MARCH 15, 1937

PHYSICAL REVIEW

VOLUME 51

Quantum Equations in Cosmological Spaces

A. H. TauB
Princeton University, Princeton, New Jersey*

(Received November 16, 1936)

The Dirac equations for a free electron in a cosmological space are solved by means of separa-
tion of variables. It is shown that the wave functions depend on the angles 6 and ¢ in the same
manner as those of a free electron in flat space time. The radial functions are obtained and it is
shown that they go over into the usual ones in the limit. The explicit form of the time dependence
of the wave functions cannot be obtained until an arbitrary function R(t) is specified. Three
different cases are discussed. The energy of the free electron is then determined for each of these.
Finally the connection between the equation used here and that proposed by Dirac for the
DeSitter space is discussed. It is shown that they are similar and that the imaginary part of
the complex mass that he was forced to introduce has a geometrical origin.

1. INTRODUCTION

ARIOUS extensions of the Dirac equation
for an electron in arbitrary gravitational
and electromagnetic fields have been proposed
by Weyl, Fock, Schrodinger, Pauli, Schouten and
Van Dantzig, and others. The relations between
these equations and the class of equations of the
Dirac type (linear, equations which are first
order in the derivatives with respect to the coor-
dinates, and which are invariant under arbitrary
spin, gauge and coordinate transformations)
were discussed in ‘““The Dirac Equation in Pro-
jective Relativity.”’! There it is shown that one
equation of the class reduces exactly to the Dirac
equation for a charged particle in the special
relativity case.

In this paper we obtain exact solutions of that
equation for the free electron in any cosmo-
logical space, i.e., a space time whose metric is of
the form?

ds?=c2dt? — R2(t)du?, (1.1)

where R(2) is an arbitrary function of ¢ and

du2=hi,-dxfdxf (12)
defines a three dimensional space of constant
Riemannian curvature, p?, which may be posi-
tive, negative or zero. The angular functions are
the same for the three cases. The radial functions

* Now of the University of Washington.

1 A. H. Taub, O. Veblen and J. v. Neumann, Proc. Nat.
Acad. Sci. 20, 383-385 (1934). Hereafter this paper will be
referred to as D.P.R.

2 H. P. Robertson, “Relativistic Cosmology,” Rev. Mod.
Phys. 5, 62 (1933). Hereafter referred toas R.C.

are obtained explicitly for p? positive and those
for the flat spaces are obtained by taking the
limit as p— . The radial functions for spaces of
negative curvature are obtained by making an
imaginary transformation (p=ip, and a=1a).

The time dependence of the wave functions
cannot be obtained until some assumptions are
made regarding the arbitrary functions R(¢). In
the Einstein universe R is a constant and p?>0,
it is shown that the wave functions contain a
factor e** where A depends on the energy of the
electron. The case where p22 0 and R(f) =ect/®
includes the DeSitter universe and the wave
functions are obtained explicitly for this case.
When R(f) =ct and p? is negative,?® the time de-
pendence of the wave functions are obtained
explicitly and the radial functions are obtained
by an imaginary transformation.

Recently Dirac* proposed an equation for an
electron in DeSitter space. He used the fact that
the DeSitter space may be imbedded in a flat
five space and used the coordinates of the latter
space in his equation. The equation used here,
when written in terms of the coordinates of the
flat five space, gives an equation different from
Dirac’s but very similar to it. :

The equation given in D.P.R. is invariant
under abitrary spin, gauge and coordinate trans-
formations, where the coordinate transformation

3 Robertson has shown that this case is equivalent to
Milne’s world structure: Zeits. f. Astrophys. 7, 153-166
(1933). Professor Schriodinger discussed the Dirac equation
in such a space in lectures at Princeton University during
the spring of 1934.

¢ P.A.M. Dirac, Annals of Mathematics 36, 657 (1935).
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does .not.isnduce a spin transformation. This Sa=w({ M }7ﬂ+37u). 14
equation 1s o dx
ye i—i—S __jf‘p - (1.3) The matrices v, are defined by means of the
oxe o he o ' "/ gravitational metric tensor g.g as solutions of

. . “L(y, ) =12g.5-1 1.5
where ¢, is the electromagnetic four vector, 3(Yavst78Ya) =igas (1.5)

w=1mc/2h, m is the mass of the electron, e, its
charge, % is Planck’s constant divided by 2, and
in a proper choice of spin coordinate system® symbols of the second kind formed from the g.g.

and the quantities { B/;} are the Christoffel

2. COMPUTATION OF Sy AND +4S;

The quantities Sy and ¥%S; will now be computed. The nonvanishing Christoffel symbols formed

from the g.g are’
7 i) * 0) RR 7 R’
jk jk ij c? 0j) R

where the asterisk on the Christoffel symbol indicates that it is to be computed from the coefficients
hyj of the line element (1.5) and R’=dR/dt. Hence we have from (1.2)

So=200v°/3t+~v:(R'vi/R+dv%/dt).
Since g is a constant, vy, and v° may be taken independent of x«. Therefore

So=v#‘R’'/R+~:9v?/at.

