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A general formula is developed for the probability of
nuclear processes with particular consideration of resonance
(§2). The dependence of the cross section on the energy of
the incident particle can be divided into two parts:
Firstly, the dependence over energy regions small compared
to nuclear energies, and secondly that over large energy
regions, of the order of a million volts or more. The first
dependence is completely given by the resonance formula;
it shows resonance maxima and besides a simple general
trend with the particle energy such as the 1/v law. The
dependence over large energy regions cannot be found
without referring to a special nuclear model. (If the
problem of nuclei were a one-body rather than a many-
body problem, there would be only the dependence over
large energy regions. Thus much more theoretical informa-
tion of a general nature can be obtained for the many-body
than for the one-body problem.) The nuclear processes
may be divided into several classes according to whether
light quanta or material particles are concerned. The
selection rules for the various kinds of processes are given
(83). Another useful classification is according to the speed
of the particles involved: Slow particles are such whose
wave-length is long compared to nuclear dimensions. This
means energies below about 300,000 volts for heavy, 1 MV
for light nuclei. y-rays are to be classed as fast particles.
When a slow particle produces a nuclear reaction, the cross
section contains a factor 1/v (v=velocity of the incident
particle) besides the resonance factor; when a slow particle
s produced, a factor v' (v =velocity of the outgoing particle)
appears in the cross section. If the reaction involves only
fast particles, the resonance factor is the only significant
one; the same is true for the scattering of slow particles.
Explicit formulae for the various cases are given. The
problem of the wave functions to be chosen for the incident
particle is discussed in §4. Arguments are given for using

wave functions in a repulsive potential, corresponding to
the assumption that the particle as a free particle cannot
exist inside the nucleus. The “potential scattering’ arising

“as a consequence of this assumption, is discussed and

compared to the resonance scattering. In §§5 to 7 the
capture of slow neutrons is discussed. The influence of the
Doppler effect on the capture cross section is taken into
account. Expressions are derived for the activation and for
the absorption coefficient with self-indication, both for
resonance and for thermal neutrons. These expressions
allow for the influence of the line shape in the former case
and for the 1/v law in the latter. Methods for the determi-
nation of the energy, radiation width and neutron width of
the compound levels are discussed (§6) and applied (§7) to
Ag, Rh, I and Cd. The importance of the interference of
several resonance levels is emphasized, particularly for the
capture of thermal neutrons. The properties of fast
neutrons are briefly discussed (§8). In the case of charged
particles (§10), the width of the resonance levels is reduced
by the potential barrier. The width of resonance levels
observed in the simple capture of protons is found in
agreement with reasonable expectations. The widths of the
levels in reactions produced by a-particles are probably
smaller than has been observed. In the reaction of charged
particles with heavy nuclei, no resonance effects can be
observed because the energy of the incident particles
cannot be defined accurately enough. The photodissociation
of nuclei by y-rays (§11) is not the inverse process of the
radiative capture of particles. The cross section for the
photodissociation of a heavy nucleus is about 10728 cm? if
the energy of the particle produced (neutron) is larger than
about 1 MV. This should make the process just observable.
The scattering of v-rays by heavy nuclei has a cross
section of the same order which makes it unobservably
small compared to the Klein-Nishina scattering.

I. GENERAL THEORY

§1. Introduction

VEN in the early experiments on the inter-

action of a-particles and protons with
nuclei it was found that scattering and disin-
tegration showed maxima at certain energies
which were ascribed to a resonance phenomenon.
With improved technique, it was shown that
many of these resonances were much sharper

than was at first believed. Still more striking
resonance effects have been revealed by the more
recent experiments with slow neutrons.

The a-particle and proton resonances were
formerly interpreted from a one-particle view-
point, the incident particle being considered as
moving in the potential field of the nucleus and
as having certain virtual energy levels in that
field. However, this picture has proved quite
untenable in view of the neutron evidence. In
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RESONANCE EFFECTS

connection with this evidence, Bohr! has em-
phasized that the problem of nuclear dynamics is
essentially a many-body problem and has shown
how the experimental results in nuclear physics
can be understood from this standpoint.

In particular, the theory of resonance effects is
altered in the following way : In the one-particle
picture, the distance between adjacent energy
levels will be of the order-of a few hundred
thousand volts, i.e., smaller than, but still com-
parable to, nuclear binding energies. The width
of these resonance levels would be of the same
order as their distance apart.?

In the many-particle picture the distance
between levels decreases extremely rapidly with
increasing excitation energy and increasing
number of particles in the nucleus.! At the same
time, the levels are very much sharper than in
the one-particle picture. Both spacing and width
of the levels are negligibly small compared to
nuclear binding energies except for very light
nuclei.

This fact causes interesting variations of the
probability of nuclear processes over energy
regions small compared to nuclear binding
energies about which general theoretical informa-
tion may be obtained. In the one-particle picture,
because of the large spacing of the resonance
levels the dependence over small energy intervals
is governed only by trivial factors such as the
1/v law for the capture of neutrons.? Over large
energy intervals, the probability depends on the
particular model for the process considered.*

It is the purpose of this paper to develop the
theory of the variations over small energy

1 Bohr, Nature 137, 344 (1936). See also, Bohr and
Kalckar, ‘““On the Mechanism of Nuclear Reactions,”
Kgl. Dansk Vidsk Selsk. Math. Phys. Medd. (1937) wherea
quantum-mechanical formulation of the general viewpoint
developed in the former paper is given, as well as a detailed
discussion of a number of typical nuclear reactions from
this point of view.

2 The width would be smaller for charged particles of
‘“‘medium”’ energy, i.e., such energy that the penetrability
of the Coulomb potential barrier is small compared to
unity but still large enough to make the disintegration
observable. We shall come back to this case in §10.

3 Amaldi, d’Agostino, Fermi, Pontecorvo, Rasetti and
Segré, Proc. Roy. Soc. A149, 522 (1935); Bethe, Phys. Rev.
47, 747 (1935); Perrin and Elsasser, Comptes rendus 200,
450 (1935).

¢ Cf., eg., Ostrofsky, Breit and Johnson, Phys. Rev. 49,

22 (1936).
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regions. The formulae obtained are similar to
those of Breit and Wigner.®

§2. The generalized dispersion formula

The problem of nuclear dynamics is only
slightly more general than the ordinary problem
of scattering of light. A nuclear process may
generally be described as follows: A particle P
(e.g., a light quantum, a-particle, proton,
neutron, etc.) falls on an initial nucleus 4 in its
ground state. A compound nucleus C is formed.
This nucleus then emits a particle Q which may
be either of the same or a different kind from
the incident particle P. In this process, a residual
nucleus B is left which may or may not be in an
excited state.

The compound nucleus C possesses a large
number of energy levels E,. It may be considered
in a Hohlraum which contains particles of various
sorts (’, all of which can interact with the nucleus
C. The Hamiltonian Hy of the interaction
depends on the coordinates and possibly on the
momenta of particle ¢’ and on the internal state
of the nucleus. Because of this interaction, the
nucleus C may emit particles or be formed by
the absorption of a particle. The combination of
absorption and emission leads to the trans-
formation A+P—C—B+Q described above.
This transformation can occur for any energy of
the incident particle P whether E4+ Ep is equal
to one of the levels E, of the compound nucleus
or not. This is the case because the levels E,
are broadened by the interaction with the
particle-Hohlraum.

According to the foregoing, the problem can
be treated by the well-known methods of the
Dirac radiation theory. Following the customary
procedure, we consider only the second-order
perturbation, i.e., the lowest order in which the
process A +P—C—B+Q can occur, and neglect
higher orders. This is justified if and only if the
widths of all energy levels of nucleus C is small
compared to the spacing of the levels.® % We

5 Breit and Wigner, Phys. Rev. 49, 519 (1936).

6 It might be thought that such a condition would lead to
difficulties in the case of the ordinary theory of scattering of
light by atoms when the atom has a continuous spectrum.
That this is not the case, may be shown by considering, in
the usual way, the continuous spectrum as the limiting case
of a discrete spectrum, e.g., by considering the atom as
enclosed in a Hohlraum of volume Q. Then the spacing
between the atomic energy levels will be inversely propor- .
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shall show in §4, that this condition is probably
fulfilled for our problem but not very well ful-
filled for highly excited states of the compound
nucleus.

For the present, we assume the perturbation
theory to be valid. Then the Dirac radiation
theory yields for the probability of the process
considered

R 2 P, [, |2
PR
W Q" q > 2! .

|7 EA+EP—ET+1.7F Z III"Q/qf
Q¢

(1)

HP?,» is the matrix element of the interaction
between particle P and the nucleus referring to
the state 7 of the nucleus C and to the given
state p of the incident particle P. The sum over

Q' extends over all kinds of particles which can .

be emitted by the compound nucleus. The index
¢ distinguishes various kinetic energies of the
outgoing particles Q' which correspond to
various excited states of the residual nucleus B.
E, is the energy of the initial nucleus 4 in the
ground state, Ep the kinetic energy of the
incident particle and E, the energy of the state
of the compound nucleus considered. In all the
matrix elements H¢,9, F7I¢',¢ the energy of the
particle is determined by the requirement of
conservation of energy, e.g., the kinetic energy
of particle Q' must be taken as Eq (¢') =Es+Ep
—Egp(¢’) where Ep:/(¢') is the energy of the
nucleus B’ in the state in which it is left after the
emission of particle Q'. All particle wave func-
tions are normalized per unit energy. The sum
over Q'¢’ in the denominator of (1) represents the
total probability of disintegration of the nuclear
level », multiplied by %. We shall denote . this
expression by v,, and may consider it as com-
posed of the contributions of the disintegrations
with emission of the various sorts of particles Q’,
vi2.

tional to ©. But the same will be true for the radiative
width of the levels. This can be seen by using the fact that
an electron will only radiate if it comes near the atom, the
probability for which is inversely proportional to €. The
ratio of width to spacing is independent of @, and very
small compared to unity, viz. of the order e%w/mc3 for
radiation of the frequency w.

2 This condition is also necessary in order to make the
width of each level independent of the simultaneous excita-
tion of other levels. For a more detailed discussion, cf.
Bethe and Livingston, Rev. Mod. Phys., to appear shortly.
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7T=Z'YTQ'1 (2)
QI
Ve =270 (2a)
ql
'YTQ’q’=27rlIITQ’q’[2- <2b)

v7q o/ is the probability, per unit time, that
nucleus C in state 7 disintegrates into a particle
of kind Q" and a residual nucleus B’ in the state
defined by ¢'.

Because of the normalization of the particle
wave functions per unit energy, the matrix
elements H7g, have the dimension (energy)?,
and therefore the ¥'s in (2) have the dimension
of an energy as it should be. The total expression
(1) has the dimension energy™' time™!; it
represents the probability that the process
A+ P—C—B+Q is caused by a particle P in
any of the Hohlraum states of energy around
Ep, times the number of Hohlraum states per
unit energy. The advantages of the normalization
per uuit energy are, firstly, that the volume of the
Hohlraum does not appear in the formulae, only
to drop out in the final result, and secondly, that
the disintegration probability of a nuclear state
is directly given by the squares of the matrix
elements H, without any factors except 2.

In order to obtain the cross section of our
process from (1), we have to change from
normalization per unit energy to normalization
per unit incident current. A plane wave, normal-
ized per unit incident current, has the form

lpeurr:vw%eik.ra (3)

where & is the ‘““wave vector”’ (k=momentum/#)
and v the velocity. For normalization per unit
energy we have

(47rk2dk o "
vo= (27r)3dE)e '

Using the well-known formula

v=dE/hdk (5).
we find Hbcurr:lpE(Zﬂ'zxzh)%y (6)
where A=1/k (6a)

is the wave-length of the incident particle,
divided by 2. Therefore the cross section is
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PPy =272 WP 4", (7
P p r 2
:4#37\22 ]I 7 [[ i K I .

T EA +E1’_E1'+%/L'Yr1

(8)

In general, the levels of initial, compound and
final nucleus will be degenerate. This fact is con-
sidered in detail in the appendix. The result is
given in (217). If we transform from the proba-
bility to the cross section according to (8), we
find

TA?

= ; Z
(2s4+1)(2e4-1) vvirs

aPor 2J4+1)
U piri 7 qirqug

> -
TE s Ep— ErJ‘f"zVYrJl

\2

C))

where [, s and j are orbital momentum, spin’ and
total angular momentum of the incident par-
ticle; /, s’ and j' the same quantities for the
outgoing particle; ¢, J and ¢’ the angular mo-
menta of initial, compound and final nucleus;
and prq denote all other quantum numbers of the
three nuclei. The letters 4, B, P, Q defining the
various nuclei and particles precede the indices
determining the state of the respective particle.
(w7 girqui)? is the sum of 27 | "7 Mirmrqurjrur | 2
over the various magnetic substates m’u’ of the
degenerate final state ¢, the magnetic substate
M of rJ being kept fixed. « is directly connected
with the v by

Y747 pir1i= (W47 piri;)® (10)
v.s is the total disintegration probability of the
level rJ

(11)

Z ’YTIfquri/Q/l/jl,
Q' q' iy

Y =2y e =
Y

Formula (9) simplifies considerably if only one

level 7J of the compound nucleus contributes to

the cross section, which will be the case if the

energy of the incident particle is sufficiently near

the resonance energy E,;—Es. Then the sum

over 7 reduces to a single term which may be
written in the form

" For light quanta, 2s4+1=2 because of the two direc-
tions of polarization, but s=0 for selection rules (cf. end of
appendix). /=1, 2, - - - for dipole, quadrupole - - - radiation.
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2J+1
a”Q” e G —
(25s+1)(26+1)
,Yr J "/T J .
% P pY Q «a (12)
(EA+EP“E7~J)2+71"Y2TJ
(13)

with e/ =247 pirri= 2. (474”7 pir1;)%
I i

Formula (12) is known as the ‘‘one level for-
mula”; it agrees with the formula of Breit and
Wigner except for the slightly more complicated
statistical weight factor in front, and it is the
formula most used in applications.

As already mentioned, the matrix elements
Hrp? yiqrye and  therefore  u'p’ ey and
v7p7 qirqrj» have to be taken for that kinetic
energy of the particle Q' for which energy is
conserved, v:2.,}

Eo(¢)=Eas+Ep—Ep(q). (14)

The «'s will thus be functions of the energy of the
incident particle, Ep. If we would insert, instead
of the actual particle energy Ep, the energy cor-
responding to exact resonance with the state 7
of the compound nucleus, i.e., E,;—E,, the
probability v,; would go over into the width
T, of the level rJ. The v's may therefore be
called “‘effective widths.”

The dependence of the y’s and the #'s on the
energy comes from the normalization of the par-
ticle wave function. A wave function of a free
particle of orbital momentum /, normalized per
unit energy, has the form®

2 dk\ 1
b= () S Tuo 0. (15)
rdE/ ¥
Here & is the wave number of the particle,
E=(h*/2m)k?, (16)

its energy, Y, a normalized spherical harmonic
and x; that solution of the radial wave equation

a*x; I(1+1)
_R_*_(kz
dr? 72

(17

Xl=0y

8 If the nucleus B’ is left in an excited state, Eg is
defined only to an accuracy of the order of the width of the
level Ep:. In this case, u"g:.7/ 4 and the term y"g/7 4+ invy,gs
must be averaged over this width. This is, however, of no
practical importance.

O Handbuch der Physik 24/1, p. 292. For our purpose the
Coulomb field should be neglected.
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which behaves asymptotically as sin (k7 —1Ir).
At small 7,

1

= (kr)ttt,
12.32. .. (21—1)2(21+1)

(18)

X1

If the wave-length is large compared to nuclear
dimensions, the matrix element JSYaypHycdr
contains the wave function y¥p only for small
values of its argument k7. Therefore the matrix
element depends on k as

(dk/dE) k1. (19)

This remains true even if one does not use free particle
wave functions but rather the wave functions for an
attractive or repulsive field of nuclear dimensions. As we
shall show in §4, a repulsive field seems to be the most
satisfactory assumption. For the present, we assume an
arbitrary field, attractive or repulsive, to act on the
particle for » <R (R=nuclear radius) while the potential is
zero for > R. Then the logarithmic derivative of the wave
function x’/x will have a certain value « for =R which
depends on the potential but not sensitively on the kinetic
energy of the particle as long as this energy is small
compared to the potential. Outside, i.e., for » >R, x will
again be a solution of the free particle wave Eq. (17) but in
general not the ‘“‘regular’” solution (18) but a linear combi-
nation of the regular and the irregular solution. The latter
behaves for large #'s as cos (k7 — }/7) and for small values
of 7 as

or=12.32- ., (21—1)%(kr)"L (20)

The correct solution which joins smoothly to the interior
solution, will have the asymptotic form

sin (k¥ — 3lm+8) =cos & sin (k7 — }l7) +sin & cos (kr — 3i7)

and therefore the general form

cos & x1+sin & gr=cos §(xi+tan § ¢;). (21)
Therefore we have for r=R
x'/x="1+tan s ¢"1)/(xa+tan & ¢1) =« (22)

because « is the value of x'/x for the interior wave function,
With (18) and (20), we find from (22)

X' 1—Kkxt 1
tané= =
kpr— @'y 1434 ... (21-1)42l+1)
I+1—«R
BRI~ _G(ER)2H (23
><()l+KRa(),()

where a is a factor of order unity which depends on the
special form of the potential acting on the particle but not
on k. Since kR is supposed to be small compared to unity, &
will in general be very small. Then cos § ~ 1 so that we have
from (21), (18) and (20):
(ER)1H1
R) = a(kR)? Mgy = . (24

xR =xtalkR) o= R Y
This depends on the energy as k!*! just as without any
potential acting on the particle.

