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With the detailed knowledge available at present of the
nature of the metallic state, an attempt has been made to
estimate quantitatively the resistivity of the monovalent
metals. It is shown that the older conception of a "de-
formable" potential gives for Na a resistivity about 9
times too high. In our new formulation the resistivity is
simply due to the fact that in a distorted crystal the
proper solutions are not of the type of progressive waves,
but linear combinations of these. The transition proba-
bilities can be worked out under the assumptions that the
charge distribution of the conduction electrons almost
compensates the electrostatic potential due to the shift of

the ions from their equilibrium positions and that in the
undistorted crystal the periodic factor uI, in the wave func-
tions u& exp (2~ik R) does not depend sensibly on the wave
number k. In this case only the average electronic density
and not the exact form of the wave functions and poten-
tials is found to be relevant. The result can be expressed
by an interaction constant C, which measures the average
scattering effectiveness of the elastic waves. The compu-
tation gives C/So=0. 84, where B0 is the Fermi energy.
The empirical values are for Na 0.77, K 0.81, Cu 1.12,
Ag 1.21, Au 1.19.

cause a shift of the points of the crystal which we
will represent by bR. By "deformable potential"
it is meant that the potential at the point
R+bR in the distorted crystal is the same as that
at the point R when the crystal is not deformed.
Starting from this assumption and taking the
change in the potential due to the distortion as a
perturbation acting on the electronic wave func-
tions of the undistorted crystal, S.B. obtained a
simple expression for the resistivity, 4 in which
only one "interaction constant" was left unde-
termined. This constant was expressed as an
integral requiring only the unperturbed wave
functions (compare (22)). Wigner and Seitz'
have since determined the wave functions for Na
and we have used them to evaluate the constant.
The value obtained when substituted in the S.B.
formula gives a resistivity about nine times that
observed.

That the assumptions made in this theory
should lead to a very high value for the resistivity
is quite understandable. The wave functions and
the potentials are both large and vary rapidly
near the centers of. the ions. A displacement of
the ions would, according to the Bloch hypothesis,
cause a shift of the large part of the potential
against the large part of the wave functions, and
would produce an asymmetry in the potential
near the center of the ion. Neither effect actually

(1. THE MQDEL

HE present theory of metals explains the
normal resistance by the interaction of the

. heat motion of the lattice ions and the conduction
electrons. By describing the heat motion by the
Debye concept of elastic waves, it has been found
under rather general assumptions that the mecha-
nism of interaction which produces the resistance
consists of Bragg reHections of the electronic
waves from the elastic longitudinal waves, the
transverse waves being ineff'ective. Though this
picture is certainly correct in its essence, a
satisfactory theoretical computation of the re-
sistivity has not yet been given even. for the
simplest metals. It is the purpose of this paper to
attempt such a computation for monovalent
metals.

The main problem in such a computation is to
achieve an unambiguous description of'the mo'de

of interaction of electroriic and elastic waves. In
the nearest previous approach to a definite
theory, Bethe, ' following the ideas of Bloch, ' has
used the hypothesis of a "deformable potential. "
In an undistorted crystal the electrons are
subject to a perfectly periodic potential V(R), R
being the coordinate vector. The heat oscillations

' Presented at the Washington meeting of the American
Physical Society, May, 1936. Submitted as a thesis to the
Faculty of Purdue University by E. L. Peterson.

~A. Sommerfeld and H. Bethe, Handbuch der Physik
Vol. 24, second edition (Berlin, 1933). Quoted hencefort
as S.B.

3 F. Bloch, Zeits. f. Physik 52, 525 (1928).

h 4S.B., p. 523 (36, 11).
~ E. Wigner and F. Seitz, Phys. Rev. 43, 804 (1933);46,

509 (1934). Henceforth quoted as W.S.
355
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occurs. The inner part of the wave function will

remain in the same position relative to the ion
and the inner part of the potential cannot be
much changed by the small shifts of the ions
against one another. It is therefore clear that the
Bethe-Bloch formulation overestimates the inter-
action and therefore the resistivity. The entire
method of describing the effect of the elastic
waves as a perturbation of the wave functions
of an undistorted crystal is hardly adequate,
because the displacements due to heat motion,
while small compared to the normal distance
between ions, are not small compared to the
dimensions of the region where the potential and

~ wave functions are large. Therefore, though the
wave functions and the potential in a distorted
crystal will be quite similar to those in the un-

distorted crystal it is not possible to represent
them by a Taylor development in terms of the
undisturbed functions.