Let vi=1Roa;, (2.2)
where (oiwo;+oj0;) =Thij. (2.3)
Then ¢; is independent of {. Also we have

yi=gily;= —hity;,/R*= —ici/R. (2.4)
Hence So=v#'R'/R+~:(9/0t)(—10?/R) =0. (2.5)

From Eq. (1.2) we have

“ v+
A=)
Bz dx*

In virtue of Egs. (2.1) and the fact that 4° is a constant matrix this reduces to
R’ !
Si=2vivo——+ {
¢*R

avy?

}wv"-i—*n (2.6)

i dxt

From this we obtain

. ) R’ ny ey

YiSi=2v"vivo——+ Y voy +Hvive—.
R 1 dxt

5 The summation convention is used throughout this paper. Also, we shall use the convention that Greek indices take
on the four values: 0,1,2,3, whereas Latin indices take the values 1,2,3.

6 This spin coordinate system is characterized by the fact that the spinors yas and vyssp are constants in it. See O.
Veblen, ‘“‘Spinors in Projective Relativity,” Proc. Nat. Acad. Sci. 19, 979-989 (1933) for a discussion of these spinors.

7R. C. p. 83 (Eq. A. 6).
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But viyi=%-1 and viyi=(36,/1—71v?).

3 RO1 (1) 1 (1 oy
Hence 715i=—vo—~—+~7’{ . }*—ng”{ ) } +viyi—
2 ¢2R 2 jl) 4 1] Jdx?
3 R s3d8loght 1 9kt 9y
or ’YlSi:—‘“"Yo‘—‘{'"Y](“ : +_hli—+7l—__)-
2 ¢’R 4 9xt 4 9x* dx?
! ohtk k
Since 1;”{ } = — (—~+h”{ })
ij dx* jk
3. No FieLDp

In case ¢,=0 Eq. (1.1) becomes

8 3R\ idoisd 3dloght 1 an¥ o
[’YO(—%‘* “—) _”‘“(_,"}" : +—hjt*~—+az~f) ]¢=M¢-
2R R \ox? 4 9x7 4  9xk ox’

‘We can introduce a coordinate system such that?

du?= p*da®+ p? sin? ad?-+ p? sin? « sin? 6d ?,

where p is a real constant, if the space defined by du? is a space of positive curvature.

In this coordinate system
h'/dx*=0

(2.7

(3.1)

(3.2)

since h'*=0 for I#= % and %#** is independent of x*. In this coordinate system a solution of the equations

(2.3) in a spin coordinate system in which S, is given by Eq. (1.4), is

ol=(1/p)(sin 6 cos ¢d;+sin 6§ sin ds-+cos 66;),
o2=(1/p sin a)(cos 6 cos ¢d1+cos 6 sin pd;—sin 643),
3= (1/p sin a sin 0)(—sin @d;+cos ¢d2),

where 3(8400+ 0804) =200
It is readily found that

do? 1 cos a . 1 cos 0
o= —— ‘—‘5]’1—}—[263((:08 ¢61+Sln ¢>52> —_ ——*]5]‘2‘{—251526]'3 H
ax’ 2 sin o 4 sin 6

(3dloght  dg! cos a ot
hence gl (~ —_—t ) =gl

gy - .
4 9x° dx’ sin ¢ psina

Thus Eq. (3.1) may be written

9 3R 7 d cosa 1 9 9
e o
a4 2 R R da sina psina a0 de

If ¢'=Ripsin oy, Eq. (3.1) becomes

g 1 Ié] 1 [¢] I¢]
(70———[01(—— - )+o2——+03-])¢=m/a
dt R da psin a 96 Jdo.

8R. C. p. 84 (Eq. B. 8).

(3.3)

(3.4)

(3.5)

(3.6)

3.7).

(3.8)
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The replacement of the wave function ¢ by ¢’ means that any normalization condition of the type
4
> |4 2gidatdxtdxt=1
A=1

is replaced by 4
> |¥4|%da sin 0d6do=1.
A=1

Multiplying (3.8) by v° and dropping primes we have

1i]
— ———{ y%! +1v% +z'y 3 — — uy? )}t//z().
62 ot aa psin « do
Now let Y= (1/2¢)ay
7% 1=B+/p=(1/p)(sin 0 cos pa1+sin 6 sin pas-+cos fas), (3.9)
9
7% 2=/ p sin a= (1/p sin a)(cos 6 cos pai1+cos 6 sin pas—sin fas),
17%3=B,/p sin a sin 8= (1/p sin « sin ) (—sin pa;+cos gas),
where a,=4civy%,. ,
Since y° anticommutes with §, and since the §, anticommute among themselves, we have
Hagoptapas) =06a (a,b=1,2,3) (3.10)
and’ ot agas=0, (ay)?=1. (3.11)
The matrices a, and a4 are the usual Dirac matrices.?
Eq. (3.8) may now be written as
(h/i)(1/c)(8/dt)y =11y, (3.12)
where
1[Buliy @ hy & B, 0
H¢=—[— T(a— )+ —(ﬁ — +mcoz4:|1//. (3.13)
RLp 2\da psina psina 2\ 96 sin 6 d¢