BETHE AND G.

PLACZEK

Since dE/dk is proportional to k (cf. 16), the
matrix element is, according to (19), propor-
tional to k!*3. Thus we may write

urQJq:erJq kl+l=erJq x—GHD (25)
and, because of (13)
v7q” = (b7’ o) 'R D, (25a)

However, if the wave-length is long, only the
partial wave /=0 is of any importance. Therefore,
for long particle wave-length, the important #’s
behave as k* which is proportional to v* so that

urg? =07’ At=arg! pr=c7¢’ B, (26)
where abc are constants independent of the
energy of the particle.

For fast particles, the dependence of # on the
energy is not quite so simple because formula
(18) for x; can no longer be used throughout the
nucleus. Moreover, orbital momenta larger than
zero will become important. Formula (26) can,
however, be safely applied for neutrons and
protons if the energy does not exceed about
300,000 volts for interaction with heavy nuclei,
and about 1 MV for light nuclei. For a-particles,
the limits are one-quarter of these figures.

The nonapplicability of (26) for fast particles
does not cause any difficulties for our purposes.
If the energy of the incident particle is as large
as a few hundred thousand volts or more, we
restrict ourselves to variations of the energy
small compared to the energy of the incident
particle itself (cf. the program outlined in §1).
Then the variation of k!t% in (25) is negligible,
and although u is no longer given by (25), the
order of magnitude of its variation with energy
will be the same and will therefore also be
negligible. We may then replace the # by its
value for exact resonance, U”p7,. This is equiva-
lent to the replacement of the effective width v
by the “‘true width’ I' discussed above, since by
definition #?*=+~, U?=T.

Alternatively,® we may still retain formally
the relations (25) (25a) with the only difference
that b is now no longer exactly constant but
varies slowly with the energy. This variation is
again outside the scope of our considerations

10 This alternative is useful in order to write the same
formulae for fast and slow particles.
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because it is only appreciable over energy
regions of the order of nuclear energies.

The restriction to variations of the energy
small compared to a few hundred thousand volts,
is quite irrelevant for heavy nuclei, since in this
case the compound nucleus possesses very nar-
rowly spaced energy levels in the energy region
considered, i.e., about 10 MV above its ground
state.! For light nuclei, cases may arise where the
spacing between the resonance levels is more than
a few hundred thousand volts, in this case no
simple dependence of the cross section on the
energy for fast particles can be deduced from
our considerations.

The true widths T' and the U’s may also be
introduced for slow particles. In this case, since
/=0, we have from (26)

urQJq= UTQJqOVQJq/X)% = UTQJq(E/ETQJq> %,
Y7o =T (A7 o/R) =T7¢7 ((E/E"¢7 o),

(27a)
(27b)

where A7g”7, and E7"g7, are the wave-length and
energy corresponding to exact resonance.

These formulae are directly applicable only if the
energy of particle Q corresponding to exact resonance,
Ergly=E.;—Eg(q) is positive and not too large. If the
resonance energy is negative, the true width is zero.
However, a quantity Ig/, may be defined such that (27b)
holds, and this T has cet. par. the same magnitude as if the
resonance energy were | Eq| instead of — | Eg|. For X7g/, we
have also to insert the wave-length for the energy |Eq|.
The same argument holds for U.

We shall now consider the case of light quanta.
For dipole radiation, the 4's have the familiar
form

v =A73(b7070)% (28)

where the magnitude of the b’s is related to the
matrix elements of the electric moment vector
X by ;

(bTQJq)2 3 I XTQ"qI 2 (29)

while the sign of b may be found from the

It This is not strictly correct. It is true that a negative
energy level of nucleus C would have exactly zero width if
only particles of kind Q could be emitted. However, in
reality there is always a finite probability of emission of
particles other than Q, at least the emission of y-rays is
possible in any case. This possibility broadens the negative
energy level of the nucleus, and the broadened level may
extend into the region of positive energies. For this reason,
also the emission of a particle of kind Q by the negative
level becomes possible so that the emission of Q may give
some contribution to the true width of the negative level.
However, this contribution has no relation to the I'"g/,
used in (27b.)
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explicit evaluation of the matrix elements of the
electric moment.!? The #'s may be expressed by
the &’s

=hrol A7H (30)

urJ

Asin (27), we may express # and y by the quan-
tities U and T for exact resonance, viz.

= U’ (X7 o/N)},
'@ a=T7¢7 ((A7q7 o/R)3.

For quadrupole radiation, similar formulae hold;
only the exponent of X is 5/2 instead of 3/2.

Toderive these formulae, we may again use (19)
but we must consider that for light dE/dk is
independent of k&, viz., equal to c. Moreover, the
interaction with particles is not proportional to
the density of the light quanta but to the electric
field strength E. For unit density of light quanta
we have E2/87="hv; therefore E» y» k} which
introduces another factor k! in the matrix
element. The matrix element is therefore propor-
tional to kiti=\-0+D which is At for dipole
radiation (/=0) and N2 for quadrupole radi-
ation. We may formally retain the same formula
for light as for particles if we arbitrarily deter-
mine that, for light quanta, ! shall denote the
total momentum j rather than the orbital
momentum ; since the total momentum is one
unit larger than the orbital momentum (cf.
appendix, end; jis 1, 2, --- for dipole, quad-
rupole . . . radiation), we thus come back to
our previous formulae. This is, however, entirely
accidental. The dependence of # and v on the
wave-length of the vy-rays is of no practical im-
portance, for the same reasons as discussed for
fast particles.

If we insert (25) and (30) into (9) we find for
the cross section corresponding to the transition
from a definite / to a definite I':

(31)

T 7\1—2lx’—1—2l’ Z (2J+1)
(2s4+1)(2241) Jii

0747 pip1; 0787 girquy [2
X =
"Est+Ep—E; 43170
bTAJp--- - UrAJp“.OVAJp)H—%,

b'BJq... = U"BJq...OVBJq)l"H,

2 Cf, Placzek, Handbuch der Radiologie, second edition,
Vol. 6/2, p. 245, formula (27), or appendix of this article.

UPqull' =

» (32)

(32a)
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where X and X’ are the wave-lengths of incident
and outgoing particle, I and /’ the corresponding
orbital momenta and s, s’ the spins. 7, J and 7’
are the angular momenta of initial, compound
and final nucleus. b is defined in (25) and (30)
and v.in (11). The b's are exact constants if the
wave-length of the particle is long compared to
nuclear dimensions, while for short wave-length
they are slowly varying functions of the energy,
the variation being irrelevant for our considera-
tions (see above). In the case of long wave-length,
only /=0 is important for particles and /=1 for
light. If only one level of the compound nucleus
is important, (32) reduces similarlyto (9), to the
“‘one-level formula”

T (?\TPJI;)2H_1
PP v =
(25+1)(2i+1) A2t
(”dj”ql Dol
7\’ (EA+EP—ETJ)2+%727‘J
where (33a)

T7p? p1= 22 (U a7 piri;)*
7

is that part of the true width of the level »J
which corresponds to the emission of particles
of sort P with orbital momentum / such that the
residual nucleus 4 is left in state p.

Formulae (32), (33) solve the problem stated
at the beginning of this section. They express
the cross section of nuclear processes in terms of
constants (or, in the case of fast particles, quan-
tities varying only over energy regions of the
order of nuclear energies) and of simple functions
of the energy of the incident particle.

§3. The processes of nuclear dynamics

For the discussion of (32), (33), we may sys-
tematize the nuclear processes according to two
schemes. Firstly, we may distinguish according
to the particles involved, and secondly, between
fast and slow particles.

According to the particles involved, we have
four groups of processes:

(1) Incident: light quantum, outgoing: light
quantum. Scattering of vy-rays.
(2) Incident: light quantum, outgoing: cor-
puscle.'? Photodissociation.
13 We denote by ‘‘corpuscle’” a material particle, while

the term ‘‘particle’” shall, in this section, include light
quanta.

BETHE AND G.

PLACZEK

(3) Incident: corpuscle, outgoing : light quan-
tum. Radiative capture.

Incident: corpuscle, outgoing : corpuscle.
Outgoing corpuscle same kind as incident.
Elastic and inelastic scattering.

Outgoing corpuscle different from incident.
Corpuscle transmutation.

(4)
(a)

(b)

The distinction between the types 1 to 4 of
processes is of importance primarily for the
selection rules. The selection rules for the com-
pound nucleus and either initial or final nucleus
are »

li—T| <G SIts, i+7 27 2|l-s]. (34)

The parity (even or odd character) of the
states of the two nuclei is the same if / is even,
and is different if ] is odd.

Between initial and final nucleus, we have the
selection rule

[¢'—i| SI+V+s+, (35)

1’414 must be larger than or equal to the smallest
difference between any of the numbers |/—s]| - - -
I+s and any of the numbers [I'—s"|---l'4s'.
The parity remains unchanged if [—/’ is even
and changes if I—17' is odd.

(35) represents the selection rules between
initial and final nucleus, if states of the compound
nucleus with every J value possible according to
(34) contribute to the cross section. If this is not
the case, a more stringent rule than (35) applies
which may be found directly from (34) consider-
ing the contributing states of the compound
nucleus.

For radiation, s=0 and /=1 for dipole, [=2
for quadrupole radiation (cf. appendix). For cor-
puscles, the selection rules are simplified if the
corpuscles are slow (X large compared to nuclear
dimension) because then /=0.

The more important selection rule is the one
determining the J of the compound nucleus.
In the case of incident radiation or slow cor-
puscles, the explicit selection rules are given in
Table I.

According to velocities, we distinguish between
slow and fast particles. We call a particle ‘‘slow”’
if its wave-length is large compared to nuclear
dimensions. For corpuscles this means that the
energy must be small compared to a few hundred
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thousand volts. y-rays are always to be con-
sidered as fast.

A. Incident particle fast, outgoing particle fasi.
—In this case, the variation of the X-factors in
(32) with energy is negligible, and the X’s may
be replaced by the corresponding resonance X’s.
Introducing the quantity U (cf. (25), (27a)) we
have then

T
(TPQP = X2 Z

(s +1)(2i41) wrrs
U a7 ppis U goursr }2

2 — -
"Ea+Ep—E. ;4307

(2J+1)

(36)

This formula applies to the scattering of y-rays,!
to the capture and the elastic scattering of fast
corpuscles. To the photodissociation, the inelastic
scattering of fast corpuscles and the particle
transmutation produced by fast corpuscles it
applies if the outgoing corpuscle is fast.

TABLE 1. Selection rule between initial and
compound nucleus.

PARTICLE J SPECIAL RULES PArITY

Light, dipole radiation |7,i%1 0—0 forbidden changes
0-0,

Light, quadrupole rad. t,ik1,i42 ?—»}.}forbidden unchanged
1,1

Slow protons or neutrons | i ==} - unchanged

Slow a-particles i — unchanged

Slow deuterons 7,141 0—0 forbidden unchanged

4 Formula (36) differs from the Kramers-Heisenberg
formula in three respects: Firstly, the apparent dependence
on A is different; secondly, it contains for each #J only a
term with the difference of the incident energy #» and the
resonance energies E,—E4 while the Kramers-Heisenberg
formula contains also another term with denominators of
the form E,— E4+hv. Thirdly, in (36) the scattering ampli-
tudes due to states with different J do not interfere. The
correct dependence on wave-length is given in the original
formula (32). However, as we have mentioned above, this
. dependence is negligible for our purpose. The terms with
E,—E4+hv have purposely been neglected in (1) because
they are of no practical importance in all cases we are
interested in. For particles, E,— E4 and Ep are each of the
order Mc? where M is the mass of particle P. Therefore the
terms with the sum in the denominator are entirely
negligible (Besides, even the occurrence of these terms for
particles is theoretically doubtful). In the case of y-rays,
the circumstances are not quite so extreme; but we may
still neglect the sum terms because in this paper we deal
only with processes leading to highly excited states of the
compound nucleus. Then Av and E,—Ey4 are of the order
10 MV. On the other hand, the terms which give the main
contributions to (36) contain energy differences of the order
of the distance between neighboring energy levels of the
compound nucleus which is very small compared to 10 MV.
The third difference mentioned above is connected to the
second because interference between the scattering ampli-
tudes due to different J's occurs in the Kramers-Heisenberg
formula only because of the presence of the ‘‘sum terms.”
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The cross section (36) shows resonance maxima,
which, for heavy nuclei, occur at frequent inter-
vals. Apart from these maxima, there is no
general trend of the cross section as a function of
energy over regions small compared to nuclear
energies, since the variation of X over such
regions is negligible.

The total actual width 4,7 is given by (11). In this
formula, we may replace the contributions "¢/ by their
values at exact resonance for all those emitted particles Q”
which have high energy. It is, however, possible that the
compound nucleus may also be capable of emitting slow
particles. This may, e.g., happen if y-rays are scattered by a
nucleus which at the same time may be dissociated by these
y-rays with the emission of a slow corpuscle. The contri-
butions y7¢+’4s due to these slow particles depend sensitively
on the energy. Formula (11) may thus be rewritten

yrr(Ep) = Z Tigde+ Z (o7 q)*Eqet,  (37)
fast slow
particles particles

where Eq: depends on the energy of the incident particle
according to (14). If no slow particles are emitted, or if,
as is true in most cases, the second sum is negligible
compared to the first by virtue of the small factors Eg/}, the
total actual width v,y may be replaced by the total true
width T',; which is independent of Ep. However, it may
occur that the coefficients ¢7g7y~ are very large, so that the
second sum becomes comparable to the first.

B. Incident particle slow, outgoing particle fast.
—The variation of X’ in (32) with energy is neg-
ligible. For the incident particle, /=0 and j=s.
We have then

P _p

7¥e% A2 (27+41)

Jl/jl
2
brPJp UTBJqu’j’ ‘

" Ea+Ep—E.+3iv,s ‘

T (2s41)(2i+1)

(38)

This formula applies to the radiative capture of
slow particles, and to transmutations produced
by slow particles. It is important mainly for slow
neutron phenomena, and also for the disintegra-
tion of very light nuclei by slow protons.

Apart from the resonance maxima, the cross
section is proportional to the wave-length X of
the incident particle. For very small energies,
there will always be a region in which the factor
X is predominant (‘‘1/v law’’). How small these
energies must be, depends on the spacing and
width of the resonance levels. These questions
and their application on slow neutrons will be
discussed in detail in §5. v,s is again given by
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(37) and may be replaced by I'.; if the contri-
bution of the incident particle (and possibly
other slow particles which may be emitted by
the compound nucleus) to v is small compared to
the total v,,.

C. Incident particle fast, outgoing particle slow.
—The cross section is

, T Ny

GPpp =

T s+ ) (2it 1) ¥ T
UTAJpPlijQJq ‘2

x|z . (39)
"Es+Ep—E: 431710

(39) applies to photodissociation with the emis-
sion of a slow particle, and to particle transmuta-
tions and inelastic scattering if the incident
particle is fast and the outgoing one slow. Apart
from resonance, the cross section decreases as
the velocity of the outgoing particle, i.e., as
(Ep+E4—Ep)L About the width v, see case 4.

D. Incident particle slow, outgoing particle slow.
—We have

T A
O'PQI’q=—*"°——‘ —Z(2J+1)
(2s+1)(2i+1) X7
brPprTQJq 12

(40)

2 -
T EA +EP —ETJ+%/VYTJ

This cross section is, apart from resonance, pro-
portional to the ratio of the velocities of outgoing
and incident particle. For v,; the arguments
given in 4 apply again, because there is, besides
the possibility of emission of slow particles,
always the possibility of emission of vy-radiation,
and in some cases of fast corpuscles.

(40) applies to transmutations.in which both
the incident and the outgoing particle are slow.
By far the most important case is the elastic
scattering of slow particles. In this case, the
cross section does not depend on X except for the
resonance factor.

There is also some simplification of the formula
(40) for the case of elastic scattering of slow
particles,’® because in this case b7p7,=07¢’,.