The consideration that the large part of the
wave functions should follow closely the motion
of the ions suggests a procedure better suited to
the actual physical situation. Due to the relatively
slow motion of the massive ions it will probably be
a fair approximation to assume that the electronic
wave functions follow them adiabatically. Such
an adiabatically deformed wave function will be a
much better starting point for calculating transi-
tion probabilities than the wave functions of an
undistorted crystal.

The wave functions in an undistorted crystal
are of the well-known Bloch type

&I,=II, exp (2mi(k R)),

where uI, has all the periodicities of the lattice and
k is the propagation vector. Since the exponential
factor does not affect the electronic charge
density, Wigner and Seitz first determined the
function uo for an electron at rest by the self-
consistent field method. The functions belonging
to moving electrons, (k+0), were then treated
by a perturbation calculatioa. It was found that
the u& were practically independent of k, i.e.,

that the wave functions of the higher states
were given in good approximation by multiplying
the function uo by the proper exponential factor.
This seems to hold very well for Na and fairly

well for the other monovalent metals' with the
exception of Li, Rb, Cs. If the crystal is dis-
torted the function uo will go over into a new
function Uo which would again have to be found

by the self-consistent field method and which is,
in principle, unique.

As uo exp (2~ik R) represents well the wave
functions in the undistorted crystal, it is sug-
gestive to approximate the wave functions in the
general case by Uo exp (2vrik R). It is then found
that one such function alone does not give a
sufficient approximation but that a better one
can be found by a superposition of such waves.
This only expresses but the well-known fact
that, in presence of a perturbation, not the
progressive exponential waves but standing sine
and cosine waves would be the proper solutions.
The same fact can also be expressed in this way
that in a description by progressive waves one
will have transitions from one state to the other.

The transition probabilities can be worked out
by a straightforward scheme~ which is slightly
more general than the usual one. The matrix
element in question can then be transformed into
an expression which contains only one Fourier
component of the electronic density Uo' in the
distorted crystal and does not contain the po-
tential. A complete solution would thus require
the determination of the function Uo perhaps by
a method similar to the W.S. method for the
undistorted crystal. This seems to be an ex-
tremely complicated problem. But for the value
of our matrix element only the deviation from the
practically constant density in the crystal at rest
is relevant. The general features of this density
can be obtained directly. In a monovalent metal
the electrons are easily movable. Therefore no
differences of electric potential can exist over
distances greater than atomic ones, that is, the
electronic Huid will have a very high dielectric
susceptibility. Since the volume of the elementary
cells and therefore the distribution of positive
electricity will be changed by an elastic wave,

' For a general survey of metallic eigenfunctions compare
J. C. Slater, Rev. Mod. Phys. 0, 209 (1934).Wave functions
for Li have been calculated by F. Seitz, Phys. Rev. 4V, 400
(1935), for Cu by H. M. Krutter, Phys. Rev. 48, 665
(1935) and K. Fuchs, Proc. Roy. Soc. A151, 585 (1935).

~ It is to be noted that we use a perturbation calculation
only to go over from the states k=0 to those with k+0,
and not for obtaining the eigenfunctions in the distorted
crystal from the eigenfunctions in the undistorted one.
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there will be an additional electronic density
which in the average will compensate the former.
This average density alone determines the magni-
tude of the interaction integral and can be
obtained easily. The statement that the charge
distribution of the conduction electrons will be
such that it will destroy a potential due to the
displacement of the ions is clearly the cor-
rect formulation of the deformable potential
hypothesis.

With the above picture the resistivity can be
obtained by a very simple calculation the results
of which fit the experimental data remarkably
well. The resistance of Na and K is given
quantitatively if one uses the new values for the
Debye temperature for these substances as given

by Fuchs. ' For Cu, Ag, Au one obtains somewhat
too low values for the resistivity which is

probably due to the fact that the principal
assumption that the nI, are independent of k for
the undistlrbed crystal is not so nearly fulfilled.

In our theory, the factor which determines the
resistance is essentially the change of volume of
the elementary cells due to the elastic displace-
ment. From this follows that in our case only the
longitudinal waves are effective. It follows further
that also for molten metals only the compression
waves will contribute to resistivity and not other
types of disorder which may be present. We
obtain thus a justification for Mott's treatment
of the liquid metals. The argument for this may
be put more directly. In the case of a displace-
ment which does not change the volume of the
elementary cells, a practically self-consistent set
of proper functions of the progressive wave type
can be constructed.