4. ANGULAR MOMENTUM INTEGRAL

A first integral of Eqgs. (3.12) may be obtained by noting that the operator

B —a4[6a(69+51n 0 %) - 1] &L

commutes with /. To prove this we first write Eq. (3.13) as

IT=—
Rp

1 h 9 h ﬂaa4
[ K—{-mcm]. (4.2)

a
2 da 17 SN«

Since a4 is a constant and anticommutes with the B’s, it commutes with K. We must now prove
that B, commutes with K.
‘From Egs. (3.9) we see that

3B4/30=Ps and 0B./d¢=sin 68,. 4.3)

9 E. U. Condon: G. H. Shortley, Theory of Atomic Spectra (Cambridge Press, 1935), p. 126, Eq. (3).
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9 B, O 9 B, 9
Hence 0‘4[60: ﬁﬂ““‘!— . _) - I]Bazza‘iﬁa‘}‘ﬂaa«lﬁa(ﬁt‘)__ ; ""“) _a4ﬂa
48 sin ¢ do 36 sin @ de

a B, 9
:‘Baa4[6a BB‘*"*_ N '_') - 1].
d6 sin @ de
The operator defined by Egs. (4.1) is the operator
as((2/h*)L-S+1), (4.4)

which occurs in the usual treatment of the Dirac equation as may be seen from Egs. (3.9). Thus we
see that the angular momentum integral of the Dirac equation in flat space holds in the cosmo-
logical spaces. That is, the dependence of the wave functions in these spaces on the variables § and
@ is given as in the flat case by solutions of the equations

Ky=ky, (4.5)

where & is a constant. It follows that & is an integer and equal to /41 where [ is the orbital angular
momentum quantum number whose z component is labeled by the integer .
The solutions of Eqs. (4.5) are'?

k4tm\?
Yy1=41(a t) (;‘I) e(k—1,m), Ys=4;(a, t)( ) o(k, m),
(4.6)
E—m—1y* Em—+1y}
b=, () b=ty =it () el mo )
2k—1 : 2k+1
where ¢(J, m) is the normalized spherical harmonic and 4, and 43 are arbitrary functions.
It is readily verified that
Bap= o, (4.7)

where ¢ is the spinor whose components are ¢1, ¢2, @3 and ¢,.

The angular part of the wave functions in an arbitrary spherically symmetric electromagnetic
field (i.e., one that depends on « and f) are the same as for the free electron, since the operator K
will still commute with H if such a field is present.

5. RapiaL FuNcTIONS

We now proceed with the determination of the functions 4 and 4;. Egs. (3.12) may now be written
as

h1la 1 h 8 hBaask
- ( —1—mca4)lll. (51)
1¢ 0t Rp

In virtue of Eqs. (4.6) and (4.7) these equations reduce to

thya & hia Y k
R(t)(——~—mc) =—j(—~+ - )Ag, (t)(———+mc)A3——~<—— )Al. (5.2)
72 ¢ 0t p 2 \0a 'sin o 1¢ 0t da sin «

u todt R 9 lé]
Let!! w=f ~—, thatis ——=—
¢ Yy R() c 9t du

10 Reference 9, pp. 127-128.
11 Then u as the spatial distance light has traveled during the time {—f. See R.C. p. 68.
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Egs. (5.2) become

h o h o k h o h 9 k
(———mcR(u) A1=.—(—+ )A3, (———i—mcR(u))A,g:—(—— )Al. (5.3)

7 0u 1p\da sin a 7 0u 1p \da sin «

We may now obtain a second-order differential equation by eliminating 43 from the first of these.

Thus
ha h d —h%/ 0 k ] k
(———}-mcR(u)) (————mcR(u))/h: —4 ) e )Al.
7 0u 70U p? \da sina/ \da sina

Let Ai(a, u) =A:(a)T1(1), then by separating variables we have

—hrd* k*—Fkcosa
[— ———]A1=W12A1, (5.4)
p? Ldas sin? «
h\ % d? h dR
—) ——me———R¥m22 |T,=W,2T}, (5.5)
1/ du? 7 du

where W, is a constant.