15 A similar simplification of (36) for the elastic scattering
of fast particles is not possible because (36) contains b's
referring to different /j and /’j’ so that the numerator of (36)
does not reduce simply to a square, even for elastic scatter-
ing. The only exception is the scattering of y-rays for which

only the term /=1, j=1 is important so that a formula
similar to (41) holds.
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Only the square of b occurs in the cross section
while the sign of b does not matter. 52 may be
expressed by I' according to (25a), (27b), and we
have

O'Pp”p

S Y R
(25—{—1)(21’-{»1)%:( +1)

I‘TPJp)VPJp |2

X2 - .
"Ea+Ep—E,;+%iv.s

(41)

It must be noted that all formulae for the
cross section refer to a coordinate system in
which the center of gravity of incident particle
and nucleus is at rest. To obtain the cross section
in the system of the observer we have to multiply
by the ratio of the incident currents in the two
systems, i.€., DY Ucenter of gravity/Zobserver- 10 the case
B discussed above, we have therefore to put the
factor X in (38) equal to %/ MyeaVons Where Myeq is
the reduced mass and weps the velocity relative
to the observer, while all the other quantities in
(38) are to be taken in the center of gravity
system. In the particular case of the 1/v law,
the cross section is therefore independent of the
velocity of the initial nucleus. If the 1/v law does
not hold, the motion of the initial nucleus has an
effect on the phenomena with slow incident
particles.!$

In concluding this section, we may say a few
words about inverse processes. For a given process
A+P—B+(Q and its inverse we have the
statistical relation

(42)

280q0 B4 N P =gurpo4pP P Kpy 2

However, it must be kept in mind that the
concept of inverse processes has only limited
applications. If we take a given incident particle '
with given velocity, the outgoing particle Q may,
in general, have any of a great number of dif-
ferent energies, corresponding to different states
of the resultant nucleus B. The only inverse
process which can be produced experimentally,
is that starting from nucleus B in the ground
state, and the particle Q with the corresponding
kinetic energy. This process will, again, lead to
many different energies of particle P and different
excited states of nucleus A. Therefore only a

16 A discussion of these effects will be given in a paper by
Placzek and Teller, to appear shortly in the Phys. Rev,
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small, very. often a negligible, part of the experi-
mentally observed cross section in the process
A+ P—B+Q, is related by (42) to a part of the
cross section in process B+Q—A+ P. Only for
light nuclei, where the number of levels is small,
inverse processes can be observed. Even here, it
is necessary to make sure in every case that the
processes compared lead to the ground states of
the respective final nuclei.

§4. Particle wave functions and potential scatter-
ing!?

We have shown in the preceding sections how
the probability of nuclear processes may be
reduced to the knowledge of certain matrix
elements H or U. We shall now discuss how these
matrix elements are to be calculated from the
wave functions of the nuclei 4 B C and of the
particle (P or Q).

The matrix element H?,? is

7= [aestipetds,  (43)
where Y., is the eigenfunction of the initial
nucleus 4 in state p, Y¢, that of the compound
nucleus in state 7, ¥p, that of the incident par-
ticle and H the Hamiltonian of the interaction
between incident particle and initial nucleus.
If the nuclear forces are known, H is given; and
by solving the Schrodinger equation the nuclear
wave functions ¥4, and ¢, may be obtained
without ambiguity. Thus the only factor in (43)
about which doubt may arise, is the particle
wave function ¥p,.

We know about ¢p, its asymptotic behavior at
infinity: it is a plane or spherical wave, normal-
ized per unit energy. However, in (43) we need
the wave function ¢p, inside the nucleus. To
obtain yp, inside, we may suppose that it is the
solution of a Schrodinger equation with a certain
potential V(rp). This assumption is convenient in
order to make the functions ¥p,, corresponding
to different states p of the particle, orthogonal to
each other. At large distances 7p from the nu-
cleus, the potential V(rp) will of course be zero
if the particle is a neutron, and it will be the
Coulomb potential for charged particles.

About the behavior of the potential V inside

17 Qur thanks are due to Professor E. Teller, to whom we
owe most of the ideas presented in this chapter,
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the nucleus, three different assumptions may be
made:

(attractive potential),
(free particles),
(repulsive potential).

(a) V is negative
(b) Vis zero
(c) V is positive

Assumption (c) expresses the idea that the
nucleus is (practically) impenetrable for incident
particles: This is quite plausible, because a
particle falling on the surface of a nucleus will
give part of its energy to the nuclear particles
and will thus become amalgamated with the
initial nucleus, forming the compound nucleus.
This will prevent the particle from traversing
the nucleus unperturbed. This assumption (c)
seems most in accord with the general ideas of
the compound nucleus.

Previously it has been argued (cf. references
3 and 5) that the most obvious choice of the
particle potential V(7) is to take it equal to the
average potential energy of the particle in the
field of the initial nucleus 4, i.e.,

V("P)=fH(7A, rp) | Yap(ra) |2dra  (44)

where 74 denotes all the coordinates of the par-
ticles inside nucleus A. This average potential
is certainly attractive. However, we shall show
in the following that assumptions (a) and (b) are

"to be rejected in favor of (c).

The three assumptions (a), (b) and (c) will
give widely different results for the matrix
elements H, or the widths v. Obviously, (a) will
in general give the largest result because with
assumption (a) we may have a resonance phe-
nomenon already for the incident particle.?
If such a one-body-resonance occurs, ¥p, will
evidently be very large inside the nucleus and
therefore the matrix element H will be large. On
the other hand, assumption (c) will give the
smallest matrix elements: In case (c¢), the wave
function ¥p, will decrease exponentially as we go
from the surface of the nucleus inside. The rate
of decay of ¥p, is determined by the magnitude
of V(rp) inside the nucleus. If we assume V of the
order of nuclear binding energies, and the energy
of the particle Ep small compared to V, ¥p, will
decrease to 1/e of its value in a distance of the
order of the range of the nuclear forces (say,
2:107%® cm). Therefore the whole contribution
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to the matrix element (43) will come from a
surface layer whose thickness is of the order of
the range of the nuclear forces, while in case (a)
and (b) the whole volume of the nucleus con-
tributes. Moreover, the wave function ¢p, will
"be smaller than for a free particle even right at
the surface (cf. 50). The matrix elements in case
(c) will, therefore, in general be smaller than in
case (b).

Evidently, only one of the three values ob-
tained for the matrix element H by the three
assumptions (a), (b) and (c) can give the correct
width of the level » of the compound nucleus.
On the other hand, if we continue the perturba-
tion calculation to sufficiently high approxima-
tions, we shall obtain the correct answer from
whatever wave functions for the incident particle
we have started. Therefore, if we start from the
“wrong”’ wave functions, the first approximation
is not sufficient to calculate the width of a
nuclear level, and the second approximation will
not be sufficient to give the correct dispersion
formula.

The condition for a good wave function is the
smallness of the higher approximations of the
perturbation theory. This condition will be best
fulfilled if the matrix elements H are as small as
possible. Therefore, assumption (c) will come
nearest to the truth.

After having decided for assumption (c), the
question arises how to choose height and radius
of the repulsive potential V. On one hand, a
high repulsive potential makes the wave function
¥p, fall off more steeply and therefore makes the
matrix elements in the average smaller. On the
other hand, the perturbing potential  must, of
course, include the auxiliary potential V with
opposite sign: If V is chosen too large, this will
again increase the average matrix element. This
increase will (again in the average) be small as
long as V is small compared to the average
nuclear forces, a good measure of which are the
nuclear binding energies. Therefore it seems an
appropriate choice to make V of the same order
as a nuclear binding energy, i.e., about 10 MV,

For the radius of the potential V, the obvious
choice is the nuclear radius itself. A smaller
radius would again make the matrix elements
larger. A larger radius of the potential is even
more to be avoided : The perturbation theory as
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used in this paper, is based on an expansion of a
certain function, viz., F=Hy 4y p, in terms of the
wave functions of the compound nucleus. This
is only possible if in the region in which F is
appreciable, the wave functions ¥ ¢ form a com-
plete (or practically complete) system. But this
is, obviously, only the case if F is only large
inside the nuclear radius. Therefore Y¥p must
only fall off inside that radius.

An indication for the importance of higher
approximations and therefore of the accuracy of
the wave functions chosen may be obtained from
the elastic scattering. The scattering of slow
particles, e.g., slow neutrons, consists in our
scheme of three parts:

(1) The scattering of zero order which is
already contained in the ‘“‘unperturbed” wave
functions y¥p of the incident particle. It is due to
the existence of the potential V and amounts,
for slow neutrons, to a scattering cross section!®

g =47R?, (45)

where R is the radius of the sphere inside which
the repulsive potential exists. This part may be
called potential scattering in the narrower sense.

(2) The contribution of the low energy levels
of the compound nucleus. This contribution
shows resonance maxima ; in between the maxima
it is very small compared to o;, because the
neutron width of the levels of the compound
nucleus is small compared to the spacing of the
levels.

(3) The contribution of the high levels of the
compound nucleus. For a given neutron wave
function, the matrix elements HZ,? will, in the
average, be of the same order of magnitude for
high levels 7 of the compound nucleus as for low
ones, because there is no essential difference in
character between the levels. Only when the
energy E, becomes very high, the matrix ele-
ments will fall off with increasing energy. Let us
say that this will be the case for E,>E.. The
critical energy E, will be of the order of 20 or 30
MV, as may be estimated without great dif-
ficulty.®

The density of nuclear levels, i.e., the number
of levels per unit energy, increases rapidly with

18 Cf. Mott and Massey, Atomic Collisions, p. 30.
19 Bethe and Livingston, ‘‘Nuclear Physics,” Part B, to
appear shortly in Rev. Mod. Phys,
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increasing energy E,. For a special model, this
increase has been calculated.*® Now the con-
tributions of the various levels to the elastic
scattering (41) all have the same sign. Therefore
the most important contributions will come from
very high levels where the density of levels is
already large and the matrix elements have not
yet decreased, i.e., from the levels in the neigh-
borhood of E,. These high levels of the compound
nucleus are responsible for all the difficulties in the
convergence of the perturbation calculation men-
tioned above. Therefore the condition for con-
vergence is that the contribution of the high
levels should not be too large.

The contribution of the high levels to the
scattering can easily be estimated. The resonance
denominators in (1) may all be replaced by —E,
where E, is the critical energy at which the
matrix elements begin to fall off.2! Then we have

2 2r

™
ek (P2, (46)

wPPp;n:

E,?

using the fact that the wave functions y¢, of the
compound nucleus form a complete system. The

cross section is obtained by multiplying the

probability (46) by 2#x24x2 (cf. (7)) so that

7|.37\2 2

(47)

g3=

1841192, 207

E;?

We denote by drs4 the volume element in the
configuration space of all particles contained in
the nucleus 4 and by drp that of the incident
particle, so that drsdrp=dr. Then, because of

normalization,
f 1a|2dra=1

ff]zthIszA: U2(7’p),

(48)

and (49)
where U is an energy of the order of magnitude
of a nuclear interaction (about 10 MV), which is
an irregularly varying function of the position 7p
of the particle. Of the wave function of the
particle, only the part /=0 is important because

20 Bethe, Phys. Rev. 50, 332 (1936).

2 More accurately, E. is the energy for which the product
of the average square of the matrix element and the density
of the levels reaches its maximum.
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we assume the particle to be slow. Considering
the normalization per unit energy, we have

Ypp=(M?/27%h3)} sin k(r—r,) /kr for r>R, (50)
Y= (M%/2m2h3)(1/kr)e~*E=") for <R, (50a)
k=Q2MV)¥/h, (50b)
ro=R—1/«x. (50¢)

with

Quantities of the relative order 1/xR have been
neglected. Then we have

fﬂwmlml%r

dr M% pE Uxdr
—_ g2k (B—7)
272 B3 k2r?
1 M»__ 1 1 __
=— Ul=— Uz (51)
T hikd m 2VkX

where X =%/ Mv is the wave-length of the incident
particle. Inserting into (47), we have

. a s U2
ogg=—§ — .
KZ(ECV)

U, E; and V are all of the same order of magni-

tude; probably E, is a little larger than the other

quantities. To stay on the safe side, we replace

the ratio U?/E.V by unity. 1/« is about 2-10-13

cm, i.e., one-fifth of the nuclear radius. Thus o3

is about a hundred times smaller than oy, (cf. 45).

This would justify our choice of the wave func-

tion. It must, of course, be admitted that some

of the estimates leading to (52) are very crude

so that we prefer to regard our wave function
still as provisional.

On the other hand, we can see immediately
from our estimate that plane waves (possibility
(b) above) and @ fortior: an attractive potential
(assumption (a)) are out of the question. For
plane waves, «® in (51) would be replaced by
2R® so that (52) would be multiplied by a factor
4/9(xR)8, i.e., about 5%-4/9 ~7000. The contribu-
tion of the high nuclear levels to the scattering
would then be enormous, and by analogy we
must conclude that the contribution of these
levels to the higher approximations of the per-
turbation theory would also be extremely large

(52)
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so that the dispersion formula based on the
second-order perturbation would be quite insuf-
ficient. The assumption of an impenetrable
nucleus is, therefore, at present the most satis-
factory for the calculation of particle wave
functions.

Our estimates show also that with the use of
the correct wave functions, the higher approxi-
mations of the perturbation theory may be
neglected, which justifies formula (1).

As regards the elastic scattering itself, the con-
tribution of the high levels is, of course, not so
small as it might seem from the comparison of
o3 and o1. Actually, the ‘“‘direct scattering’’ o; and
the contribution g3 of the high levels interfere
with each other. Now the scattering due to the
high levels is certainly in phase with the incident
wave just as is the light scattered by an atom
if the frequency of the light is below the reso-
nance frequency. On the other hand, the scattered
wave due to the impenetrability of the nucleus,
has certainly a phase opposite to that of the
incident wave. Therefore the amplitudes of the
two scattered waves must be subtracted from
each other, so that the total potential scattering is

(53)

opot = (o1} — a3?)2

Since o3 is about one percent of o1, the total
potential scattering will be about 20 percent less
‘than the scattering from a hard sphere of
radius R.

Near resonance, the resonance scattering o,
must be added to the potential scattering. Again
there will be interference between the two kinds
of scattering which, in the general case, is com-
plicated by the fact that there is only interference
between waves of the same total angular mo-
mentum J. The potential scattering must there-
fore be analyzed according to J. The phases are
equal if the energy is above, opposite below the
resonance level. Neglecting the contribution o3,
the total elastic scattering cross section becomes
for slow particles (cf. 41)

UPP”p=———1r————Z(2J+1)
(25+1)(2i+1)7
FTPJprPJp 2
X|2R+ ¥ (54)

" Ea+Ep—E.;+%3iv,s
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If only one level is important, this reduces to
7(2J4+1D)T7p7 X7,
(25+1)(2541)
AR(Es+Ep—E.;)+T7p7 , k757,
(BatEr—E0*+ives

O‘PPpp=47r 2

(55)

This cross section has its maximum at an energy
Ep slightly higher than the resonance energy
E.;—E,, and a minimum at some energy below
the resonance energy. If I'"p/,X"p7p/v,sR>1
(large resonance scattering), the maximum cross
section is approximately

47 (2J+1) e\ 2
Omax = ( ) A2, (56)
(2s+1)(2+1D)\ Tyy

the minimum

2J+1

amin=4wkz<1—m>. (57)
(25+1)(2i+1)

The elastic cross section will always be at least
of the order of ¢; unless  or s is zero.

II. APPLICATIONS

§5. Capture of slow neutrons: theory

A. General formula.—For the capture cross
section of a slow neutron with emission of fast
particles or light quanta we have (cf. (38), s=3,
(26), (27a))

oPera=m —— ¥ (2T+1)
2 2041 gurje

1
(X7 | FU P Ume” g |*

" E4 +EP_ETJ+%i’y7‘J

(58)

This gives the capture cross section for a process
which leads to a definite final level ¢ of the re-
maining nucleus. Especially for radiative capture
a great number of final levels will be possible.
Hence for obtaining the observed cross section
(58) has to be summed over all these final states.
This makes the application of the formula rather
cumbersome, and the effects of the interference
become complicated, even if only a small number
of compound states contribute to (58). We shall
therefore, in the following, only consider two
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4 (X2 1.0 15

E/E, 20

Fi1G. 1. The cross section as a function of energy for
various ratios of width to resonance energy. Abscissa:
energy as a fraction of the resonance energy. Ordinate:
cross section. The curves are adjusted so that the area is
unity in each case. Width I'=1E, (pronounced
T'=4/2E, (case of Cd); ———
T'=4E, (almost 1/v law).

important limiting cases which permit the dis-
cussion of some but by far not all applications.

First, we shall discuss the case that only a
single compound state is of importance in the
sum in (58), and hence (58) can be simplified
according to (12). (12) will be generally appli-
cable for light nuclei because of the small density
of energy levels; for heavier nuclei it will often
be true in the immediate neighborhood of the
resonance.