In )2 we collect the formulae of the general
theory of conductivity which are necessary for
our purpose and we evaluate the Bloch-Bethe
interaction constant. f3 contains our new theory
and our final results. In f4 we have attempted a
more detailed discussion of the function Up by a
more direct method. In the appendix we give a

8 K. Fuchs, Proc. Roy. Soc. A153, 622 (1936)..' N. F. Mott, Proc. Roy. Soc. A146, 465 (1934) has shown
that the change in resistivity at the melting point can be
fully accounted for by the change in the Debye temperature
0 which may be deduced from other physical properties.
He also gives the interpretation that in the liquid state
only longitudinal waves contribute.

generalization of the scheme for calculating
transition probabilities so as to include functions
which are not strictly orthogonal.

)2. GENERAL FORMULAE OF CONDUCTIVITY,

BLocH-BETHE THEoRY

We will need certain formulae of the general
theory. The wave functions of the electrons are
of the form (1). For monovalent metals the
energy as a function of the propagation vector k
is practically spherically symmetric. It is closely
approximated by

Eg = (h'k') /2)rI.

The group velocity has the form

1 BEg, hk
V~=—

h8k, m

(2)

(3)

The resistivity" for temperatures well above the
Debye temperature 0 may be written in the
well-known Drude-Lorentz-Sommerfeld form

Xe (1 dE) ~ Ne'
0 = '7 = '7p)

kkp Ek dk ) p jk=kp m

in which 1V is the number of conduction electrons
per unit volume and where the subscript p means
that the quantities have to be taken at the top
of the zero Fermi distribution. 1/r is the
probability that an electron will have its state
changed by a "collision" in unit time. If there
exists an elementary probability U» for the
transition k~k', we have

1/r = 2~) U~I., 0"(dk'/dE') (1 —(0'/0) cos 8)

Xsin BdddE', (5)

"L.Nordheim, Helv. Phys. Acta 7 (supplernentum II),
& (&934),

6 being the angle between k and k'.
Following the concepts of the general theory

of resistivity, we assume that such transitions are
caused by the interaction of electronic and
lattice ion motion. The Debye theory describes
the ion motion as a superposition of independent
elastic waves, whose wave number we may
represent by f. The displacement of a point R in
the lattice due to such a superposition of elastic
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waves will be

8R= +SR',
f

bRf =nz;[af; exp (2~i(f R))

+al;* exp (—2mi(f R))]

Qf j is the wave amplitude and nf; is a unit
vector giving the direction of displacement,
being parallel to f for longitudinal waves and
perpendicular to f for transverse waves. The
wave number f takes all integral values up to
the maximum given by

k f„=k (3N/4~) '* = kv„/c = k 0/c. (7)

Nf is the quantum number of an oscillator and d
the density of the material. For high tempera-
tures (T)0) the average number of quanta per
oscillator is

where N is the number of ions per unit volume
which for monovalent metals is equal to the
number of electrons per unit volume, v the
maximum frequency corresponding to the maxi-
mum wave number f, c is the velocity of sound,
and 8 is the Debye temperature. The wave
amplitudes af; have to be quantized:

, Nfl for the transition
Nq~NI 1(absor—ption);

(Nf+ 1)l for the transition
Nq~Nq+1 (emission). (8)

the factor 2 arising from the fact that an oscil-
lator can scatter an electron in the process of
emission as well as of absorption of a sound
quantum, the matrix elements being essentially
the same for both processes.

Since the matrix elements are approximately
linear in the oscillator amplitudes, it is con-
venient to define new elements which will be
practically independent of them by

G» =2~iI f In~F». (k). (15)

F~~ will thus be independent of temperature.
If we insert (7), (9), (10), (12), (14), (15) in

(4) we have the final formula

where s denotes a state of the total system,
electron plus oscillators, the time factor leading
to the factor 4~/k after integration over the
energies in the well-known way.