If we are given the function R(¢), R(«) is determined and we can solve Eq. (5.5) for T and thus
determine the time dependence of the wave functions. Later we shall assume R(f) has a definite
form and solve Egs. (5.5). The function 4:(«) may be determined from Eq. (5.4). Thus if we set
r=cos a, Eq. (5.4) becomes

(r*=1)

d2A1 dAl [)2W12 k“’—-kr
( ) 1=0. (5.6)

+r—
dr? ar h? r2—1

A nonsingular solution of this Riemann P equation is

26+1 — oWy 2k+1 2k+1 1—7
T ) (5.7)

PW1
A1=c1<1—r)k/2<1+r>k+1/2F( sl pE
h 2 h 2 2 2

where C; is a constant and F denotes the hypergeometric series and % is assumed to be positive.
Since 4, must be finite for 1(1—7)= =1, the series must contain only a finite number of terms
and we must have either

—pWi/h+(2k+1)/2=—n or pWi/h+(2k+1)/2=—n, (5.8)
where % is a positive integer. That is,
(pWr/h)?=(n+(2k+1)/2)%. (5.9)

Thus the allowed values of W are determined in terms of k. Since & must be an integer, we see that
(pW1/h)? is the square of a half-integer. We shall show later that the kinetic energy of a free electron
is expressible in terms of W.

Similarly we may eliminate 4, from Egs. (5.3) and we obtain

) ha —nsa  k \Nsd k
(———mcR(u)) (——--I—mcR(u) As= (—————) (—+ )As.
70U 1 0u p? \da sin a/ \da sin «
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Now let 4s(a, #) =As(a)T3(u); then by separating variables we have

rr d* k2+k cos a
__[_ﬁ__.__]AFWaZAS, (5.10)
p’Lda? sin? a
h\? d* hdR
[(—) Lo R ]n: Wi, (5.11)
1

du? 1 du
Setting 7 =cos a, Eq. (5.10) becomes

d2A3 dAs (k2+ kr W32p2)

+r——
dr? dr r2—1 h?

(r"—1)

A3=0. (5.12)

A nonsingular solution of this equation is

pWs 2b+1 —pWs 2k+1 2k+3 1—7
A3=C3(1~r)k+1/2(1+r)k/2F( -+ o , , )
2 2 2

(5.13)

The condition that 43 be finite at 3(1—7) =21 implies
(pWs/h)*= (n+(2k+1)/2)%. (5.14)

The functions 4;(a) and A4;(«) given by Eqgs. (5.7) and (5.13) will be solutions of Eqs. (5.3) if
W= W3s. We shall henceforth set W=W,=W5.

In the above we have assumed that % is positive. However, from Egs. (5.3) we see that if (41, 45)
is a solution for positive & then (43, A1) is the solution for negative %.

The constants C; and C; may be chosen so that

j{:rIAllzda=‘for|A2|2da=1. (5.15)

This is readily done by expressing 4; and 43 as Jacobi polynomials, and using their orthogonality
relations.!? We readily see that Eqs. (5.15) are satisfied if

oo 1 (r<pW/h+<zk+1>/2>)% o W/ (r<pW/h+<zk+1>/z>)% 5,16
(k1)) \T(oW/h— 2k—1)/2)) T 2+D((2k+3)/2) \T (oW /h— (2k—1)/2))

The neighborhood of the point a=0 on the three dimensional sphere of radius p goes into a flat
three dimensional space as becomes infinite. We shall now show that the functions 4, and 43 go
over into the usual radial functions as p becomes infinite (i.e., Bessel functions).

Let o=lim p sin a= Ra.
e
l1—cosae = a o o°
Then =sin? =
2 2 4 4p

and A;=Ci(o?/4p2) 1 2F(n+2k+1, —n, (2k+3)/2;¢r”/4p"’), where n=pW/h+(2k+1)/2.

1 /Wo\t w
lim A3=—(—‘ —) J]H_g("“‘a'),
P 2\ h 2 h

where J, is the Bessel function of order #.

In virtue of Eq. (5.16) we have

12 H. Bateman: Partial Differential Equations of Mathematical Physics (Cambridge Press, 1932), p. 392.
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Similarly we can show that

1/ Woe
limA1=~—(——
b2

p— 2 k

519

) ()

But ¢ is the distance from the origin to the point whose coordinates are x, v, 3. Hence the radial
functions we have obtained go over into the usual radial functions as p— «.

6. EINSTEIN UNIVERSE

To obtain the time dependence of the wave
functions we must make some assumptions re-
garding the arbitrary function R(¢). The simplest
assumption, namely R(¢) is constant, corresponds
to the Einstein universe.!* When the radial
functions given by Egs. (5.7) and (5.13) are sub-
stituted into Egs. (5.2) they become

hld w
(————mc) T1= —i—T;;,
R

1cdt
(6.1)
rld w
(———+mc) Ty=1—T,.
1 cdt R

Two linearly independent solutions of these
equations are

Ti=cieilm™t  Ty=qezet/ Mt (6.2)
and T1=det'™t, Ty=1idze /M (6.3)
W2y ¢
where A= (m2c4+c2—~)
R2

cht o 2k41\\*
(gl 5)
R?p? 2

and ¢y, c3, d; and d; are constants.