Secondly, we shall consider the case of con-
stant capture probability which leads to the 1/v
law. As already mentioned in §3B, it is quite
generally true that for low energies ¢ variesas 1/v.
The extension of the energy region in which this
is the case is, however, very different according
to the circumstances and will be discussed below.

B. Single resonance level.—(58) reduces to (cf.

1) (r/v) | E,]
I'/vy)? E,
N 59
1+((E—Eg)/(7/2))2( E ) %)

0=0)9

with

.. 1
ooy = 27K 42 (1:1: )
I? 2i+1

1.30-10-# 1,T", 1
= (1:|: ) (60)
|E,| I? 2i+1

Here, E, and E are the energy of the level and
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the neutron, respectively, both measured from
zero kinetic energy of the neutron. Hence E; can
be positive as well as negative. I', is the neutron
width at the resonance energy E,, T', the radi-
ation width or width for emission of a fast par-
ticle, v is the total width (y=T,+T.(E/|E,|)?)
and I'=v(E,) the total width at the resonance
energy. All energies are measured in volts, ¢ in
cm? The factor 14+1/24+4+1 corresponds to the
two possibilities J=143; for =0, it has to be
replaced by 2. If, as is true in most of the cases
to be considered afterwards, the contribution of
the neutron width to the total width is negligible,
v can be considered as independent of the energy
E and replaced by I'=T',. We shall in the fol-
lowing, if not otherwise stated, always make this
assumption. Then we have

1 |Eo[\?
0= ooN . ; (61)
1+((E-E,)/(T/2))*\ E

1.30-10"® T, . 1 )

|E,| T,\  2i4+1/’
If E,>0, and T/E,<1, the cross section has,
according to (61), a maximum for E=E, and a
minimum for E=E,/5. For larger values of the
ratio I'/| E,| the extrema get less pronounced,
their positions come nearer together and finally

coalesce at $E, for I'/E,;=4/4/5=1.79. Generally
we have

E, 5 /T\% ¢
5 16\E,

(61a)

TN =

_For T'/E, =1.79 there is no longer a maximum

and minimum, and the cross section increases
continuously with decreasing E up to the 1/v-
region.

If E, <0, the cross section increases monoto-
nously with decreasing energy for all values of
I'/E,. Fig. 1 illustrates the energy dependence of
the cross section for a number of values of the
ratio I'/E,=c.

The form (61) of the cross section is modified
by the motion of the capturing nuclei. For free
nuclei,?? this leads to a Doppler broadening of
the amount:

A=4(mERT/M)* (63)

2 For the discussion of the validity of the assumption of

free nuclei in the cases treated in the present paper cf. G.
Placzek and E. Teller, reference 16.
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(m, M mass of the neutron and capturing
nucleus).??

C. Immediate neighborhood of the resonance.—
For

|E0—El A
—<1, —<K1,%
E, E,

the combination of Doppler and natural width
leads to the result familiar from optics:

&= UON‘//(Ev x)y (643')
o0 6—52 (z—y)?
\/7r o 14+y?
E,—E
x= , E=T/A. (64b)
r/2
The maximum cross section o is
5 O e*fzuz
oo=0cony (£, 0) = aon \/W\[_m 1+y2dy
(65)

= gon/mEef {1 —@(8) ],

28 If the resonance energy is E,=3mv,2 in the system
where the capturing particle is at rest, we have for the
energy in the system of the observer

(63a)

where u, is the velocity component of the capturing par-
ticle in the direction of the incident particle. Supposing
|z | <K< vg] i.e., E,>>kTm/ M we may neglect the term with
u,? and obtain from (63a)

—E=u.(2mEy)}. (63b)
Now the probability that u, lies between u, and u,+du is

E=im(vy—us)?,

W)y = (M/2wk T )e=Muzl2kTdy (63c)
Hence from (63b) and (63c)
w(E)dE = 2nYe E-EPYAIE /A, (63d)

where A=4(mE,T/ M) (63)
In the relativistic case we have instead of (63b)

E,—E=u.p.
(p momentum of the incident particle) and hence

A=2p,(2kT/M)?. (63e)

(63e) is valid both for light quanta and for particles; it
reduces for light to the familiar expression

A=2(o/c) (2R T/ M)t (63f)

The Doppler width for particles is equal to the Doppler
width for light quanta with the same momentum.

24 This latter assumption was already used in the deriva-
tion of (63), because it is equivalent with #,<<v. It is ful-
filled for all practical cases.
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where ®(¢) is the Gaussian error function

4
=27r_%f edt.
0

For £>1 (natural width) (64), (63) go over into®

®(£)

o=oon(1/(1+x2)), (66)
00= 00N (66a)
For £k1, &x <1 (Doppler width)
o= gope— (E—E)/(A/2))? (67)
with '
aop = \/WSUON
T, 1
=2.31-10-1. (lﬂ: ) (67a)
: AE, 2i4+1

With the help of (64) and (65) we can calculate
the cross section for the important case, that the
same substance is used as absorber and indicator
(self-indication)?:

o,= S d*dE/ S odE. (68)

If I'/E,<1, the integration can be extended from
x=— o to x= o without appreciable error, as
in this case only those regions contribute to the
integral, in which the condition |E,—E|<E,
is fulfilled and hence (64) is valid. The result of
the integration® is:

25 The factor (| E,|/E)? in (59) does not appear in (64a)
as E,— E was supposed small compared with E,.

26 We denote throughout with the indices 0 and g the
maximum cross section for monochromatic incident par-
ticles and the effective cross section for self-indication
while the letters N and D refer to natural and Doppler
width, respectively.

27 (68) holds, of course, only for thin absorbers.

28 [nstead of the integral /y2(¢, x)dx which occurs in (68)
(cf. (64)), we calculate immediately the somewhat more
general integral JSy(& x)¢(n, x)dx. Using the definition
(64), we have

I= Sy o)y(n, x)dx

© dadvd e f(z y)2 “772(20 P 69
- T o L2 L o
We integrate first over x and obtain
e-Et -2 ¢t
(69b)

. | ' .
—ra<sﬁ+n2)J_ J B )

Here we introduce the new coordinates u=%(y+2z) and
v=3(y—3z). The integration over u is straightforward and
yields

I=inbt f_ * dve ™ /(1422) (69¢)
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Fic. 2. The ratio x of the average absorption of the
resonance group to the absorption coefficient at exact
resonance, as a function of the ratio ¢ of natura! to Doppler
width. Note the change of scale at £=0.5. (By mistake the
ordinate in the figure is marked ‘¢’ instead of ‘‘x"’).

f Yidx

=Yooy (£V2,0).  (69)

The cross section with self-indication is thus
equal to half the maximal cross section, measured
at % of the original temperature. Hence, for £>1
(natural width), as there is no effect of the tem-
perature, o,w=3%0oy while for £<1 (Doppler
width) ¢,p=00p/V2 since the Doppler width
(viz. (63)) is proportional to the square root of
the temperature and the maximal cross section
in this case (viz. (67a)) proportional to &.
From (65) and (69) we obtain:

7= oonx(§), (70)
x(§) =3¢ (&8V2, 0) = (w/2) e {1 —®(£V2) }. (70a)
For £>1

1 1.3 1.3.5
comoar{ -t L
48 (487 (d8)®
with §=2En(8+nH)4 (69d)

But the integral in (69c¢) is exactly the same as in (65), so
that we find

I'=3my(s, 0). (69e)
In the special case £=7% (69d) reduces to
§=£V2. (69f)

The integral in the denominator of (68) gives simply woon
which, together with (69¢) (69f), leads immediately to (69).
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TN =FO0N- (71a)
For ¢K1
oo=0p{1—2(2/m)}+28
—(8/3)2/m)ig+28—---}, (72)
op=oon(m/2)}=1.63-10"18(T',/AE,). (72a)

A plot of the function x(£) is given in Fig. 2. If
the Doppler width is not negligible with respect
to the natural width, the cross section for self-
indication ¢, will depend on { and hence on the
temperature of the absorber and indicator.
Measurements of the temperature-dependence
of ¢, in a region where both widths are compa-
rable, may therefore serve to determine ¢ and,
if the energy E, is known, also I'..? If indicator
and absorber are held at different temperatures,
the temperature to be introduced in the ¢ in
(70), (71), (72) is (cf. (69d) and (63)), the arith-
metic mean (714 7T3).

The capture cross section is not only important
for absorption experiments but also for the
measurement of the activation. Amaldi and
Fermi® have given a relation between absorption
coefficient, activation and width. The absorption
coefficient was supposed to be constant within
the line. Instead of this assumption we shall use
(64). For the activation (number of disintegra-
tions per second after infinite time of neutron
irradiation=number of neutrons captured per
second) of a thin layer we have '

A=sF f o(E)ok(E)dE, (73)
é and F thickness (in g/cm?) and surface of in-
dicator, p(E)dE density of neutrons of energy E
per cm?®; v velocity; « absorption coefficient in
cm?/g (k=Lo/A; L, Avogadros number; 4,
atomic weight).

According to Amaldi and Fermi, the density of
neutrons above 1 volt is

p(E)AE=(1/v)ql,dE/E, (74)

g number of neutrons emitted by the source per
second and cm?®, I, mean free path of neutrons

29 This was first pointed out by O. R. Frisch, who also
reported about preliminary experiments of this kind at the
Copenhagen conference (June, 1936).

30 Amaldi and Fermi, Ricerca Sci. 7/1, no. 11-12 (1936)
and Phys. Rev. 50, 899 (1936).
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of energy E, in paraffin. Introducing (74), (64)
and (70) into (73) we have

l, dFql, o0
A,= 5Fg——fx(E)dE= KoNf VdE
E, E, -

8Fgl, T 6Fql, T«
= KoN—T = — Kg—*—.

E, 2 E, x2

(75)

I'/x can be considered as a measure of the effec-
tive width, we have

for £1, I'/x=2r
(76)
£, T/x=(2/x)A.
We may also write (75) (cf. (61a))
w 6Fql, I, 1
A,=— -1.30-10*137(1ﬂ: )
2 M E2\ 7 2i41
' (77)
T 6Fql, r,’ 1
=— -1.30-10~18 (1:}: ),
2 M EjA\ T 241
where r,)=T.E, (77a)

is the neutron width at 1 volt and M the atomic
mass in grams. Thus, the activation is propor-
tional to the neutron width and varies with the
position of a level with given properties (sym-
bolized by T',/) as E, 3.

D. The 1/v region.—The condition for the
validity of the 1/v law is that the variation of the
1/v factor with the energy is large compared to
the variation of the capture probability. Thus,
according to (61)

(]Eg])% d 1 |
E dE 1+((E,—E)/(T/2)?)

1

» (78a)

| 1 d (B[N}
< -——( )
1+ ((B,—E)/(/2)* dE\ E /)
AE|E,—E|
<1
(T/2)*+(E,— E)*
We see that (78) is always satisfied if either3!
E<}|E,| (79)
or E<AT. (80)

3t We may write (78) in the form
ELST{3r/|E,— E|+ | E,— E| /4T}
from which (79) and (80) are obvious.

which gives

(78)
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A more complete expression for the extension
of the 1/v range as a function of E, and I is ob-
tained by putting the left side of (78) equal to a
small quantity e and solving this as an equation
for E. In this way it is seen that the 1/v range
may even extend to much higher energies than
indicated by (79) and (80).

Thus the 1/v law certainly holds if the incident
energy is small compared to the larger of the two
quantities E, and T.3? No serious error will be
committed by applying this condition also in
the cases, where the one-level formula is to be
replaced by the general formula (58), provided
it holds for all the compound levels contributing
to the sum.

Actually, the extension of the 1/v range is very
different according to the position and width of
the resonance levels. It is a fraction of a volt for
nuclei like Ag and Rh (see below), and consider-
ably higher for light elements, because of the
smaller density of nuclear levels. It is true that
accidentally the first resonance level may lie at
a low energy even for light nuclei. Even then,
the 1/v law will hold up to fairly high energies
if the capture of the neutron is followed by the
emission of a charged particle. For in this case
the width of the level will be of the order of
several 10,000 volts (cf. §6) so that the validity
of the 1/v law is ensured at least up to several
thousand volts, irrespective of the position of the
resonance level. Considerations of this kind have
led to the use of the absorption in boron, caused
by the reaction ‘

5B10+ ont= 5Bu = 3Li7+2He4

as an energy gauge for slow neutrons.?® This
method will be discussed in §6A1.

For the radiative capture of neutrons by light
nuclei two cases may occur. In the usual case of
a high resonance level we shall have a wide 1/v
range but the cross section will cet. par. be smaller
than for the emission of particles in the ratio of
the y-ray to the particle width. The y-ray width
may be of the order of 1 volt (cf. §10) which

3 If, however, the contribution of the neutron width to
the total width is not negligible, this condition is not
strictly sufficient because of the energy dependence of 7.
In this case (80) is invalidated, but (79) remains sufficient
with the supplementary condition y,<<E, as can be derived
from (59).

3 Frisch and Placzek, Nature 137, 357 (1936); Weekes,
Livingston and Bethe, Phys. Rev. 49, 471 (1936).
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makes the radiative capture by a factor of the
order of 10,000 less probable than the emission
of particles. A large cross section for radiative
capture by light nuclei can only occur if the
first resonance level lies exceptionally low; in
this case, however, the 1/v law will break down
at quite a low energy.

For a great number of nuclei the 1/ law holds
in the region of thermal energies. We shall
therefore in the following give expressions for the
cross section of and the activation by thermal
neutrons, assuming this law for absorber and
indicator. The question, how far the so-called
C neutrons (i.e., neutrons stopped by cadmium)
are identical with thermal neutrons, shall not be
discussed at this stage.

For the total density of thermal neutrons, we
have (cf. Amaldiand Fermi,® or (83d) for large x)

[ omar=g-, (81)
th

where ¢’, the total number of neutrons produced

per cm? and second, is different from the ¢ used

in (74) because of the different density distri-

bution in paraffin of resonance and thermal

neutrons. Integrating over the whole volume,
we get the total number Q of neutrons produced

per second :
Q=fng=fq’dV.

7 is the lifetime of a thermal neutron in paraffin.
We may put

7=NI/5=NI(8kT/7mm) %

(82)

(83)

N': number of collisions of a thermal neutron in
paraffin before its capture, I: mean free path of a
thermal neutron.34

% That this particular _average of v has to be taken
(rather than, say, 7= Nlv™) can be seen by going back to
the theory of diffusion of neutrons (cf. Amaldi and Fermi,
reference 30).

The stationarity equation for the neutron diffusion is

DAF—F/r+¢' =0, (83a)

where F(x, v, 2) is the total neutron density per cm3, r the
mean life of a neutron in paraffin, ¢’ the number of neutrons
produced by the source per cm3 and sec., and

D=1, (83b)

the diffusion coefficient of thermal neutrons. 7 is inde-
pendent of the neutron velocity. We solve (83a) for the case
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Assuming complete thermal equilibrium, we
get for the energy distribution of the thermal
neutrons

q¢'TEteEIkT

dE=2""_
P

(84)

If the indicator is covered on one side by Cd
which absorbs the thermal neutrons, the density

that a Cd absorber, sufficient to absorb all thermal neu-
trons, is placed at x=0. This corresponds in first approxi-
mation to the boundary condition

F=0 at (83c)

(We shall find below that F is not exactly zero; in fact, it is
just the value of F for x=0 we wish to calculate. But it is
sufficient for our arguments that F at x=0 is small com-
pared to its value in the paraffin.) The solution of (83a)
with the boundary condition (83c) is for x>0

x=0.

F=g'r(1—¢Dn7¥), (83d)
The current of neutrons near x=0 is then

S=D(dF/dx)o=¢'L, (83e)
where L= (D7)} (83f)

is the ‘‘diffusion length’’ measured by Amaldi and Fermi.
The neutron current determines the activity produced in a
detector. If the angular distribution of the neutrons is

f(®) =a cos $+b cos? &, (83g)

the activity produced in a thin detector of thickness § and

absorption coefficient « will be
Jo™2(a+b cos &) sin 9d¢

Jo™2(a cos 8+ b cos? #) sin ddd

a+3b
za+3b
For the neutrons emerging from paraffin, we have (Amaldi
and Fermi, (5))

b=a+/3, A =Ské+/3. (831)

On the other hand, ¢nside a uniform paraffin block the
activity would be .
(83j)

where v is the average velocity and F, the density of the
neutrons. From (83i) and (83j) we obtain the “‘effective
density” at the surface

F'=34S/5=3%'L/s. (83k)

Now the number of collisions before capture N is defined
by Amaldi and Fermi in terms of the observed diffusion
length L and the observed mean free path / by the relation

A =Ské

= Ské

(83h)

A= Foﬁl((s,

L=l(N/3). (831)
Inserting this in (83k), we find
F'=g'IN%/3, (83m)

which is identical with (81) (83) (85). It might be objected
against (83h) and (83j) that the absorption coefficient «
depends on the velocity. This objection is not valid because
the energy distribution of the thermal neutrons emerging
from the paraffin near the Cd absorber is the same as that
in the interior of the paraffin: In both cases, the number of
neutrons of energy E striking the detector per sec., is pro-
portional to the number of such neutrons in the Maxwell
distribution, times the neutron velocity.
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is hereby reduced by the factor (cf. Amaldi and
Fermi,? and reference 34)

p'/p=1/N* (85)

Thus we have

q'l(zFNm)*

—F
(kT)*

o' (E)dE= BRI, (86)

With the help of (86) we can calculate the cross
section and activation.