The interference condition (11) restricts the
direction in which an oscillator can scatter an
electron. For this reason f can be introduced as
variable instead of 8 by the relation,

f'= k'+k" —2kk' cos 8. (13)

If one introduces this in (5) and carries out the
integration over the energies, neglecting the
small difference between E~.. and E~ one obtains,

4~' 1 1 fm

l
G» l'f'df (14)

k k' dE/dk

and

N~-—N~~1 =kT/kvr

kT f' kT
I2 f~~l'=

2d v ' 2dc'

(9)

(10)

It will be seen later that in our theory, as in
the Bloch-Bethe theory, the possible scattering
processes will consist of Bragg reHections of the
electronic waves from the elastic waves with the
emission or absorption of a sound quantum, i.e.,
an oscillator f may suffer a transition for which
the interference condition,

noe'16M dE ' (k8)' 1
0 = kp

h' 9x dk p 1 Ji'
(16)

with ~'» f'df
fm 0

(17)

k'kp

dk k= kp 7R

ko=
( )

(18)
E8 )

np is' the number of electrons per atom, and 2II is
the mass of an atom. For E we take the approxi-
mate expression (2) and we have

k' —k= af,
is satisfied. The transition probability will be of
the general form

8 4 sin' (vr/k) (E,. E~,)t—
(12)

(& —&* )'

In (16) everything except the "interaction con-
stant" F is known.

If one uses the Bloch-Bethe hypothesis, G»,-

will be the matrix element of the "deformable
potential. "

Up to linear terms in the oscillator
amplitudes, we have
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GII. = "pz.*SR grad UopIdv (20)

By using (6) and the periodicity properties of Uo

and Pl, it is easily shown that only longitudinal
waves give nonvanishing matrix elements and
they do so only if (11) is fulfilled. The expression
reduces to

G», . =a&~| u&*(f/ f~) grad Uou&dv, (21)

which is to be integrated over only one ele-
mentary cell. The function uI, is normalized in
one cell. By partial integration and use of the
Schrodinger equation (21) reduces to'"

Gyp ——2miaf F,

I'=-', C= —',(k'/8x'm)~I ~grad u,
~

'dv.

(22)

In this expression the fact that uI, and uI, are
practically identical has been used. The inter-
action constant I', according to this hypothesis,
is independent of the wave number.

If (22) is inserted in (16) o. becomes identical
with Bethe's expression" except for the differ-
ences of notation. There we find 2~k replaced
by K, h replaced by 2~k and F' replaced by
(4/9) C'.

We have used the function uo calculated by
W. S.' " to find the theoretical value by nu-
merical integration of the expression (22) for C.
The value obtained was 7.6 ev or about 2 to 3
times the empirical value. (Compare the table at
the end of (3.) Since the resistivity is propor-
tional to C', the theoretical value'is 5 to 9 times
the observed value. "

"Compare S.B., pp. 512—513.
» Compare S.B., p. 523 (36, 11).
'3 We are indebted to Dr. F. Seitz for kindly furnishing

us a tabulation of u0 for Na."In an earlier paper one of the authors (L. Nordheim,
Ann. d. Physik 9, 607 (1931)) has discussed as an alterna-
tive to the Bethe-Bloch hypothesis that of a "rigid ion."
Here the ionic potential is thought to be shifted rigidly as
a whole by the elastic displacement and again the difference
to the unshifted potential is taken as a "perturbation. "
This would give, as can be shown easily, a smaller resistance

bU= Uo(R+hR) —VD(R) =SR grad Uo, (19)

where Vo is the potential in the undistorted
lattice. The matrix elements will be

(3. NEW CALCULATION OF RESISTIVITY

We assume that in an undistorted crystal the
wave functions are of the type (1) with uI,

independent of the wave number, which is
equivalent with the assumption that the energies
have the form (2). We consider now a crystal
deformed by heat oscillations of the type (6).
In this case we have to work with a Hamiltonian
for the electron,

II= —(k'/8~'m)D+ V(R, ag)+ZIIf
= IX,I+XIII, (23)

where ZH~ is the Hamiltonian of the oscillators,
and H, ~ represents the kinetic and potential
energies of the electron. V, we may suppose,
has been determined by the Hartree method and
contains the oscillator amplitudes as parameters.
It is to be noticed that we do not separate V
into a part Vo and a perturbation term according
to the usual procedure. The potential V is real
since we have taken 8R as real. Of the several
solutions of the Schrodinger equation

II.) U= —(k'/8v'm) 52+ VV= XII (24)

there will be one, Uo, which will go over into uo
as the oscillator amplitudes vanish. This function
must be real since it must be nondegenerate if uo
is nondegenerate and it must satisfy the same
'boundary condition (periodicity with respect to a
cube of 1 cm in length) as uo. The proper value
Eo for the distorted crystal will be practically the
same as for the undistorted crystal. A develop-
ment of Eo in terms of the amplitudes af must
start with quadratic terms since a change in the
sign of the amplitudes could not change the
energy.