The constant X is the energy of a free electron
in an Einstein space. The existence of the two
solutions (6.2) and (6.3) means that both positive
and negative energy states are allowable as in
flat space. Since # and k are integers we see that
the square of the kinetic energy is proportional
to the square of half an odd integer.

The existence of two linearly independent
solutions for each value of N corresponding to the
two orientations of spin for given energy is ob-
tained as in the usual theory.

Thus there exist four linearly independent

1B R.C. p. 69.

solutions of the Dirac equations in an Einstein
space. They are of the form

Yi=a1e*MA (@) 01(0, ¢) =a1e= 1Py (e, 0, ),

Yo=a1e*""™A (o) p2(8, @) = a1/ Dy(a, 0, ),
(6.4)
Ys=aze="™MAg(a) ps(0, ¢) =ase=i!"MDy(a, 0, @),

¢4=a’3eé=i/h>\tA3<a)<P3(01 ‘p)=a3e*“h)\-t¢4<ar 01 (P),

where ¢'s are given by Egs. (4.6), the A’s are
given by Eqgs. (5.7) and (5.13) and a; and a3 are
constants.

The current vector whose divergence vanishes
as a consequence of the Dirac equations is'

Je=yryy, (6.5)

where ¢+ =y*y0 (¢* is the complex conjugate of
¥) and ¥ is a solution of Egs. (1.3). Hence

4 ,
f 1av= | 3 |yal®dv, (6.6)
A=1
where dV is an arbitrary three dimensional
volume.

In virtue of the normalization conditions we
imposed we have

f]°dV=2([a1|2+|a3[2). (6.7)
It is evident that we may normalize our con-
stants so that the left member of Egs. (6.7) is
unity.

The form of the wave functions given by Egs.
(6.4) was to be expected since the space with the
metric

du? = hydxidx?

is a three dimensional sphere. The wave functions
must therefore be a representation of the group

14 D,P.R. p. 384. The matrix vip may be taken equal to
the matrix +°.
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which leaves this space invariant, namely, the
rotations in a flat four space. However, the rota-
tion group in four dimensions is a direct product
of two three dimensional rotation groups. Hence
the representations of this group are obtained by
taking the direct product of representations of
the three dimensional groups. The Jacobi poly-
nomials and the spherical harmonics are such
representations. Hence we expect that the wave
functions for the Einstein space should have as
factors Jacobi polynomials in cos a and spherical
harmonics in 6 and ¢.

7. DESITTER UNIVERSE

The DeSitter universe is a cosmological space
in which R(f) =e°*’* and the three dimensional
space whose metric is du’=h;dx'dx’ is a flat
space.’® Hence we may obtain the solutions of
the Dirac equations in a DeSitter universe by
solving Eqgs. (5.2) where R(f) =e°t/* and passing
to the limit as p— ©. We have already seen that
the radial functions go over into those of the flat
space as we pass to the limit. Hence the only
difference between the wave functions in this
space and in the flat space-time is in the time
dependence of the wave functions given by the
functions T'1(¢) and T'5(¢).

Eqgs. (5.5) and (5.11) which determine T'(¢)
and T'3(¢) become

d2 ,U.202+M(Z/ W2
[——~——+—]T1=0 (7.1)
du? u? h?
>  plat—pa W2
and [————+—]T3=0, (7.2)
du? u? h?
mc h 2k+1
where u=—1i, W= :!:*(n—i———),
. h P 2
and
u ¢ °° a
—=f ectledt= —f e~ctledi= ——e~ctle, (7.3)
Cc to t C

We must choose such solutions of Egs. (7.1) and
(7.2) which are solutions of Eqgs. (6.1).

Egs. (7.1) and (7.2) are the differential equa-
tions for the Bessel functions. Hence for each

1B R.C. p. 70.
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value of W we have as the two linearly inde-
pendent solutions of Eqgs. (6.1) the functions

Ti=c\/ud yars(Wu/h) ;
Tis=c\/uJd yos(Wu/h)
T1=d\/uJ —yas(Wu/h) ;
Ts=dn/uJ _yars(Wu/h),

(7.4)

and

(7.5)

where ¢ and d are constants and J, is a Bessel
function of complex order. Thus we again find
four linearly independent solutions to the Dirac
equations. This corresponds to the fact that there
are two orientations of the spin for each of two
possible values of the energy.

The constants ¢ and d may be chosen so that
the time component of the current vector is one.
From Egs. (6.1) it is evident that

f]"dV=2(lT1|2+|T3|2) (7.6)

is a constant. This constant is one for the
solutions (7.4) and (7.5) if

c=d=5(|W|/h)'T (na+%). (7.7)

The magnitude of the number wa is the ratio
of the radius of the universe to the Compton
wave-length. This number is of the order of
magnitude of 10%. From the asymptotic expan-
sions of T; and T'; we see that asa— T'yand T3
tend to the exponential functions. Since the
functions T and T3 can be normalized for any
value of uae there is no reason for assigning any
particular value to this number. However, such
might not be the case when there is a field
present.