Putting ¢=XE"}, where X is a constant, and
considering that also the sensitivity of the in-
dicator varies with 1/v which compensates the
v factor coming in by the change from density to
current, we have

3 fap’dE_ X
© SPAE ((r/4)RT)
o(E)=owm(irkT/E)%.

Tth

(87)

and hence (88)

Thus, the effective energy for the absorption of
thermal neutrons in a thin layer is (r/4)kT.

For the activation by thermal neutrons Bin
we get from (86) and (88):

Byw=6F f (E)vp' (E)dE =16 Fg' Nilky,  (89)

(kin absorption coefficient in cm?/g, xoh= o/ M).

§6. Slowneutrons : Methods for the determination
of energy, neutron and radiation width of
the compound levels

‘In the following we discuss the application of
the formulae derived in §5 to the determination
of the constants E,, T', and T, from absorption
and activation experiments. We shall limit our-
selves throughout to a consideration of the case
of thin absorbers and indicators. Corrections for
finite thickness, which become important in
nearly all practical cases, will be discussed in a
subsequent paper by one of the authors (H.A.B.).
When refering to experimental data, we shall not
recorrect the values for cross section and activa-
tion for finite thickness, but use the values as
given and corrected by the respective authors.
The constants thus obtained must therefore be
considered as provisional.

The application of the preceding formulae is
based on the possibility of isolating, among the
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neutrons emerging from paraffin, (¢) thermal
neutrons, (b) neutrons, the capture of which
leads to a definite level of the compound nucleus
formed in the capture process (resonance
neutrons), The only means of isolating the
thermal neutrons is at present the absorption in
cadmium. As is shown by various experiments,
practically all thermal neutrons are stopped by
0.45 g/cm? Cd. Under the assumption, that the
numerosity of the thermal neutrons is very large
compared to the numerosity of the neutrons of
higher energies absorbed by Cd, the thermal
neutrons have therefore been identified with the
so-called C neutrons, i.e., neutrons stopped by
0.45 g/cm? Cd. It is, however, probable—see
below—that the Cd level responsible for this
absorption lies at about 0.1 volt and has a width
of 0.2 volt, so that the strong absorption in 0.45
g/cm? Cd extends to about 0.3 volt.

Hence, a certain number of neutrons of energies
considerably higher than thermal energies will
be among the C neutrons. The fact, that the
slowing down process in paraffin in the region
between the energy of the chemical hydrogen
bond (3—% volt) and the thermal region is
rather inefficient, increases the number of neu-
trons in this region. Furthermore, in the thermal
region itself, the energy distribution of the
neutrons will not be accurately represented by
the Maxwell curve, as the neutrons slowed down
in paraffin are captured by the hydrogen nuclei
before complete thermal equilibrium is reached.

No accurate estimates of the magnitude of
these effects are at present available, but it seems
from a theoretical discussion that they are not
very large,” so that at least the order of mag-
nitude of the results will not be changed. This is
also shown by the fact that the energy distri-
bution curve of the neutrons, as found with the
mechanical velocity selector of Cd sheets, has a
maximum in the thermal region.’® Therefore we
shall in this paper retain throughout the iden-
tification of C neutrons and thermal neutrons,
substituting thus ow, &, and Bw by o &,
and B, and using for the effective energy
of the C neutrons with 1/v indication the value
E.=(x/4)kT (cf. (88)).

3 Dunning, Pegram, Fink, Mitchell and Segré, Phys.
Rev. 48, 704 (1935).
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For the isolation of the resonance neutrons
the absorption or indication in the element to
be investigated is used. A source of uncertainty
lies in the fact, that the resonance neutrons thus
defined may belong not to a single resonance
level but to several of them. The total resonance
activation A observed will then be the sum
of the activations of the single compound levels,
so that we have (cf. (77)):

Ares= ZAg: CZ (I‘/ng/Eg%)y (90)

g g
where ¢ is a constant, and I',, the reduced
neutron width of the level E, (i.e., neutron width
at 1 volt; cf. (77), (77a)). Except for the irregular
variation of I',,, the contributions of the higher
levels to the activation will decrease as E,}. For
a quite schematic picture of the situation, we may
assume the levels to be equally spaced with a
distance D corresponding to the actual mean
distance and I',, to be the same for all levels.
Then we see that the importance of the con-
tributions of the higher levels to the activation
will be-determined by the ratio of the energy
of the first positive level E; to the mean distance
D. Indeed we have

Ares=A1'Z {1+(g_1)(D/E1) }_“}

g=1

(91)

and may now distinguish three cases:

(a) E;<D. The activation is practically deter-
mined by the first level. This case will be realized,
if resonance capture is observed in a light ele-
ment, because here the resonance activation will
in general only be observable if E; by accident
lies exceptionally low.?® Occasionally, this may
also occur for a heavy element.

(b) E;~D. The total contribution of the
higher levels to the activation is of the same
order of magnitude as the contribution of the
first level and is caused by a great number of
levels; e.g., for E;=3D we have 4res=2.641, and
the activation due to the levels with g>50 is
still 30 percent of the activation of the first level.

36 It is true that with decreasing atomic number, not only
the mean distance D of the levels, but also the neutron
width T, increases rapidly, so that for a light nucleus a
noticeable activation might still be produced by resonance
neutrons of much higher energy than for a heavy nucleus.
It is, however, probable, that the neutron width increases
less rapidly than D3, so that here the possibility for the
detection of resonance-capture is in general limited to the
case F4<KD. .
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We shall later give arguments to the effect that
this case is more or less realized for elements like
Ag, Rh, In; D being of the order of some volts.

(c) E>D. Each of a great number of higher
levels produces an activation of the order of the
effect of the first one. This may occasionally
happen for a heavier nucleus. It seems (cf.
below) that iodine may come near to this case.

In a similar way, the influence of the higher
levels on the absorption coefficient with self-
indication can be discussed.

A certain—though not very sharp—control of
the effect of higher levels is supplied by the
analysis of the absorption curves with self-
indication, supplemented with boron absorption
curves. Such an analysis would permit one to
detect a pronounced heterogeneity of the
neutrons.?” (Cf. Fermi’s groups 4 and B in Ag.)
In the following, we shall give formulae under
the assumption, that only a single level is effec-
tive, and discuss for every method how the results
are modified by the presence of several levels.

A. Determination of energy
1. Absorption in boron®

Case a. Resonance energy larger than the
cadmium absorption limit.—The absorption co-
efficient in boron for the neutrons penetrating
cadmium and indicated by the element under
investigation is compared to the absorption coef-
ficient of the C neutrons in boron, measured with
a boron chamber or another indicator obeying
the 1/v law in the thermal region. Because of the
1/v law for the capture in boron, the reasons for
which have been given in §5D, and because of
(88), we have for the resonance energy :3

37 Also if only a single resonance level is of importance,
the heterogeneity caused by the variation of the absorption
coefficient within the line will manifest itself in the absorp-
tion curves. It will often be possible, however, to decide
with the help of the constants determined according to
Section C whether this reason is sufficient to explain the
shape of the absorption curves or whether the presence of
several levels must be assumed.

3 Frisch and Placzek, reference 33. Weekes, Livingston
and Bethe, reference 33. Collie, Nature 137, 619 (1936).
Amaldi and Fermi, reference 30. Halban and Preiswerk,
Helv. Phys. Acta 9, 318 (1936). Goldsmith and Rasetti,
Phys. Rev. 50, 328 (1936). Goldsmith and Manley, Phys.
Rev., in press. )

3 Goldsmith-Rasetti take 27T instead of w/4 kT as a
correction for the hardening of the thermal neutrons in the
thick layers used. The actual value of E, is probably still a
little higher because of the reasons exposed at the be-
ginning of this section.
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Kboronc 2 T Kboronc 2
Engc( ) =—kT( ) . (92)
Kborong 4 Kborong
If several resonance levels are effective, the

energy determined according to (92) will be a
rather ill defined mean value, namely (cf. 90)

Zg:T/"UEgﬁ% 2
Eres= - -

2Byt

g

(93)
If all I',, are equal, and E;=D (cf. above), this
gives Eree=2.5E;.

(93) holds for a thin boron layer; for thick
layers, the influence of the higher levels will be
still more pronounced. It is therefore essential
to base the energy determination on complete
absorption curves and not on single points.
Furthermore the influence of the higher levels
may be reduced by defining the resonance
neutrons not by the indication alone, but also
by the absorption, which can be done by adding
to the cadmium filter a filter consisting of the
same element as the indicator.

At present, the energy values found by different -

observers with the boron method seem to differ
to a certain extent in some cases. The reason for
this appears to be not so much lack of precision
of the measurements, but different—and perhaps
insufficient—correction for geometrical factors.

Caseb. E, smaller than the Cd absorption limit.
If the resonance energy is smaller than the
energy at which Cd becomes transparent (about
0.3 volt, viz. below), the boron method in the
form described will not be applicable. Here,
instead, some information about the position of
the level may be obtained by the study of the
boron absorption with boron indication of the
neutrons stopped by and penetrating through
layers of various thickness of the element to be
investigated, as was done originally in the case
of cadmium.%

Important supplementary information about
the position of low energy levels may be obtained
from the rotating wheel experiment,*! as will be
discussed for the case of cadmium (§7B).

40 Frisch and Placzek, reference 33.

“t Rasetti, Segré, Fink, Dunning and Pegram, Phys. Rev.
49, 104 (1936); Rasetti, Mitchell, Fink and Pegram, Phys.
Rev, 49, 777 (1936).
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The extension of both methods to other ele-
ments, where the presence of a low level is
suspected (Dy, Sm, Gd) is made difficult by the
rarity of most of these elements, which forbids
the use of absorbers of sufficient dimensions.

2. Other methods

The energy of resonance neutrons may also be
estimated by the study of the diffusion of the
resonance neutrons in paraffin.*? It seems, how-
ever, that these methods are hardly accurate
enough to give quantitative results; they may
chiefly serve to check the relative order of the
energies as given by the boron method.

B. Neutron width

The neutron width may be found directly from
the resonance activation with the help of (77), if
the absolute number of the neutrons ¢ is known.
To determine ¢, we will use the procedure of
Amaldi and Fermi, who express g by the thermal
activation and cross section. Integrating reso-
nance and thermal activations over the whole
paraffin volume, we get from (77), (89) and (82):

CE 20,
Fp=—— (94)%
1.30.-10-18
S A4V NY
where c=1""" " (94a)
SBAV 1,

For purposes of comparison it is better to use
the reduced neutron width I, (neutron width
at 1 volt, IV, =T,E, %)

CE o,
I, =——— (95)
1.30-1018

(95) is very useful as it gives an expression for the
neutron width which, being independent of £,
holds irrespective of the form of the line.

In the case of the presence of several resonance
levels, the I, determined from (95) will be con-
siderably too large. Indeed, we have from (95),
(90) and (93)

(XTI By )t
(M o=t
(XTI neEg?)?

# Halban-Preiswerk, Comptes rendus 202, 849 (1936);
Amaldi-Fermi, reference 30.

4 Here and in the following, we shall always incorporate
the unknown factor (14-1/(2¢41)) in the neutron width,
i.e., write T, instead of T',(141/(2¢41)).

(96)
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which is a weighted sum rather than a mean
value. This is also clear from the fact that I/, is
proportional to the activation. In the special
case (cf. above, after (91) and after (93)) that all
T’,, are equal, and E,=D, we have (I',),=10.4
T -

A way of estimating I’,, if E, lies near the
thermal region, will be discussed for the example
of cadmium.

C. Eﬁecﬁve width T'./x and radiation width T,
The effective width can be found—as shown
by Amaldi and Fermi—from the resonance
activation and absorption coefficient for self-

indication. For the relative effective width
(T'./x)/E, we find from (75), (89), (82) and (94a)

(T+/x(€)/Eo=Cre/ x4 (97)

For £>1 and £{<1 we may express the effective
width by the natural and Doppler width, re-
spectively. Thus (cf. 70 to 72a)

for £>1:

I/Eg=%Cke/ky- (1 —1/4E4---) (97a)
for §K1:
A/Ey=(m/2)} Cke/k,(1 = (8/m)}¢+--+). (97b)

The relative width found by Amaldi and Fermi
under the assumption of constant cross section
both for resonance and thermal neutrons is
2C(k./k,), their values have hence to be divided
by 4 in the case of natural and by (8/7)! in the
case of Doppler width.4 (97) also provides a
mean for checking the assumptions I',<E,,
A<KE,, made for the derivation of the formulae
in §5C. (A/E, can, of course, also be directly
calculated, wiz. (63), if E, is known from the
boron method.)

Instead of finding from (97) the effective
width, we may use the relation also as an equa-
tion for £ and hence for T',. Dividing both sides
of (97) by A, we get

x(§&) ETm/MN\* «, 1
~4( )=e o ow
3 E,

Ke
from which ¢ may be determined. If, however, £
is small, (98) is very insensitive, since for (<1,

4 Cf. however, reference 49.
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x(£) is proportional to ¢ Thus small natural
widths cannot be determined in the presence of
large Doppler widths.

The presence of several levels has a similar
effect upon the radiation width T, determined
from (98) as upon the neutron width T',. If all
levels have natural width, the I', found from
(98) is

p— (zll‘,"ﬂE(J*;!)4
(I 02/ Ty Eg™) (ST ng Eg—2)?

(T')a (99)

which, as in the case of (I',),, is a sum rather
than a mean value. In the special case that all
I’,, and all T,, are equal, that the levels are
equally spaced and E; =D, we have I',=10.4 T,,.

In the formulae derived up to now, the one
level formula (61) was only made use of in the
immediate neighborhood of the resonance but no
relation was assumed between the cross section
for thermal neutrons ¢, and the resonance ‘cross
section g, If we suppose that the thermal cross
section ¢, is determined by the influence of a
single resonance level, the comparison between
thermal and resonance cross section gives us
another method for finding the radiation width.4®
It is obvious, that this assumption, which in-
volves the extrapolation of the one level formula
up to the thermal region, is a much more special
one than the assumption discussed before, viz.
that the measured resonance absorption is mainly
due to one compound level only.

Firstly, for the thermal cross section the levels
of negative energy E,, which do not contribute
to the absorption, are of as much importance as
the levels of positive energy. Secondly, the inter-
ference of the capturing amplitudes in (58) may
considerably increase the effect of the higher
levels. The importance of formulae based on this
assumption will therefore consist not so much

-in that they supply an independent method to

determine TI',, but rather in that they give a
possibility of finding out in actual cases, to what
extent the thermal cross section is connected to
the measured resonance absorption.

If EZ>kT, we have from (61), (63) and (70)%

45 Bethe, Phys. Rev. 49, 888 (1936).

48 The formulae which are based on the extrapolation of
the one level formula in the thermal region are marked by
an asterisk.
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r,?

OoN
.=

T2 E(xkT)}

8 m £ skT\?
SSLER LS
M X(S) Ea

This gives for the relative radiation width
I'./E, for £>1 (cf. 71):

I‘)'/Egz (0'0/0'0)%(7rkT/En)}<1 _1/8£2+ )
(101a)*
for K1 (cf. 72, 72a) ;

I', o.m/M\?
= -m(w) (1= (8/m)— ). (101b)*

E, ¢,8"\m

More generally, we may consider (100) as an
equation for £

zﬁ_iﬁﬁ(ﬁ)f

£2 —_7r% M o \E,

(102)*

Instead of the ratio of the absorption coef-
ficients, we may also use the ratio of the activa-
tions C. Introducing (100) into the expression for
the thermal activation (89), or also expressing
the ratio of the absorption coefficients in (97) by
(100), we get a very simple relation between the
ratio of the activations and £, viz. :

T M\?
¢= (- »-) /e
4 m
We have now 3 relations for £, the general re-
lation (98) and the two relations (102) and (103)
which make use of the assumption (100). Of
these 3 .relations, however, only two are inde-
pendent, as for instance by dividing (98) by
(103) we get (102). We may find out in each
case how far the thermal cross section is con-
nected with the level causing the resonance
absorption, by comparing the £ found from (103)
with the ¢ supplied by the general formula (98).
In this connection attention must be paid to the
fact, that the ratio of the two ¢'s depends rather
sensitively on the value of C;e.g., for £>1, ¢is
proportional to C (cf. 98), while £.c4 [so we shall
dencte from now on the ¢ determined from (103) ]
is, proportional to 1/C, so that, £/§.. is propor-
tional to C2.