For the calculation of the conductivity we
must have in addition to Uo the higher functions
Py corresponding to k+0. As we have assumed
that uj, is practically independent of k we will
try the following combination for Ikz.

Pg ——Up exp 2v-f(k. R). (25)
than the "deformable ion" and would agree better with
experiment. Also the rigid ion probably represents more
closely the actual physical situation as the effective potential
is now known to be nearly that of the ion (without much
contribution from the conduction electrons) which certainly
will not be deformed to any appreciable extent. We have,
however, not taken up the discussion from this point of view
since the same inconsistency, a shift of the rapidly vary-
ing parts of the potential and the wave functions against
each other, would appear also in this case,
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The functions (25) are not true characteristic
functions of the Hamiltonian in contrast to the
case of the undistorted crystal, but they have
certain properties which show that they must be
closely related to them.

I. Since Up is real they give the same current
as the corresponding functions of the undistorted
crystal

h hk
' (Pp* grad Pp fp gr—ad P&")dv =—. (26)

4 zm& m

This ensures that the Pp (25) are suitable for the
treatment of conductivity.

II. The average value of the energy is different
from Ep by the same amount as for an undis-
torted crystal

would enter into the determination of the self-
consistent field. The effect of the distortion can
therefore be adequately described by considering
the secular perturbations between the functions
(25) or, which amounts to the same thing, by
transitions between those states, as we shall
show. The functions are different from the
functions usually used only in that that they are
not strictly orthogonal to each other. This
requires, as is shown in an appendix, that the
matrix elements must be corrected for the non-
orthogonality. The matrix elements HAA, have to
be replaced by

G&.& FI&.& E&d»—— —
p& *(FI——E&)/Id—v, (30)

P~, *FIe~fpdv =Ep =Ep+ k'k'/2m

We have for FI,~gp the expression,

II.iA =
h'

6+ V Up exp (2~i(k R))
8x'm

=exp (2v.i(k R)) — EUp+ UUp
8vr2m

(27)

where E& is the average energy of the state k

and d» the nonorthogonality integral. The
expression G& & can be introduced directly in

(14) to (17) to obtain the conductivity. (It is
understood that the integration over the oscil-
lator functions has already been carried out.
Since H contains the amplitudes af the oscillator
matrix elements for the transitions considered
have to be inserted. ) From (25), (28), (30), one
finds

h'k'
+

2m

ih'
Up — k grad Up

27rm

ih'

ih'
Gp q = — exp (27ri(k —k') .R) k grad U, 'dv,

and integration by parts yields

=exp (2v.i(k R)) Ep — k grad Up .
27rm

In the integral (27) the term

Upk grad Updv= p k grad Up'dv (29)

vanishes, as it can be transformed into a surface
integral, and Up takes the same value at two
opposite boundaries of the crystal. (27) ensures
that there will not be any appreciable second
order terms if we take (25) as the starting point
of a perturbation consideration.

The functions (25) have the same average
energy and current as the proper functions of
the normal lattice and become identical with
them if the oscillator amplitudes become vanish-

ingly small. They have, furthermore, the same
charge distribution Up' as those corresponding
to an electron at rest, so that the latter alone

k (k —k')k' p
I exp (2vi(k —k') R) Up'dv.

2m (31)

It will be shown that to a reasonable approxi-
mation GI, I, vanishes unless the interference
condition, k —k = ~f, is satisfied. Conservation
of energy requires that k and k' are practically
identical and if we neglect the small difference,
k (k —k') can easily be expressed in terms of f,

k (k —k') =
[
k

[ (f )
cos 6 =f'/2

With this (31) becomes

Gp a= —(f'k'/4m) Kp a

with XI, & defined by

(32)

KI p =
J

exp (2v'i(k —k') R) Up'dv. (33)

The only formal difference between our theory
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and the Bloch-Bethe theory is therefore that
their matrix elements have to be replaced by the
new ones (33). The essential point here is that Up

is supposed to be the actual self-consistent wave
function for an electron at rest in a crystal dis-
torted by an elastic wave with wave number
f =k —k' and contains the amplitudes a~ as does
(22). The integration is over the whole crystal.

