

(W W
X&F&l i , 2i—+1, 2@et

I (8 7—)&k' k

p3 (2) =d3g
—~cog—~W log «h

W —2iW
X gFg~ i ,

——+1,2pct (. (8 8)
k k
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If we take c3$0 and d~ ——0, then in order to
satisfy Eqs. (8.2) we must take c3/0 and d3 ——0.
Similarly, if we take c&

——0, we must take c3=0.
Again the two possible solutions for T~ and T3
correspond to the two possible orientations of the
spin of the electron. We shall restrict ourselves
to the case d~ ——d3 ——0, and show how c~ and c3

must be taken so that

As before

h2 ( 2k+1) '
W3=—

I
n+

p34 2
(8.13)

The relation between the constant 8' and the
energy of the electron may be obtained by com-
puting the time-time component of the stress
energy tensor given by Fock." It is

I'dI'=2(I T3I'+
I
T3I') =1 (8.9) g&p Bp

(8.14)
2i" ( Bt Bt

Eq. (8.9) will be satisfied if

I 1 r(iW/a)
Cy= —— g

—n. W/2h

W &2 I'(23W/H+1)

tt 1 1'(iW/It)
C3=—— g7r W/2h

W v2 I'(2iW/tt+1)

where p are the solutions of Eq. (1.3) and
p+= p*yo. Therefore

(8.10)
T3' ——33tc'(

I
T~

I

'
I
T3

I

')
iR

+ (T3*T3—T3*T&) (8.15)
(8 11)

as a consequence of Eqs. (8.2) and the normaliza-
Hence we have as solutions of the Dirac equation tion of C ~e shall evaluate (8 15) for large
for this type of space values of W/h. In this case

'pl TjC 1(zeal& P) 'p) ) (p3 T3C 3(zn, P, &p), 8.12
y3 ——TgC3(in, p, (p), y3 ——T3C3(ic3, p, p),

where the functions Tj and T3 are given by Eqs.
(8.5) to (8.8), and the functions C are defined in
Eqs. (6.5). Since there are two sets of solutions
of Eqs. (8.2) for every value of W and since W
may either be positive or negative, we see that
for any set of quantum numbers n, k, m, there
are four possible solutions of the Dirac equation.

f W2iW
gF3I i , +—1, 2pct I-c —"';

L I a )
therefore T (1)~c &

—iw log t/h

and similarly T3&'& C3e '

Therefore T,'= WC/t= W/t,

where C is twice the imaginary part of c&c~, and
equals one from Eqs. (8.10) and (8.11).

9. CQMPARIsoN wITH DIRAc s EQUATIQN FoR DESITTER SPAcE3

In order to compare the equation used here with the one recently proposed by Professor Dirac
for an electron in DeSitter space, we will evaluate our equation for the DeSitter space in a different
coordinate system. Since the DeSitter space is a space of constant curvature 1/a3, there exists a
coordinate system in which the line element takes the form

where x'=ct, and

dg3 =g —3( —(d333) 3+(d/~)3+. (d333)3/(dz3) )

(/ )3+ (33&)3+ (333)3+ (g3) 3/4/3] = (l +@3/4@3).

(9 1)

(9 2)

A solution of the equations
3(y y~+7~ r ) = ,'g ~ 1-—

in a spin frame in which S„takes on the form given by Eq. (1.3) is
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where the matrices o- are constant matrices following the relation

—2'(0'o.~+0 po') = 8 z'

By a calculation similar to that given in section one we find

(9.4)

(9.5)

From the values of the g„„and the y„given by Eqs. (9.1) and (9.3) we find

38 logA
y"S = ——

2 Bx
(9.6)

Thus Eq. (1.1) for a free electron becomes

( 47 3 8 log A )
(9.7)

In order to compare this equation with that proposed by Professor Dirac, we must find a trans-

formation to a flat five space which has the space given by (9.1) as a four-dimensional hypersurface

given by the equation
(241)2+ (u2) 2+ (u3) 2 (u0) 2+ (u4) 2 —422 (9.8)

Let us replace x' by ix' and u' by iu'; then we must find a transformation that carries the space
whose metric is given by

ds' = (1+s'/4a') —'((dx')'+ (dx')'+ (4Ex')'+ (dx') ') s' = (x')'+ (x') '+ (x')'+ (x') ' (9 9)

into the hypersurface

(u0)2+ (ul) 2+ (u2) 2+ (uz) 2+ (u4) 2 442

The transformation needed is

Therefore

u~ = x~/A, u4= a(1 —s2/4422)/A A (u) = 2a/u4+4z.