(103)*
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§7. Discussion of experimental data on slow
neutrons

A. E>kT. Complete data on energies, ab-
sorption coefficients and activations are available
for theelements Rh, Ag (22" period, group 4) and
I. The values for the resonance absorption coef-
ficients , and the resonance activations 4, are
not very certain, owing to the difficulties of cor-
rection for finite thickness of the indjcators and
absorbers used. The following discussion should
therefore be considered as demonstrating how
the preceding formulae should be used in the
analysis of the experiments, rather than as a
derivation of final results.

1. Rhodium (group D).—For the energy, deter-
mined by the boron method, we take E,=1.1
volts.4” This corresponds to a Doppler width
of 0.066 volt. The absorption coefficient for C
neutrons is 0.7 cm?/g,* corresponding to a cross
section of 120-107%* cm?® For the ratio of the
activations, one finds from Amaldi-Fermi’s data .
C=0.77. From these data, we get for the
neutron width I',,=8.6- 1075 volt and the reduced
neutron width I",=8.2-107% volt.

The resonance absorption coefficient «, is given
as 4.0 cm?/g by v. Halban,® while Amaldi and
Fermi find x,=1.8. From (97) and (98) we have
(the constants following from the latter value of
Kk, are put in brackets) I',/x =0.15 (0.33), £=0.90
(2.4), T',=0.060 (0.16).

Supposing that the cross section for neutrons
of thermal energy is entirely caused by the
resonance level, to which the constants now de-
termined refer, we would get from the activations
according to (103)* £.:=11.5, and from the

47 Goldsmith-Rasetti, Phys. Rev. 50, 328 (1936).

48 Amaldi and Fermi, reference 30.

49 This value is obtained by using Amaldi and Fermi's
correction for finite thickness, based on the assumption of
a constant resonance absorption coefficient. The correction
is numerically rather important, it increases the measured
value of C by a factor 1.55 in the present case. The con-
sideration of the fact that due to the variation of the
capture cross section in the resonance region—the apparent
absorption coefficient of resonance neutrons is lowered by
their passage through thick layers, would tend to diminish
the corrective factor and thus diminish the value of C. The
correct procedure would be to use Amaldi-Fermi’s value as
a zero approximation in (97) and (98), recorrect it by
introducing the line-shape thus determined, and recalculate
the constants with the recorrected value of C. The lowering
of the above value of C, caused by this effect, may well be
upset, if Amaldi-Fermi's value for «, used also for the
correction of C, should prove to be too low, as would be the
case according to v. Halban (see below).

50 Private communication.
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cross sections, cf. (102)*, £,=3.2 (5.2). If, there-
fore, the observed resonance level were the only
one contributing to the thermal cross section, the
thermal activation and cross section would be by
the ratio ../, ie., 12.8 times (4.8 times),
smaller than the observed values.

If we assume, therefore, that the main reso-
nance absorption is caused by a single level at 1.1
volts, we may conclude that—as far as we can
trust the measurements and especially if v.
Halban’s value for the resonance cross section
proves to be right—the chief contribution to
the thermal cross section does not come from this
resonance level, but from other (higher or nega-
tive) levels.®e

2. Stlver—The resonance neutrons of Ag (22"-
period) have been divided into two groups.
About two-thirds of the resonance activation are
absorbed in a thin sheet of Ag and called group
A. The other third (group B) seems to consist
of much harder components.

For the energy of group 4, we take E;=2.5
volts,*” which gives the Doppler width A=0.096
volt.

The absorption coefficients for thermal and
resonance neutrons are® g,=20cm?/g, k, =0.25
cm?/g, the ratio of the activations C=1.52.

Now we must take account of the fact that Ag consists
of two isotopes of nearly equal abundance, of which only
one absorbs group A4, giving rise to the 22’ period. Thus
we have for the cross section o, obtained from &, : 0y =21, M
=7000-10"2¢ cm?. To the cross section in the thermal
region both isotopes contribute. The ratio of the thermal
activations for the short and the long period was found to
be 3 : 1.39 The thermal cross section of the isotope absorbing
group 4 is therefore o= $x,;M =70-10"2¢ cm? The thermal
activation measured by Amaldi and Fermi refers to both
periods. Therefore, the absorption coefficients to be
introduced in (98) are the directly measured absorption
coefficients, while in (102) enter the actual cross sections
of the capturing isotope. If we use in all the formulae the
measured absorption coefficients (or correspondent ap-
parent cross sections o= M) and the thermal activation
referring to both periods, then the value of I', and TV,
obtained from (94) and (95) have to be multiplied by 2,
x/& from (102) by 4/3 and £ from (103) by 3.

5% Note added in proof: The calculations described are
very sensitive to the assumptions about the mean free
path of thermal and faster neutrons in paraffin. Reasons
can be given (reference 19) for the assumption that /, is
only 0.8 to 0.9 cm rather than 1.1 cm as Amaldi and
Fermi assume. This improves the agreement considerably
so that it can, at the moment, not be excluded that the
chief contribution to the thermal cross section of Rh comes
from the ‘D" level.
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Taking these factors into account, one finds
I',=7-10"% volts, IV,=4-10"* volts.

From (98) we get x/£=2.02. From this, we
cannot calculate £, because the maximum value
of x/¢ for £¢=0 is (v/2)¥=1.25. We may only
conclude that £ is probably smaller than 1. In
other words: the effective width I',/x determined
from (97) turns out to be smaller than the
Doppler width calculated from the boron deter-
mined energy. Indeed (97) gives I',/x=0.047
volt, which, if the line has pure Doppler form,
would correspond to a Doppler width of 0.060
volt, while the Doppler width from the boron
energy is 0.096 volt. This difference may well be
due to experimental error.

From the ratio of the activations (103) one
finds £.c4=16.0, from the ratio of the cross sections
¢£=1. As in Rh, the one level formula gives too
high values for £ This means, as already men-
tioned, that if the resonance level with the width
determined from (98) would alone be effective,
the activation and cross section in the thermal
region would be smaller than observed. The dis-
crepancies are much more striking than in the
case of Rh and cannot be removed by considera-
tions as those described in reference 50a.

The existence of higher levels in the Ag isotope
which absorbs group 4 is proved by the existence
of group B, the mean energy of which is estimated
by the boron method to be 4.5 volts.4” The fact
that this group is much less absorbable in Ag
seems to show that either the neutron widths of
the respective levels are smaller or the radiation
width larger than those of group 4. If the latter
is the case, the effect of these levels upon the
thermal cross section would be more important
than the contribution of the level corresponding

. to group 4.

3. ITodine.—The data for iodine are the least
accurate ones. The resonance energy lies high:
E,~80 volts.*” The thermal activation has not
been given by Fermi and Amaldi, because they
eliminated ¢ in this case with the help of the
thermal cross section and activation for Rh.
Herefrom and from the thermal absorption coef-
ficient k,=0.024 cm?/g®% the thermal activation
can be recalculated, which gives C=2.16. For
the resonance absorption coefficient Amaldi and
Fermi give x,=0.38 cm?/g.

81 Frisch, private communication.
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The constants derived from these values,
together with the constants for Rh and Ag, are
shown in Table II. The very high values for the
neutron as well as for the radiation width5? of
iodine suggest, that the resonance activation of
iodine is due to a number of levels of about equal
effect (case ¢, beginning of §6), in which case the
observed width would be something like the sum
of the widths of the single levels.

In toto, the whole situation may be compatible
with the following picture:

If we consider the series of elements Rh, Ag,
In, I, which, being not very different as to their
mass and all containing an even number of
neutrons and an odd number of protons, should
exhibit a certain similarity as to their mean
density of energy levels® although individual
variations are by no means excluded. We note
that for Rh, Ag and In the boron method gives
resonance energies of a few volts, while for iodine
the resonance energy lies much higher’ It may
therefore be that the mean distance of levels in
all these elements is of the order of a few volts.
For Rh, Ag and In, then, the energy of the first
level is of the same order as the mean distance,
and the resonance activation of these elements
consists therefore of a large effect of one level,
the position of which coincides roughly with the

measured resonance energy, and smaller con-

tributions of a number of higher levels.

In iodine, on the other hand, the energy of the
first levels would be by chance several times
larger than the mean distance. Therefore, no
single level has a prominent influence upon the
resonance activation. The energy measured is
then a mean value over many levels, which may
extend from about 20 or 30 volts upwards, and
the measured widths are the weighted sum of the
widths of these levels. It may even be that the
actual width of most of these levels is already
practically Doppler width.

How far this picture coincides with the facts
may be ascertained to a certain extent by the
accurate study of the absorption curves with
self-indication and the refinement of the boron
method by its combination with varied filterings.

& According to recent measurements of Frisch, «, seems
to be much higher than given by Amaldi and Fermi, i.e.,
about 2-3 cm?/g. This would reduce considerably the value

of the radiation width and also create with respect to the
ratio £act/# a situation more similar to Ag and Rh.
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4. Cadmium.—The absorption coefficient in
boron, measured with boron indication, of the
neutrons penetrating cadmium is about 7 times
smaller than the boron absorption coefficient for
C neutrons.?® From this it follows, that Cd has a
resonance level at an energy considerably lower
than one wvolt. This energy may, according to
these data, be positive as well as negative.
Rasetti, Segré, Fink, Dunning, Pegram#*' have
shown that the absorption of a Cd wheel is
lowered when it rotates with a velocity com-
ponent in the direction of the velocity of the
incident neutrons. From this it follows that the
capture probability in the thermal region in-
creases with increasing energy. This proves, that
the level has a positive energy and lies above the
thermal energy. Still a little more follows from a
quantitative discussion.

The relative change in the absorption measured
in this experiment is directly equal to the relative
change in the capture probability Ap/p. We
have:

Ap 1dp 2(E,—E)

el Af=— %

p pdE (E,—E)*+(GT)?
(AE is the change in the effective energy of the

neutrons caused by the rotation of the wheel).
We may now define an energy « by

(104)

u=p/Ap-AE. (105)
Then we have from (104)
e GT)*+(E,—E)* (106)
2(E,—E)

From (106) we see, that, if #>0
E,—E <2u, (107a)
I <2u, (107b)
(E,—E)*+(31)% <4u?. (107¢)

From the measurements, # comes out to be 0.10
volt, hence

E,—E <0.20 volt, (108a)
I' <0.20 volt, (108b)
((E,—E)*4(53T)?)% <0.20 volt.  (108c)

8 Frisch and Placzek, reference 33, Collie, reference 38.
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We may now try to get further information by
using Amaldi-Fermi’s cadmium absorption curve
measured with Rh indication. From this curve,
the Cd absorption coefficient for the Rh reso-
nance (D) neutrons may be estimated to be
about 270 times smaller than for the C neutrons.
Assuming that the Cd cross section for D
neutrons is entirely determined by the resonance
level near thermal energy, which is of course very
doubtful, especially in the light of the evidence
of section A, we have from (61):

op  Euw? (E;—Ew)?4(GT)?

—_ TNRY (109)

Oth ED%

Combining (109) with (106), we find E,=0.14
volt, I'=0.20 volt. With these values, the cross
section (cf. Fig. 1) would have a very flat
minimum at about 0.05 volt and a very flat
maximum at 0.12 volt, the maximum being only
about 12 percent higher than the minimum.

To find the neutron width, we must decide to
which of the many Cd isotopes the resonance
level is to be ascribed. The most probable
assumption is, that it belongs to an isotope with
odd mass, as these isotopes have the largest level
density.® As both odd isotopes (111 and 113)
have about equal abundance (12 percent and 10
percent, respectively), it does not matter very
much for the cross section, to which of the two
isotopes the level belongs.

Inserting the thermal cross section, which—
corrected for the abundance with this assumption
—is 25,000-10~2* cm?, and the above values for
E, and T, into (61), we find for the cross section
at resonance ooy=25,000:-10"2* cm?, i.e., the
same value as at thermal energy. This gives for
the neutron width I',=5-10"* volt and the
reduced neutron width IV, =1.5-10-3 volt.
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§8. Fast neutrons®

The present theory is quantitatively applicable
to fast neutrons only as long as the mean distance
of the compound levels remains large compared
to the neutron and the radiation width,® i.e.,
I'.<D, I'<D.

Even in the energy region where this condi-
tion still holds, the cross section will in general
exhibit no maxima because of the Doppler effect.
At an energy of 2 million volts, the Doppler width
for an element of mass 100 will be about 100
volts, which is probably more than the mean
level distance of most of the elements in this
region. Apart from this fact, the actual inhomo-
geneity of fast neutron beams will, even with
artificial production, not be lower than a few
thousand volts, so that resonance phenomena,
even if present, may only be detected if D is
larger than this energy inhomogeneity. In all
other cases, a mean absorption will be observed,
given by®®

m2R? T,

o= (110)

2i+1 D

T, is the mean neutron width of the levels in
the energy region concerned, and R the nuclear
radius. The formula is obtained by considering
the influence of the various orbital momenta of
the incident particle. (110) comprises capture
and scattering except potential scattering. As
already emphasized by Bohr,! most of the scat-
tering (except the potential scattering) will be
inelastic.%

6 For a detailed discussion of the properties of fast
neutrons we refer to Bohr and Kalckar, reference 1.

52 For the case of large width, cf. reference 19.

% Cf., Bethe, Phys. Rev. 50, 332 (1936); Bethe and
Livingston, reference 19.

% For the experimental evidence, cf. Werthenstein,
Nature 135, 747 (1935); Ehrenberg, Nature 136, 870 (1935).

TasLE II.
Element Eqy K, K, 1 c 0g°102 | gq-102 A T, Ty-104 | I7,-104 £ £act
1.8P 310 0.16 2.4
Rh 1.1= 4.0 0.7b 0.77 680 120 | 0.066 0.060 0.86 0.82 0.90 11.5
Ag(22') 2.58 | 200 0.25P 1.52 7100 67 | 0.096 |<0.05 6.6 4.2 K1 6
I 802 0.38» | 0.0244 | 2.2 80 51 0.50 5.5 500 56 11 4.6
Cd 0.14 13.5 25,000 0.2 5 15

a Goldsmith-Rasetti, reference 46.
b Amaldi-Fermi, reference 30.

¢v. Halban, reference 38.

d Frisch, reference 51.
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Two kinds of inelastic processes may occur. Either the
compound level created by the capture of a fast neutron
may emit a neutron of lower energy, leaving the final
nucleus in an excited state, which then emits a v quantum
(ordinary inelastic scattering). Or the compound level
originally formed may first go over by y-ray emission to a

lower state of the compound nucleus, which then decays -

further under emission of a neutron (inelastic scattering of
the second kind). The latter type of processes must be
taken into account for the calculation of the capture cross
section: It has a lowering effect on the probability of
capture because not all radiative processes lead to capture.
However, it is likely that the probability of the inelastic
scattering of the second kind is smaller than the capture
cross section, because the vy-rays emitted have lower
frequency in the case of the scattering of the second kind,
and the emission probability is cet. par. proportional to the
third power of the frequency of the y-ray. Only if the
neutrons have very high energies, will the inelastic scat-
tering of the second kind be important.

Experimentally, not very much is known about
the capture of fast neutrons. The earlier con-
ception, according to which the observed capture
effects should be attributed to the effect of small
admixtures of slow neutrons,’” seems not to agree
very well with numerosity considerations, and it
is more likely, that at least a part of the observed
effects is to be ascribed to the fast neutrons.
Conclusions about the ratio of neutron and radi-
ation width in the range of high neutron energies,
based on the comparison of capture and scatter-
ing cross section, are therefore hardly possible.

In this state of affairs, it seems more promising
to estimate the neutron width at high energies
by simply extrapolating the data from slow
neutron experiments. Assuming the E? law for
the neutron width which will hold as long as the
wave-length is large compared to nuclear dimen-
sions, and supposing, as in §4, that there are no
systematic differences between the matrix ele-
ments for high and for low energies, we would
get from the slow neutron data for Rh and Ag
a neutron width of 0.1-1 volt for energies of
some million volts. This would mean, that in
that region neutron and radiation width have
about the same order of magnitude. However, it
must be kept in mind that this extrapolation
gives only the partial neutron width correspond-
ing to a process in which the final nucleus is left
in the ground state. If the neutron energy is suf-
ficient for inelastic scattering, i.e., if the final

57 Bethe, Phys. Rev. 47, 797 (1935).
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nucleus may be left in excited states after the
reemission of the neutron, the total neutron
width will be much larger, approximately in pro-
portion to the number of possible final levels.
Then the inelastic scattering will be much more
probable than the capture.

§9. Elastic scattering of neutrons

The theoretical discussion of the scattering has
been given in §4. Experimentally, the scattering
of slow neutrons, of thermal as well as higher
energies, has been investigated.® The cross sec-
tions observed with various elements are of the
order of magnitude of nuclear dimensions. No
case of resonance scattering has been found thus
far.