The energy of the electron in this type of a
universe is a function of the time. The exact
expression for it may be obtained by computing
the time-time component of the stress energy
tensor given by Fock.!®* However, since a is of
the order of 10?7 cm, we may consider R=ec!/¢
as a constant and obtain as a first approximation
that

T3=cT1=e”‘”",

(7.8)

where ¢ is a constant and X is the energy and is
given as a function of time by the relation

16V, Fock, Zeits. f. Physik 57, 274 (1929).



QUANTUM COSMOLOGY

A2 Why 2 2k+1\2
___m2c2=e—2ci/a( ) (n+ ) . (79)
62 P 2

Also we see that N may take on positive and
negative values.

The wave functions for a universe in which
R(t)=e°t’* and p%?>0 are therefore

§01=qu>1(05’ 07 ‘P):
¢2=T1<I>2(a, 0, <P)»

p3= T3q)3(0‘7 01 QD),

7.10
P4= T3‘I)4(O(, 0, ‘p)v ( )

where T and T'; are given by Egs. (7.6) and
(7.7), respectively, and the functions ®(«, 6, ¢)
are given by Egs. (6.5).

The wave functions for the DeSitter universe
are obtained by going to the limit p— ». They
are of the same type as Eqgs. (7.10) but we must
replace the Jacobi polynomials of cos @ that
occur in the functions ®(«, 6, ¢) by the Bessel
functions of ¢=p sin a. The energy in excess of
the rest energy need not be an odd integer since
n—«© as p— o, Hence we have that the energy
of a free electron in DeSitter space is approxi-
mately

)\2/62—7’}1262 = e—2ct/aW’

(7.11)

where W is a constant.

8. MiLNE CASE

If the three spaces t=constant are spaces of
negative Riemannian curvature, then we can
introduce a coordinate system such that the
metric takes on the form

du?= p*(da?+sinh? a(dB2+sin? fde?)) (8.1)

instead of that given in Egs. (3.2). If we make
the imaginary transformation p=ip and a=ia,
Eq. (8.1) goes over into Eq. (3.2). Thus the
solutions of the Dirac equation for the case of
3 space of negative curvature can be obtained
from that of positive curvature by replacing p
by 2p and « by za in the solutions we have ob-
tained. Since this transformation leaves 8 and ¢
unaltered, we see that the angular part of the
wave functions is the same for both cases. The
radial functions differ from those given in Section
5 in that we have Jacobi polynomials in cosh «
instead of cos a.

The time dependence of the wave functions
depends again on the nature of R(f). Robertson
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has shown? that Milne's theory of world struc-
ture is equivalent to the theory of a cosmological
space in which the three spaces ¢ constant are
spaces of negative Riemannian curvature and
R(t) =ct. We shall now obtain the time depend-
ence of the wave functions for this case. The
equations determining 7"y and T’ are

hld
Ct(——““—m(:) T1= —1/.WT3,
1 ¢ dt (8.2)
8.
hld
Ct(**——l—m()) T3=i.WT1,
1 cdt
h 2k+1
W= :i:—(n—{— )
p 2

The two second-order equations obtained from
Eq. (8.2) by elimination are

where

d> 1d uc W2
(—+———u262———+——— T:=0 (8.3)
a2t dt t  h?
d® 1d uc W2
and [——}—— ——/ﬂc?—{———i--*«]Ts =0, (8.4)
di? tdt t  hi?

where p=14mc/h. The two linearly independent
solutions of Eq. (8.3) for each value of W are

Tl(l) =cleucteiW log t/h

W 2aW
XlFl('i—,—-—i—l; —2,uct), (8.5)
h  h
T, @ = encte—iW log t/h
W W
X1F1(—i;, —2—h—+1, -—1,U.Ci), (8.6)

where 1Fi(a, b, x) is the confluent hypergeo-
metric function. The two linearly independent
solutions of Eq. (8.4) are

T3(1) =636—ucteiW log t/h

w W
XlFl(i;, 21/7—*—1, 2uct), (8.7)

T5(® = dyg—retg—iW log t/h

W —%w
XlFl(_’L;r

+1, Zuct) . (8.8)
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If we take ¢;#+0 and d,=0, then in order to
satisfy Egs. (8.2) we must take ¢330 and d;=0.
Similarly, if we take ¢;=0, we must take c;=0.
Again the two possible solutions for Ty and T3
correspond to the two possible orientations of the
spin of the electron. We shall restrict ourselves
to the case di=d3=0, and show how ¢; and c3
must be taken so that

fJOdV=2(|T1|2+[T3|2)=1. (8.9)
Eq. (8.9) will be satisfied if
Bl TGW/h
Cl:hv?%?@%ﬁ%?fﬂwm’ (8.10)
PLTOW e (san)