47 llu0 8 llu4 8 1( u0u i 8 1u 47

+
8x Bx du& 8x Bu4 A E 2a' ) But' A a Bu4

(9.10)

Hence
8 ( u0(o u ii 8 0 u' 8 8

+p'
Bx~ E a Eu4+a) J liuke 42 zlu4 0lu~

(9.11)

where
u&(o u

a Eu4+a)

o u
(9.12)

Then we will have
ppp +p pp=25~p —2u'up/a' p p +p p4= —2u u /a (9.13)

Hence five matrices defined by the relations

42&= p~ —Zz~o'/a, a4= p4 u404/a, — (9.14)

where o4 is a matrix which anticommutes with the four matrices o. and hence with p~ and p4, satisfy
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Eq. (9.11) may now be written as

Ao. = 0& +oa-
xx Bul' 8 Bul'

(9.16)

The matrices 0.& are a set of five anticommuting matrices which we will want to identify with
those used by Dirac. However, since they are not constant matrices we will first perform a spin-
transformation on Eq. (9.7). Setting iP = Ty, we have

Bp BT 8A
Ao. * +Ao.~*T ' —-'o-~*

q =2uq,
Bx Bx Bx

(9.17)

where
Let

g &~ = T—'g ~T g4*= T—'g47 (9.18)

1 ( xo ~) (u'+a) l ( u~
T=—,

I
"+ I=I I I

"+
All 2a ) E 2a ) E u4+a)

(9.19)

Then since T' = 1 T= T ' and

o += —a +(u /a)(o +u~ at/( u+a)), a += (1/a)(u'a'+u&a&).

It is readily verified that

a =o *—(a'*+uPaP*/( u+ )a)u~/a = —a~ n'= —(1/a)(a~*u +o'*u') = —a',

and hence are constants.
From Eq. (9.9) it follows that

(9.20)

(9.21)

BT BA 2 a ( s g x~a~(1 —s/4a p 2
~a*-T-i -+1

I
=—(a'u'+u. a.).

el@a alga a g $ 4a2) a2 g g ) a2
(9.22)

Thus as a consequence of Eqs. (9.16), (9.21) and (9.22) Eq. (9.17) becomes

o puf' 8 2—a~ + u' +—o~u~ $=2pip.
Bup a' Bu~ a'

Multiplying by —h/i, we have

(a&u&q ( 2ihq
p, —

I

—
I I

u'p. + I
f= —mcp.

& a' ) 0 a' )
(9.23)

The equation proposed by Dirac, "when evaluated on the DeSitter space, may be written in the
form

(o&p, o'u'u po/a')if =—(ot'u&/a)(mc 2ih/a), — (9.24)

where m is real and the term —2ih/a is introduced in order that Eq. (9.24) be Hermitian. It is
interpreted as the imaginary part of a complex mass.

From Eq. (9.23) we see that this term arises from the choice of spin coordinate system used and
hence is purely a geometrical term and has no physical significance. Eq. (9.23) is exactly the same
as Eq. (9.24) if in the former we replace —m by ma'u'/a.

'7 Dirac, reference 4, p. 664.
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If instead of Eq. (9.7) we had used the equation

( 8 3 8 logA)
A~

I

—— ~y=i~'uP,
&ax 2 ax )

(9.25)

which is obtained from (9.7) by a constant spin transformation with r= 1/v2(1+fo4), we would
have obtained instead of Eq. (9.23) the equation

OPP

&r&u& 2ih (o"Qp)
u'po. + u&0& p =i

I

—
I
me/

a a' (a) (9.26)

This is Eq. (9.24) except that m is replaced by im
In conclusion I wish to thank Professor H. P. Robertson for his valuable aid and inspiring advice.
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ECENTLY Wigner' has derived some inter-
esting results relating the lowest values of

the mass number A having a certain isotopic
number A-2Z. We have found it possible to de-
rive all of those results in a much simpler manner,
and have extended the calculations to include the
more general interaction

V=ZJ(r, ;)0;;
Oi7' g qI i7 +gpi7'+gl~i7'+geI i7 )

gq+g+g1+g~ = ~

In Eq. (1) the sum is to be taken over all pairs of
particles in the nucleus, I'& is the space-inter-
change operator, I' is the space-spin operator and
P the spin operator. Wigner carried through
calculations only for the special case g =gl ——g.=0.

We approximate the wave function P of a
nucleus containing Z protons, 7I., and A-Z neu-
trons, v, by a sum, antisymmetric in like particles,
of products of single-particle wave functions:

lP = (Z~uy uy u2+um ' ' ' )~

g (ZoQI+QI Q2+82

' E. Wigner, Phys. Rev. 51, 106 (1937),

Single particle states Nl, N2 are each filled with
four particles (two protons and two neutrons) so
long as there are enough particles to fill them.
Such a filled state may be called an n group. In
evaluating (0 I Ul 0) = J'f*Ufdr we may omit the
antisymmetry in P* (making the normalization
factor unity). Since the interaction involves pairs
of particles only, we need retain only those terms
in P arising from single interchanges P of like
particles. We follow Wigner and approximate
(0I UI0) by its high density limit (Ol UOI0) ob-
tained from (Ol UIO) by replacing J(r) by J(0):

(ol Uolo) =x(a)(olzo' lo)

= J(a) }g, (0 I
zP, ,'I o) yg(0 I

zP, , I
o)

+gl(0 I »'; I o) +a.(o I
P

I
o) I

We therefore have to compute expressions of the
form

(Ol ZP~
I 0) = I (up+up um+u2 ' ' ' )

(up+up u2+un ), (ZP&)

((1 —ZP) yuug u2+u2 ' )~

((1—ZP)up+up u2+u2 ),d7.