For fast neutrons, it is again difficult to sepa-
rate inelastic® from elastic scattering. Assuming
that the ‘‘total absorption’ of fast neutrons
observed® is due to elastic scattering, Rabi®
found good agreement with the theoretical poten-
tial scattering for hard spheres. This corresponds
to the assumption about the potential which we
showed in §4 to be most likely correct.

§10. Transmutations involving charged particles

If the particle Q is charged, the matrix element
Ury’ 4 involves two factors, firstly a factor due
to the electrostatic potential barrier between the
particle and the nucleus, and secondly, a factor
giving the probability of the concentration of the
nuclear energy on the particle Q. The latter factor
is quite analogous to the case of neutrons, and is
the more interesting part. In order to obtain it
from the experimental data, the first (penetra-
tion) factor must be split off, using the well-
known formulae for the penetration through a
potential barrier. A convenient form for the
penetration factor is!®

% Dunning, Pegram, Fink and D. P. Mitchell, Phys.
Rev. 48, 265 (1935). Wick and Pontecorvo, Ric. Sci. 2, 3/4
and 4/5 (1936). A. C. G. Mitchell and Murphy, Phys. Rev.
48, 653 (1935). A. C. G. Mitchell, Murphy and Longer,
Phys. Rev. 49, 401 (1936). A. C. G. Mitchell, Murphy and
Whittaker, Phys. Rev. 50, 132 (1936).

% Dunning ef. al. reference 58.

60 Rabi, Phys. Rev. 43, 838 (1933). It may seem satis-
factory that Rabi deduced from the scattering effective
radii somewhat larger than the then accepted nuclear
radius whereas we have shown (§4) that the cross section of
the potential scattering should be slightly smaller than the
geometrical cross section of the nucleus. This difference
would compensate for the increase in the nuclear radius
necessitated by the Bohr theory (cf. reference 55).
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Po=exp [ —2gv(Eq/Ud)] (111)
where g=0.38(MQZQ)%ZB%MB”6, (1118.)
v(x)=x7tarccos x*—(1—x)} (111b)

with Mg and Mp the atomic weights of the par-
ticle Q and the nucleus B(0¥=16), Zg and Zp
the respective nuclear charges and 0.38 a con-
stant derived from the observed radii of heavy
nuclei. A curve for y(x) is given in the report by
Bethe and Livingston.!® Eq is the absolute kinetic
energy of the incident particle, and U, the height
of the potential barrier,

Upy=0.70ZqZp(Mp+Mq)/Mp*®* MV. (11lc)

Since the penetrability (111) falls very rapidly
with decreasing particle energy, charged par-
ticles can only appear in nuclear reactions if their
energy is not too small compared to the height of
the potential barrier. (For quantitative data, cf.
reference 19.) Because of the considerable energy
required, it is not possible to define the energy of
the incident particle accurately enough to observe
reasonances if the resonance levels are closely
spaced. Therefore no resonance effects will be ob-
servable with charged particles and heavy nuclet
(cf., however, the case of Pt below). '

On the other hand, if the energy is high enough
to make the process observable, there is still a
rapid increase of the probability with increasing
particle energy. This increase is apt to mask
resonance effects if the resonance is broad and
not very pronounced. Consequently, the best
chance for observing resonance with charged
particles is if the resonance is narrow. The process
most suitable for resonance is therefore the
simple capture of particles with the emission of
y-rays, provided that no other process is possible
for the given energy and angular momentum of
the incident particle.

In fact, the most striking resonance effects
have been observed for the simple capture of
protons by nuclei. The processes studied in
detail aref!

Li'+H!=Bet+y I,
Cl4H!=NU4qy I,
FU4+H!=Ne?+4+ III.
6t Hafstad and Tuve, Phys. Rev. 47, 506 (1935). Hafstad,
Heydenburg and Tuve, Phys. Rev. 50, 504 (1936). For

detailed theoretical discussions, see Hafstad, Heydenburg
and Tuve; Bohr and Kalckar, reference 1.
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For process I and III, the width of the resonance
has been measured and found to be small, for 11
the resonanee is also known to be narrow. The
reactions have been studied by measuring the
y-rays.

In case 11, the capture reaction is the only one
which can occur on energetic grounds. All other
reactions, e.g., C?>4+H'=B%+He*, C124-H!=Cu
+H?, C24+-H!'=N24#! would be very highly
endoergic and can therefore not take place with
protons of relatively low energy (below 1 MV).
In case I and III, other reactions are energetically
allowed, viz. in the first case,

Li"+H!=2He! (Ia)

and .in case II1

FO4+H!=01*{He* (I11a)

However, there are very strict selection rules for
parity and angular momentum, particularly in
case 1.

The wave function of the a-particle in its
ground state will certainly be even. The same
will be true of the wave function describing the
relative motion of the two a-particles formed in
reaction Ia, because they obey Bose statistics.
Therefore only even states of the compound
nucleus Be?® can disintegrate into two a-particles.
Similarly, the spin of the a-particle is zero. The
wave function of the relative motion of two
a-particles contains only even spherical har-
monics, again because it is symmetrical in the
two particles (Bose statistics). Therefore a state
of Be® must have even angular momentum
J in order to disintegrate into two a-particles.
For compound states with odd parity or odd J,
reaction Ia is impossible, such states can only
disintegrate into the original particles Li"-+H?,
or into a light quantum plus a Be® nucleus in a
lower state.

In case I1Ia, the situation is not quite so clear.
It is true that the ground state of O, just as
that of He*, is even and has spin zero. But the
wave function describing the relative motion of
0O and He* has no particular parity and contains
in principle terms of all angular momenta because
there are no symmetry requirements. Possibly,
the compound state responsible for the resonance
observed in case IIl has very high angular
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momentum so that its disintegration probability
into O*+He* is small though not negligible.
The observed width of the resonance level in
reaction I, is 11 kv. The contribution of the
emission of y-rays to the width is negligible,
from estimates of the absolute yield of the
capture process it turns out to be a few volts®
(see below) which is compatible with the neutron
evidence (§7). The observed width is therefore to
be attributed to the process Be?—Li’4+H! To
obtain the width free from the influence of the
Coulomb field, we divide the observed width by
the penetrability of the potential barrier. In-
serting Zo=1,Zp=3, Mo=1,wefindg=0.83 and
for the height of the potential barrier Uy=1.25
MV. With E=0.44 MV for the energy of the

incident proton, we have x=0.35 and y(x) =0.78

and, according to (111), the penetrability be-
comes P=¢1%018=1/3.6. Therefore the width
of the level would be 3.6-11,000=40,000 volts if
the potential barrier were absent.

The “width for one volt energy without poten-
tial barrier”

v =yE~} (112)

is, in our case, v’ =40,000/340,000%=70 volts.5?
This value is, of course, very much (about 100,000
times) larger than the width of neutron resonance
levels in heavy nuclei (§7) corresponding to the
much larger average distance between levels,
which, for Be?, may be of the order of one MV
or more, as compared to a few volts in heavy
nuclei.

In the neighborhood of the resonance, the in-
fluence of other levels of the compound nucleus
can certainly be neglected so that the one-level
formula (12) may be used. The angular momenta
are in our case s=3% (proton), ¢=3/2 (Li") and
very probably J=1 (excited Be?®). The width
v"p’, corresponds to the emission of protons such
that the residual Li” is left in the ground state.
But with the energy available, it is impossible
that protons can be emitted by the compound
nucleus and at the same time the Li” nucleus be
left in an excited state. Therefore y7p7,, is iden-
tical with the total proton width of the level and
thus practically identical with the total over-all

62 340,000 =440,000-(7/8)% volts is the relative kinetic
energy of the proton with respect to the center of gravity.
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width v, because the y-ray width is negligible
and other particles cannot be emitted.

We sum (12) over all possible excited states g
in which the nucleus may be left after emission
of the v-ray,’ insert the values for s, 7 and J
and obtain

YYr

——] —

= , 113
2 ME—Eq)++? (19)

T¢

where v, is the radiation width, v the proton
width and E, the energy of the resonance level.
At exact resonance,

3

ares=57r7\2'yr/'y. (114)

The experimental cross section is not well
known; a crude determination® gave 10~%7 cm?.
Since the resonance energy is 440 kv, we have
A=7.8-10"1 (reduced proton mass!) and

10727

v, =—————y=23.5-10"%y =4 volts.
280-10-%

(115)

The scattering of protons will also be influ-

enced by the resonance level ; we have

2

(116)

Y
030=—7r7\2

2 A(E—Eo)+~?

Atexactresonance, ¢s.=(3/2)7x%. With the given
resonance energy of 440 kv, we have therefore
0=2.8-10"%* cm? This is to be compared to the
Rutherford scattering in the Coulomb field
which is about 1-1072* cm? for backward scat-
tering and 4-107%% cm? for scattering at right
angles. Thus the increase in the scattering cross
section at resonance should be observable.

The apparent width of the resonance in the
capture of protons by fluorine (case III above)
in the experiments of Halfstad and Tuve is equal
to the inhomogeneity of the proton beam, i.e.,
about 4 kv for the resonance at 330 kv, and

about 15 kv for the levels at 890 and 940 kv.

% In the particular case of the capture of protons by Li7,
there seems to be only one state in which the final nucleus
may be left, viz. the ground state. At least the most recent
experiments (Fowler, Delsasso and Lauritsen, Phys. Rev.
50, 389 (1936)) make it probable that only a single v-ray
line of 17 MV energy is emitted in the reaction. Note added
in proof: This conclusion is again made doubtful by the
results of Crane, Phys. Rev. 51, 49 (1937).
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Therefore, it can only be said that the actual
width of the resonance levels must be smaller
than, say, 3 and 10 kv, respectively. The widths
should, at least for the lower resonance level, in
fact be expected to be much smaller than for the
Li’+H-reaction; firstly because of the higher
potential barrier of F, and secondly because the
energy levels of the heavier compound nucleus
Ne? are denser and therefore would be narrower
even without the higher potential barrier. For
fluorine, we have (cf. (111))g=1.77 and Uy=2.50.
Therefore the penetrability becomes P=1/5000
for 330 kv and P=1/13 for 920 kv (average of
890 and 940). Thus we conclude from the experi-
mental results that the widths without potential
barrier would be smaller than 3-5000=15,000 kv
and 10-13=130 kv, respectively. The very large
result obtained for the level at 330 kv means
that this level must actually be very much nar-
rower than 3 kv, it is probably only a few volts
wide. The second figure obtained would cor-
respond to a v’ (cf. 112) of 130,000/830,000%
=140 volts which also seems to be too large
compared to the width 4'=80 volts of the Be®
level (cf. above); it should be expected that v’
is smaller for the compound nucleus Ne® than
for Be?; therefore the actual width should be less
than one-half the upper limit given by the ex-
periments of Hafstad, Heydenburg and Tuve.
Thus the experiments are compatible with
simple theoretical considerations. It must, how-
ever, be kept in mind that the theoretical results
were obtained under the assumption that the
width is entirely due to the proton, which need
not be true (cf. above, selection rules).

Apart from the three cases mentioned, simple
capture of protons has also been observed for B
(detected by the radioactivity of C1!)%4 and for
Be? and B! (detected by the v-rays).® The
process does no doubt occur with practically
every initial nucleus, and will presumably show
resonance features in most cases. However, in
some cases no resonance level in the experi-
mentally investigated region may be available;
in other cases there may be other processes
allowed besides the simple capture, and these

¢ Crane and Lauritsen, Phys. Rev. 45, 497 (1934).
% Crane, Delsasso, Fowler and Lauritsen, Phys. Rev.
47, 782 and 48, 102 (1935).
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other processes may lead to the emission of fast
particles and may make the resonance very
broad and accordingly the maximum cross sec-
tion very small. The alternative reaction most
likely to occur is the type giving a-particles,
according to the scheme

ZA4+H!—(Z —1)4-34Het.

No reaction of this type is energetically possible
for N4 and O because the resulting nuclei C!
and N3 would have too high internal energies.
Therefore the simple capture of protons by N14
and O should show sharp resonances provided
there are suitably situated resonance levels in
the respective compound nuclei O'® and F'7,

Simple capture of other projectiles, notably
deuterons and a-particles, has never been ob-
served and should be hard to observe. In par-
ticular deuterons can, because of their large
internal energy, cause a great variety of more
probable reactions with almost every nucleus,
v1z. the reactions leading to the emission of
neutrons, protons and a-particles, respectively.
This prevents the existence of sharp resonance
levels. Moreover, the three reactions mentioned
will, in many cases, leave the residual nucleus in
an excited state, so that y-rays are given off
after the reactions. This makes it difficult to
identify the simple capture process by observing
the y-rays except if very accurate measurements
of their energy are available. Finally, the nucleus
produced by the simple capture will usually not
be radioactive so that the radioactivity is also
not available for the detection of the simple
capture process.

The same arguments apply to the simple
capture of a-particles. However, in this case
there are two nuclei for which the simple capture
might be observable, véz. C'? and O*. These two
nuclei cannot be disintegrated by a-particles in
any other way. The greatest difficulty with
a-particles is the small intensity available.

Resonance phenomena have also been ob-
served for processes other than the simple
capture, v¢z. for reactions produced by a-par-
ticles and giving protons and neutrons, according
to the schemes

ZA4Het=(Z41)4+3+ H!
ZA4Het= (Z+2) 44341

(ap),
(an).
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For the &p reaction, resonance has been ob-
served® with B0, N4 F19 Na?, Mg, Al?. In
the case of the an reaction, the only case where
resonance has been observed with certainty, is
Be?+He*—C124-#'. The case best investigated
is the ap-reaction Al?"4+He*=Si®*4+H! Seven
resonance levels are known.®” The average
spacing is about 300,000 volts which seems very
reasonable. The width of the levels apparent in
the experiments is about half this amount, but
no doubt the greater part of this figure is due
to the inhomogeneity of the incident beam and
the actual width of the levels is probably quite
small.

A fluctuation of the yield with energy has also
been reported for the radioactivity induced in
Pt by deuteron bombardment.®® This is certainly
not a resonance phenomenon. For, with deu-
terons of about 4 MV energy, the energy of the
compound nucleus is at least about 15 MV above
the ground state. Considering the high atomic
weight of Pt, the energy levels of the compound
nucleus must be exceedingly dense, their spacing
should be only a small fraction of a volt.2 On
the other hand, the reported maxima and
minima in the yield are spaced several hundred
thousand volts apart. However, it is quite
possible that there are slow fluctuations of the
cross section, due to fluctuations in the density
of levels or in the magnitude of the matrix
elements.

§11. Phenomena produced by vy-rays

As mentioned already in §3, there are two
phenomena which may be caused by y-rays: The
photodissociation, and the scattering of vy-rays
by the nucleus. -

If the photodissociation were the inverse of
the capture of particles, it would be exceedingly
probable. E.g., for the capture of resonance
neutrons we have found (§7) cross sections up
to the order of 1072 cm? the neutron energy
being around 2 volts. According to (42), the
probabilities of two mutually inverse processes
are apart from simple statistical factors of the
order unity, proportional to the squares of the

% For references to the very extensive literature, cf. the
report by Bethe and Livingston, reference 19.

87 Chadwick and Feather, Iunternat. Conf. on Physics
(London, 1934), p. 95.

88 Cork and Lawrence, Phys. Rev. 49, 788 (1936).
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wave-lengths of the respective incident particles.

Now for neutrons of 2 volt energy, & is of the

order 3-10~1° cm, whereas for y-rays of 10 MV

energy (corresponding to the binding energy of
neutrons in heavy nuclei) we have X, ~2-10-12

cm. Therefore (X,/X,)2=1/20,000, and the

cross section for photodissociation would turn

out to be of the order 10~2% to 10—2¢ cm?, i.e., an

exceedingly large cross section compared to

other phenomena produced by y-rays.

In reality, however, the photodissociation is
not the inverse of the neutron capture, as already
mentioned briefly at the end of §3. When a slow
neutron is captured, any of a great number of
different y-rays may be emitted, corresponding
to different excitation states ¢ of the final nucleus
B. Only for a very small fraction of all capture
processes, the final nucleus will be left in the
ground state. In the photodissociation, we start
from a nucleus B in the ground state and irradi-
ate it with vy-rays of the appropriate energy. The
photodissociation is thus the inverse of that
part of the capture process in which the final
nucleus is left in the ground state. A simple
estimate shows that the cross section for photo-
dissociation is thereby reduced by a factor of
about 10° which would make it practically unob-
servable for the neutron energy of 2 volts used
above. '

If only one level of the compound nucleus
contributes, the crgss section for the photo-
electric dissociation is (cf. 12) :

7r7i.,2(2.7+1) Yr0Yn
0’:

. (117)
2(2i41) (w—Eo)2+1(v,4va)?

where X, is the wave-length of the y-ray, < and J
are the angular momenta’ of the initial nucleus
in the ground state and in the excited (‘‘com-
pound”’) state to which it is raised by absorbing
the y-ray and kv and E, are the energies of the
y-ray and the compound state. v, is the width
of the compound level corresponding to the
emission of neutrons, or generally of the par-
ticles which are formed in the photodissociation,
v, the total y-ray width and v, that part of the
y-ray width which corresponds to a transition
to the ground state. For not very light nuclei,
the spacing between the resonance levels is so
narrow that it is impossible to define the energy
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of the vy-ray accurately enough to obtain reso-
nance. Therefore we must average (117) over
an energy region large compared to the spacing
D between levels, and obtain

2(21+1)av YroYn
2i+1  (vo+va)D

Since J may have the values 1—1, 7z or 71, we
may put the average value of (27+1)/(2i+1)
equal to unity.