(3 = e e
YW T(2W 1)

Hence we have as solutions of the Dirac equation

for this type of space
P1= quDI(ﬁay B’ QO),
p2= qu)2(ia1 By (p>y

Q3= T3(b3(7:0‘1 By So)y

. 8.12
QY11= T3(I>4(tar ﬁ) ‘P): ( )

where the functions 7'; and T3 are given by Eqgs.
(8.5) to (8.8), and the functions ® are defined in
Egs. (6.5). Since there are two sets of solutions
of Eqgs. (8.2) for every value of W and since W
may either be positive or negative, we see that
for any set of quantum numbers %, k, m, there
are four possible solutions of the Dirac equation.

TAUB

As before

hZ
W2=—(n+

The relation between the constant W and the
energy of the electron may be obtained by com-
puting the time-time component of the stress
energy tensor given by Fock.!® It is

k 2
2 +1) ) (8.13)

h do dot
T=— (¢+7°*——W’Y°¢)dV, (8.14)
21 at at

where ¢ are the solutions of Eq. (1.3) and
ot = p*y0. Therefore

T =mc*(|T1[2—|T3|?)

W
+—(T*T5—T15*T,) (8.15)
t

as a consequence of Eqs. (8.2) and the normaliza-
tion of ®. We shall evaluate (8.15) for large
values of W/h. In this case

W 22W
1F1(7;—, +1, —'2#015) ~e ket
h ok

Tl(l) ,\,Cle—iW log t/h

therefore
and similarly T3 ~cge™iW log t/h,
T=WC/t=W/t,

where C is twice the imaginary part of cic3, and
equals one from Egs. (8.10) and (8.11).

Therefore

9. CoMpARISON WITH DIrac’s EQuaTiON FOR DESITTER SPACE?

In order to compare the equation used here with the one recently proposed by Professor Dirac
for an electron in DeSitter space, we will evaluate our equation for the DeSitter space in a different
coordinate system. Since the DeSitter space is a space of constant curvature 1/a? there exists a
coordinate system in which the line element takes the form

where x%=ct, and

A solution of the equations

in a spin frame in which S, takes on the form given by Eq. (1.3) is

ds?*=A7%(— (dx")*+ (dx")*+(dx?)*+ (dx%)*), 9.1)

A =1+ — (x0) 2+ (x1)2+ (x?)2+ (x*)?/4a* ] = (1 +5°/4a?). (9.2)
s(rerPtvPye) =1gf-1

Y =3i40" yi=3A4d, (9.3)
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where the matrices ¢ are constant matrices following the relation
(0% P+ aPae) = b2B, (9.4)

By a calculation similar to that given in section one we find

1dlogy/—g 1 1 0/ —gg* v
7“5a=7"(— +—gan +w-—)- (9.5)
2 dxe 4 /—g x7 dx«
From the values of the g,, and the v, given by Egs. (9.1) and (9.3) we find
3dlogd
YESe= —— . (9.6)
2 oxe
Thus Eq. (1.1) for a free electron becomes
9 3dlogAd
7"( ——— ) = . 9.7
dx® 2 Ix“

In order to compare this equation with that proposed by Professor Dirac, we must find a trans-
formation to a flat five space which has the space given by (9.1) as a four-dimensional hypersurface
given by the equation

()2 (1) (a8)2 = ()2 ()2 = 9.8)

Let us replace x° by ix° and #° by 7u°; then we must find a transformation that carries the space
whose metric is given by

ds? = (142/40%)~2((dx®)? + (dx) 2+ (da?)?+ (dx%)?), 5= (a0 + ()P ()4 ()2 (9.9)
into the hypersurface
(u0>2+ (u1)2+ (u2)2+ (u3)2+ (u4)2 — 0/2‘

The transformation needed is

uf=xf/A4, u'=a(1—s2/4a® /4, A(u)=2a/u*+ta. (9.10)
9 ouf 9 dut 9 1 ubu J 1 ux 9
Therefore ———— —-—=—~(6aﬂ— A)~————'——,
dx* x> 9uf Jx*out A 2a? ouft A a out
9 ub s goue 0 owu* 9 i) d
Hence Ago—= (oﬁ—w( ) —_— —— = pf—t pt— (9.11)
Ox« a \u*+a/ /7 oub a Jut ouf Jut
ub foou U
where pﬂ=cﬂ—-—( ), pt=— . (9.12)
o \u*+ta a

Then we will have
pPpe+t pepf =26 —2uuf/a?, p'pe+ppt= —2uu'/a. (9.13)

Hence five matrices defined by the relations
af=pf—ubot/a, o'=pt—uict/a, (9.14)
where ¢t is a matrix which anticommutes with the four matrices ¢ and hence with pf and p*, satisfy

a’af+afa =267, (9.15)
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Eq. (9.11) may now be written as

d d ur 9
=ar—+ot——.
axe our a ou’

Ao

(9.16)

The matrices a? are a set of five anticommuting matrices which we will want to identify with
those used by Dirac. However, since they are not constant matrices we will first perform a spin-

transformation on Eq. (9.7). Setting y =T ¢, we have

do oT 94
Ao *—4Ag* T 1— — 3o —p=2uy,
ax* ox« dx“
where c*=T"1gaT, ¥*=T"1T.

