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We may rewrite (222) using the total momentum j
rather than the "orbital" momentum I. for labeling the
terms:

For light, only small values of kr are important because the
wave-length of the light is generally large compared to the
dimensions of the radiating system. Now, according to (18),
we have x; 1~ (kr)&' and x;+&~ (kr)&+' so that the first term
in the square bracket in (223) is always much more
important than the second. The terms j=1, 2, 3, ~ ~ ~ (or
1.=0, 1, 2, ~ ~ ~ ) correspond to dipole, quadrupole, octo-
pole. . . radiation.
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For purposes of reference the continuous spectrum solutions of the Dirac wave equation for
the Coulomb field are given. The solutions in the form of series and integral representations
and the asymptotic behavior at large distances are included among the formulae.

HE solutions in the continuous spectrum of
the Dirac wave equation for the Coulomb

field have been known and used extensively for
some time. However, the form in which they
appear in the literature is not convenient for
some purposes. It is with the intention of
furnishing a reference from which one may
obtain the wave functions with a minimum

expenditure of time and labor that the following
formulae are given.

For the sake of simplicity we adopt a system
of units in which energy is measured in mc',

length in l4(mc and momentum in mc. The
symbols which occur below have the following
meanings:

p1$2f3p4 the four components of the wave function.
fl and gl, radial wave functions.
Yl„, normalized spherical harmonics (see Eq. (2)).
j, total angular momentum quantum number.
m, magnetic quantum number.
l, auxiliary index characterizing the wave functions.

(l is the orbital momentum for the electron only, in

the nonrelativistic limit. )
W, absolute value of the energy.
p, absolute value of the momentum = (W' —1)&.

a, fine structure constant =e'/Ac.
Z, nuclear charge.

The wave functions are of two types:
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It is convenient to treat the two types of
solutions simultaneously by the introduction of
the parameter ff.

K= —(j+-', ) = —(l+1) when j =l+
=j+-,' =l when j= l ——,'.

We give the solutions for the radial functions
in the positive energy spectrum (electron).
Suppressing the index ff,

f=(1—W)'(G —G*), g=(1+W)'(G+G*), (3)

so that f and g are real. ' The solutions given
below are normalized per unit energy interval.

Series representation:
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where c.c. denotes the complex conjugate.

y = (rc' —n'Z') l

e"o= —(e inZ/p)/(y+— inZW/p),

and F is the confluent hypergeometric function
defined by

r(b) r(ann) x-
F(a, b;x) =
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Integral representation:

' The relative sign of f and g as determined from the
d&8'erential equations which they must satisfy is obtained
correctly if we take (1—8')»'=+i(B' —1)'I'.
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Asymptotic behavior:

rf= —L(W —1)/mpjlsin (pr+~),
rg =I-(W+I)/~p$: cos (pr+8),
8=(nZW/p) log 2pr arg F(y—+inZW/p)

+g —aery/2.

It is, of course, simple to obtain the solutions
with any other normalization. For example, to
obtain the solutions normalized to one particle
in a large sphere of radius R the above solutions
need only be multiplied by a factor (~p/WR)l.

The dimensionality of rf (and rg) is (energy
length) & for normalization per unit energy
interval and (length) ' for normalization to one
particle in a large sphere. Hence to write the
solution in ordinary units, besides replacing 8'
by W/mco, P by P/mc and Pr by Pr/A, rf (and rg)
should be multiplied by (hc) '* and (mc/b)l for
the two methods of normalization, respectively.
The transition to any'other system of units is
easy. For example, to write the above formulae
in atomic (Hartree) units W should be replaced
by n'W, p by np, pr remains unchanged and rf
is to be multiplied by e& and n ' for the two
cases of normalization, respectively.

To obtain the solutions in the negative energy
spectrum (positron) we have'

f = (1+)'(G+G*) g = (1 —W)'(G —G*) (&)

in which G and G* are obtained from the formulae
given above by changing the sign of l/t/' and e"&.

Thus, for example, in the asymptotic expressions
(6) the forms of f and g are interchanged.