(118) is obviously very small if v,<y,, i.e., if
the dissociation leads to the emission of slow
particles. If the particles emitted are fast,
and particularly if the residual nucleus may be
left in several excited states, vy, will be larger
than «,. Then (118) reduces to

0o=m1Ry2v,0/D. (119)

In order to estimate «,, we assume that, in
the average, the partial radiation width of the
compound state corresponding to the transition
to any lower state is, in the average, simply pro-
portional to the third power of the frequency of
the y-ray. Then the ratio of the total radiation
width v, to the contribution of the ground state
vro0 is of the same order as but smaller than the
number of energy levels below the compound
state in question, which again is of the order of
but smaller than Av/D. Thus we may write

Yro/v=«D/hv, (120)

where « is a numerical factor which may be of

Oav=TRy

(118)
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the order 100 to 1000. Thus
oo =m2kRy 2y, by, (121)
With Ay=10 MV, Xx,=2-10"12, k=500, we have

0,=2-10"2"y, cm? (121a)

Assuming +, to be about 0.1 volt, the cross
section for photodissociation would be of the
order 2-10~% cm? which would be just observable
if y-rays of sufficient energy (10 MV) are avail-
able with an intensity of the same order as that
of the Th C’ y-rays. It should be mentioned
that the product nucleus may be left in an
excited state if the energy of the y-ray is suf-
ficient. This does not increase the probability of
the photodissociation.

The scattering cross section for y-rays is to the
cross section for photodissociation as v, to va.
Not making the assumption v,<vy,, we have
therefore, analogous to (121), for the average
cross section

(‘7'Sc1r)a‘= 2. 10_27772/(77"“71») .

This is of the order of 10~2 cm? if v, <7v., i.e.,
if photodissociation is either energetically quite
impossible or leads to the emission of slow
neutrons. (122) is still smaller if the y-rays are
energetic enough to produce fast neutrons by
photodissociation so that y,>v,. In any case,
the nuclear scattering of y-rays is entirely neg-
ligible compared to the Klein-Nishina scattering
which is of the order 10-% cm?2

(122)

APPENDIX

In this appendix we shall consider the influence of the
angular momenta of the various nuclei involved, on the
probability of the nuclear processes. We denote by J the
angular momentum of the compound nucleus C, by M its
component in a given (z-) direction, and by 7 all quantum
numbers of the state of the compound nucleus except the
angular momentum. Similarly, 7, m, p are the total angular
momentum, its 2 component, and a symbol abbreviating
the other quantum numbers for the initial nucleus 4, i'm'q
have the same significance for the final nucleus B. The
incident particle P may be characterized by an orbital
momentum /, a spin s, their components u; and us, their
resultant (total angular momentum) j and its 2 component

69 According to the end of §8, the neutron width will be
of the same order as the y-ray width for neutron energies
of about 1 MV or more. This is true if the residual nucleus
after the emission of the neutron can only be left in the
ground state. If it can also be left in an excited state, a
smaller neutron energy is sufficient to make v, ="~,.

w. The quantities /'s’ui/us’j’'u’ refer to the outgoing particle
Q. We shall also use, for incident and outgoing particle,
plane waves. In this case, the state of the incident particle
is defined by a unit vector x=k/k in its direction of
motion, and by s and y,. If a plane wave is used to describe
the incident particle, the z axis (axis of quantization) will be
chosen parallel to the direction of motion; if a spherical
wave of given / is used, the direction of z is arbitrary.

We assume first that the incident particle has a wave
function corresponding to a definite j and u. The proba-.
bility of the elementary process is (cf. (1))

) . 2w
WA i Pl by =
I3
HA,» iy PIHT BT Mgy
X| 2
rIM EA+EP—ErJ

S

Qrg’ittm i pt

2
- (201)

| Hr g0 oM iy | ?
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We are interested in the fofal transition probability to all
substates m’u’ of the .final system, averaged over all
possible directions of the angular momentum of the initial
nucleus and the incident particle, i.e. over all m and u.
This probability is

1
wApP . Poi, e~ wAgPim, Poi k(202
Biqi" Q' (2i+1)(2]'+1)m§,u B'q Qi ( )
The matrix elements may be written
Ha? M impip=wa" piri CTiM (203)

where the coefficients C depend only on spacial symmetry
while % depends on the special properties of the system
considered. The C’s fulfill the well-known orthogonality
relation
2 CT My O M % =87 18y a6 s (204)
mp
The normalization coefficient ¢/;; is arbitrary; it is con-
venient to choose

¢ii=1/2x. (205)

This also normalizes the quantities % introduced in (203).
With (203) to (205) we get immediately
Y 47 pipi =212 | H a7 M impiu | 2
mu
= (Wa? pirs) 212 | CTiM | 2= (W a7 pirs)?,
mpu

(206)

so that the last term in the denominator of (201) becomes

Yyw=3 2 valpugi=42 Welgigi) (207)
qulilil
Considering that H is Hermitian, i.c.,
HAeriMij” = HTAJpMi*mPJ'u; (208)

we have further

T 5

T (2641 QDb s

Z wal pip; urBqu,Qj,CJiMm*i“CJi,Mm,j,u, 2
Eg+Ep—E g+ 5iver

27

RCTENC TR R

X CJiMm*J.”CJi,Mm,i,u,CJ'iM’mmCJ'i,M'ml*i,“,

wAquli’PQ]i’

X

rJM

(209)

with

Sy=% WAl pipj u‘TBqu'lQ.J" .

y Ea+Ep—E, ;4 3ivey
The last sum in (209) may be summed first over m and g,
then over m’ and u’/, using the relations (204), (205). The
result is

(210)

@m)~t 3 darmedry = (2m) 22T +1)500

MM

11)

This relation shows that the contributions of compound
states of different angular momentum JJ' do not interfere.
The probability w becomes

1
ApPeti Pl = ) (27 +1
= e
walpir; Wa'qrgi |*
X ; - (212
;EA'f'EP_ErJ'f'%VYrJ 212)

It may be mentioned that it is not necessary to average
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over the magnetic quantum number g of the incident particle
but that the result (212) applies also to each magnetic
state p separately. This may be shown by a somewhat
more detailed investigation of the properties of the C’s.
We now consider the case that the initial and final state
of the particle is characterised by definite values of Isu; and
us rather than of j and p. This case may be reduced to the
one previously treated with the help of the C’s. These
coefficients appear in all problems in which two angular
momenta are compounded to form a resultant, such as 2
and j to form J in our previous problem, and / and s to
form j in our present one. Accordingly, we may write

HTAJpMiPlylsys = Z C”"yl:‘;erA"pMiPZsiu
i®
=) Cityysus €7 M jutt"a? pipisi. (213)
i*

With the help of a calculation on the same lines as our
previous one, which we shall give below, it may be shown
that states of different j of the incident particle do not
interfere, just as states of the compound nucleus of different
J do not. The same holds, of course, for states of different j’
of the outgoing particle. Consequently,

(1) the total probability of the transitions fo all states
of the outgoing particle with given I’ and s’ is obtained by
summing the probabilities for all values of j/ which are
possible for the given I and s’, i.e. j'= |V —5'| to I+,

(2) the average probability of a transition starting from
any state of given I and s is obtained by averaging the
probabilities for all possible values of j, taking account of
the statistical weights. Since 2741 is the statistical weight
of a state j, and (2/41)(2s4+1) that of all the states Is,
we have

’wAqu’i'PQll'sgl

1
S Qi Dwgrii Pl sy, (214
(21+1)(25+1)§(]+ Jwipreii Lol i ( )
or, inserting (212)
1
App i, Poly,s,, = - 2J+1
W = I 1) (2ot 1) (2i+ 1) ,§< +)
U 47 pip1sjW B qirqursrr | 2
X - 215
;EA+EP—ErJ+%17rJ 215)
with vo= 2, (WpJgirgue)t (213a)
Qraritrstit

Formulae (215), (215a) give the probability of the process
if the incident particle has given orbital momentum 7. In
reality, the particle has a given direction of motion ¥ and
must therefore be represented by a plane wave. If the plane
wave is normalized per unit energy and per solid angle 4,
its expansion in terms of wave functions with given angular
moments, is7

70 A simple proof of the factor (214 1)* is the following: The é function
may be represented in either of the two ways

8(r —r') = [ dE(dQ/4m) Y w (D) YRR ()*
= dEZYpim @V pin (). (216a)
Im
We insert (216) in the first expression and average over the direction of
x, i.e., of the axis of the polar coordinate system to which the spherical

harmonic in Y g0 =y gi1(r) Y10(3¢) refers. The average gives, according
to well-known relations between spherical harmonics:

S @Q/AT Y10 Viro(t) =810 ZV in (D Y irm (F') /(21 4+1)  (216b)
which reduces the middle expression in (a) to the right-hand expression.
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1223 (216)

=2 QU414
1

where Yz is real, is normalized per unit energy, and has a
magnetic quantum number yx;=0, i.e., no orbital mo-
mentum around the direction k. The factor (2/41)? differs
from the familiar 2/41 in the expansion of a plane wave in
spherical harmonics because we use here normalized
spherical harmonics, and the normalized harmonic Yy is
equal to (2/41/4x)tP,. It may then be shown along the
same lines as before that different /’s do not interfere.
Since the factor 2/4+1 in (216) cancels the 2/4-1 in the
denominator of (215), we have for the total probability

1
— 2741
2wk (25+1) (2i+1) ,f; @7+1)

> WA piptsi WB qirQuistiv
y EAt+Ep—E.j+31vrs

P
W' QPe=

17)

It remains to show that different j's and 's really do not
interfere. The probability may be written

2
wPePy= " Z

Hsml!py'ps'm!

2 g, O Myim

LjprI M p’

* -
U 47 pip1siW B qirQursr i CF jrMyr* i C1Tp Py oy r | 2

Es+Ep—
2
>

T RQ2sH 1) Q1) pugirraitive

X 2

Hymity g m g MMl g,

X CY iM% 1 CI s Mo i G

Ery+ 3y

StirirS*

aiatal’al’
Ci l“Osus lea"ao*sy CJyMp'an CJa jaM“ya *im

¥ g Cﬂal,“a”ls, ’

(218)

S Ay W A7 pip1s iU B girQursry
LI =1L ) *
r EA+EP —ErJ'f_ %’L'Yr-/

The second sum in (218) will be summed,

(1) over p/; and p's: The result will vanish unless j'o =7’
and p'o=p’'. This proves that different values of j/ do not
interfere, and the sum over p/, reduces to a single term.

(2) over u' and m': The result will vanish unless J,=J
and M,= M. Therefore different J’s do not interfere, and
the sum over M, reduces to one term.

(3) over M and m. Since we have already proved that
Jo=J and M,= M, this sum has the form

ZC’: imC

with (218a)

(219)

M oox, oz
7,, By M= CS;,aé,,,‘u.

This expression differs from the orthogonality relation
(204) in that the sum extends over the upper and one lower
index, rather than the two lower ones. But the C’s are,
except for normalization, symmetrical in the three angular
momenta J, j and 7 so that there holds the orthogonality
relation (219) similar to (204). C is a constant (in our
normalization 27(2J+1)/(27+41)). (219) shows that differ-
ent j's do not interfere and that the sum over uq in (218)
reduces to one term.

(4) There remains the sum over g and u;. In analogy to
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(219), we find that it vanishes unless /=1[,. This proves
(217).

We have, in this derivation, started from particle wave
functions with given /, and then constructed plane waves
out of these. It is equally possible to start from plane
waves. We may write

4 A2
P, p z".,K= - - TJ4+1
7 f47r (25+1)(21+1)ZJ:( +0
W47 pipsk WB7 girQsrk |2
X , 220
y Eat+Ep—Erj+3iv.s (220)
and vu= 3 [@/am) | wspseeelt  (221)

Qa'e’

These relations mean just that the particle wave functions
with different x, as well as the functions with different Im,
form a complete set. The proof is analogous to that in
reference 70. The matrix element %"4’,;psk may be
directly calculated using a plane wave for the particle,
the normalization follows most quickly from the fact that
the average of (u 47,ipsx)? over % represents the total
disintegration probability of state J with the emission of
particle P with energy E,(P).

Some special considerations are required for light quanta.
Corresponding to the two directions of polarization, we
have to put the quantity 2s+1 in the denominators of all
formulae equal to 2. (We have to average over the fwo
directions of polarization of the incident quantum, just as
over the 2541 directions of the spin of a particle.) The
selections rules (§3, beginning) on the other hand, cannot
be obtained satisfactorily with any value of s (see below),
but the value s=1 comes nearest to the truth. The reason
for this difference is that in the case of light there is a
relation between the polarization and the direction of
propagation whereas the direction of the spin of a particle
is quite independent of its direction of motion. Thus the
polarization of the light introduces a spherical harmonic of
order one in the matrix element but only a weight factor 2
which would correspond to s=3. The same fact also
prevents the existence of any wave function for a light
quantum with total momentum j=0.

To investigate the selection rules, we expand a plane
light wave e?k'r in spherical harmonics with the direction of
k as polar axis (z axis). The two possible directions of
polarization x and y are perpendicular to k. The operator
of the radiation theory may therefore be written

a a
etk ra— ZXL(kr) Yio(9) (sm & cos <p—‘+ 60+ . 5;)

=2 xr(kr)larpu(Yip, 1+ Yo 1)

an(Vao, ok Vi, T4, (22)
where the a's are certain coefficients. For each value of L,
the total momentum j may thus have the values j=L-1 or
L—1. This would correspond to s=1 except for the fact
that j=L does not occur for light. Furthermore, j=0
which should correspond to L=1 does actually not occur
at all in (222) because the spherical harmonics Yy and
Yy, do not exist,
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For light, only small values of kr are important because the
wave-length of the light is generally large compared to the
dimensions of the radiating system. Now, according to (18),
s @ we have x;1* (kr)7 and xj.1® (k)72 so that the first term
ekr— =3 (Vy+Y;.) in the square bracket in (223) is always much more

0% =1 important than the second. The terms j=1, 2, 3, -+ (or
L=0, 1, 2, ---) correspond to dipole, quadrupole, octo-

pole . . . radlatlon

We may rewrite (222) using the total momentum j
rather than the “orbital” momentum L for labeling the
terms:

a
X{[“:‘X:’—l(kf’)+ai+1Xi+1(k7) :]g);-f- .- }' (223)
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For purposes of reference the continuous spectrum solutions of the Dirac wave equation for
the Coulomb field are given. The solutions in the form of series and integral representations
and the asymptotic behavior at large distances are included among the formulae.

HE solutions in the continuous spectrum of

the Dirac wave equation for the Coulomb
field have been known and used extensively for
some time. However, the form in which they
appear in the literature is not convenient for
some purposes. It is with the intention of
furnishing a reference from which one may
obtain the wave functions with a minimum
expenditure of time and labor that the following
formulae are given.

For the sake of simplicity we adopt a system
of units in which energy is measured in mc?,
" length in #%/mc¢ and momentum in mc. The
symbols which occur below have the following
meanings:

Yrpaysys, the four components of the wave function.

frand g, radial wave functions.

Y14, normalized spherical harmonics (see Eq. (2)).

4, total angular momentum quantum number.

m, magnetic quantum number.

J, auxiliary index characterizing the wave functions.
( is the orbital momentum for the electron only, in
the nonrelativistic limit.)

W, absolute value of the energy.

b, absolute value of the momentum = (W2—1)3.

a, fine structure constant =e?/%kc.

Z, nuclear charge.

The wave functions are of two types:
Type a, j=1+3,

l—m+3
Y= (21+3) Yii, maif,

l+m+2 i
Yo=1 ( ) Yis1, maify,

I4+m+3\}
¢3=(———) Yy, magn (1a)
214-1
(52
4= 2l+1 1, m+341
130, —(+1)<m—1<i—1.
Type b, j=1—1,
(lHm =5\
¢1=1(“—) Yl—l, m—}f—l—-ly
21—1
I—m—}\}
Yo= —t(r) Vi, misfoion,
l—m435\?
-_—(——Z—i:?_*l—) Y[,m—!g—l—l, (lb)
I+m+3\
=(T+r) Yl,m+ig—l—l)

131, —I<m—3<i—1,