Let

1 xBoh ut+a\? ubgh
=)= (50) (i)
A 2a " 2a u*+ta
Then since T?=1, T=T"1 and
0¥ = —go4(u/a)(c*+ubof/(u*4-a)), o**=(1/a)(uec*+ubch).
It is readily verified that
a®=g** — (c** +ubof*/(ut4a))u*/a= —o2, o*=—(1/a)(c**u*+o"*u!) = — o4,

and hence are constants.
From Eq. (9.9) it follows that

AU*QT—I __%o.*a = —f1——

9x“ Ix* a d 4a?

oT 04 2 ¢* s? xPgf 41 —s%/4a? 2
)+ ( 1) =—(c*ut+u*?).
a? a?

Thus as a consequence of Egs. (9.16), (9.21) and (9.22) Eq. (9.17) becomes

Jd ofur 0 2
[ —gr——+ U +——¢7"uﬁ]¢ =2uy.

our  a® du’ a?

Multiplying by —#%/z, we have

oPur 2ih
o) om 2 -
a? a?

(9.17)

(9.18)

(9.19)

(9.20)

(9.21)

(9.22)

(9.23)

The equation proposed by Dirac,!” when evaluated on the DeSitter space, may be written in the

form

(e*p, — arurupo/a)y = (eru/a)(mc—2ih/a),

(9.24)

where m is real and the term —2ii/a is introduced in order that Eq. (9.24) be Hermitian. It is

interpreted as the imaginary part of a complex mass.

From Eq. (9.23) we see that this term arises from the choice of spin coordinate system used and
hence is purely a geometrical term and has no physical significance. Eq. (9.23) is exactly the same

as Eq. (9.24) if in the former we replace —m by mo*u’/a.

17 Dirac, reference 4, p. 664.
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If instead of Eq. (9.7) we had used the equation

d 3dlogd
Aa“( —— )1//=ia4u¢,
dxe 2 9x«

(9.25)

which is obtained from (9.7) by a constant spin transformation with 7'=1/v2(1+4¢*), we would
have obtained instead of Eq. (9.23) the equation

aPur 2ih oPuP
[a"p,, - u”pa+—2upap]¢=i(——) mcy.
a

a a

(9.26)

This is Eq. (9.24) except that m is replaced by 7m.
In conclusion I wish to thank Professor H. P. Robertson for his valuable aid and inspiring advice.
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ECENTLY Wigner! has derived some inter- Single particle states u;, 15 - - - are each filled with

esting results relating the lowest values of
the mass number 4 having a certain isotopic
number A-2Z. We have found it possible to de-
rive all of those results in a much simpler manner,
and have extended the calculations to include the
more general interaction

V=2](7’ij)0ij
0:i=g4Pij"+gPij+gi1lij+ g P, (1)
2etgtatg=1.

In Eq. (1) the sum is to be taken over all pairs of
particles in the nucleus, P? is the space-inter-
change operator, P is the space-spin operator and
P the spin operator. Wigner carried through
calculations only for the special case g=g1=g,=0.

We approximate the wave function ¢ of a
nucleus containing Z protons, =, and A-Z neu-
trons, », by a sum, antisymmetric in like particles,
of products of single-particle wave functions:

Y= <ZauturustugT - >,

X <Eau1+u1“u2+u2“- e >
1 E. Wigner, Phys. Rev. 51, 106 (1937).

four particles (two protons and two neutrons) so
long as there are enough particles to fill them.
Such a filled state may be called an « group. In
evaluating (0| U|0) = S'¢*Uydr we may omit the
antisymmetry in y* (making the normalization
factor unity). Since the interaction involves pairs
of particles only, we need retain only those terms
in ¢ arising from single interchanges P of like
particles. We follow Wigner and approximate
(0] U|0) by its high density limit (0| Uo|0) ob-
tained from (0| U|0) by replacing J(#) by J(o):

(0| U0[0)=J(0)(0{EO~;7’|0)
=J(0) {g4(0|ZP;;2[0)+g(0|ZPy;|0)
+21(0] 2144/ 0)4g,(0| P3;7]0) }.

We therefore have to compute expressions of the
form

(OIEP‘IIO):f<u1+u1“u2+u2—- ce >
> *(ZP9)
<(1-—2P)u1+uru2+u2‘~ D>

< ul+u 1—u2+u2— cee

< =ZP)urturustus - - >,dr.