Up' represents the electronic density in the
crystal; (33) is therefore one Fourier component
of this density, and one belonging to a com-
paratively long wave-length. Therefore, the value
of this integral will be determined chieHy by the
variation of the total charge from cell to cell and
deformations of the distribution inside the single
cells will not be important. This total charge of
the cell will be such, that it compensates, to a
high degree of accuracy, the positive charge of
the ion since otherwise electrostatic potential
differences over large distances would be pro- .

duced. This will hold at least as long as
(1/

~

k —k'
~ ) is large compared to the atomic

distance. In this case it does not matter for the
value of E~~ how the charge is distributed over
the individual cell. XI,I, will therefore be given
to a fair approximation by a smooth function
Up'which just compensates the change in volume.

The volume v of a space element changed by
the distortion bR (compare (6)) is given by

F= II,2f'/4m,
(38)

and this has to be inserted in (17) and (16) to
obtain the conductivity.

In the Bethe-Bloch theory Fwas to be replaced
by —,C (compare (22)). In distinction to their
interaction constant C, our F still contains the
wave number of the elastic waves. With (38)
and (17) we obtain

f~ 1 ph, pf 2y 2

f'df = I-I (»)
&2222) f„4 p 8 4 2222 )

From (7) and (18) we get f = kp 2l and
therefore instead of the Bethe C

div 8R~ ——22rifa~ exp (22ri(f R))
+conj. complex. (37)

(33) is different from zero only if the inter-
ference condition,

k' —k= af,
is satisfied for a certain oscillator. The emis ion
of a sound quantum ( —sign) involves only the
amplitude aq, the absorption (+ sign) only aq*.
In both cases we get the same absolute value for
Gpp . With (37) we get for emission

$2f2

Gp2 —— 22rif ag=27rifaI F;

v =2tp(1+div 8R). (34)

The density which compensates the change of
volume expressed by the second term is therefore,

3 3 2i kp'h'
C..).~ (F') *=—

2 22: 2m
=0.84Zp, (40)

p= (pp/1+div 8R) =pp(1 —div 5R). (35)

If Up is normalized in unit volume, one obtains
for the interaction integral (32)

k. (k' —k)
I22 t exp (22ri(k' —k) R)

2m

X(1—div 8R)dv
(36)

k (k' —k)
72'JI exp (22ri(k' —k) R)

2m

mdiv bRdv,

since the integral over the undistorted part
vanishes.

div bR is different from zero only for longi-
tudinal waves (nI;~~f) and therefore

where Ep is the Fermi zero point energy.
The comparison with experiment has been

made in the same way as in S.B.," that is from
the empirical conductivity and Debye tempera-
ture a value C,b, has been determined and
compared to the value (40). Table I gives the
relevant data for those metals for which one can
expect that our assumptions are su%ciently
fulfilled. There is rather an uncertainty in the
Debye temperatures for the alkalies. The higher
values for 8 are those used by S.B.The lower ones
are those given by Fuchs in a recent paper which
are probably better. The best values will probably
be slightly higher than his lowest values (perhaps

170' for Na and 110' for K), as he extrapo-
lates to T=O whilst for the conductivity the
values of 0 for room temperature are relevant.

'~ Reference 2, page 524.
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TABLE I. Calculated and observed values of C and pertinent
data for Na, X, Cu, Ag, Au.

Element

Atomic weight

Conductivity P 104 (in
0 'cm ') at0'C

23

22.6

39

15.3

Cu Ag Au

63.6 108 197

64 67 68

Debye temperature 0 202—150 126—100 315 215 175

Zero point energy Eo
(in ev)

Radius of s sphere
X 10 (in cm)

3.16

2.11

2.06 7.10 5.52 5.56

2.56 1.41 1.59 1.59

Cobs (ev) 3.28-2.44 2,35- 7.9 6.7 6.6
1.66

Ccalc (ev) 2.66 1.81 5.91 4.68 4.68

C,b, is directly proportional to 8 (compare (16)).
We have given therefore in the table the limits
for C,b, corresponding to the values of 0 quoted.

We see an almost perfect agreement of our C
with the C,b, obtained with Fuchs' values for 0.

By comparing this with the value of 7.6 ev as
obtained from Bloch-Bethe theory for Xa we see
the improvement compared to the older theory.
The calculated values for the noble metals come
out too low, i.e., the observed resistivities are
higher than those calculated. This is most
probably due to the circumstance that our
principal assumption that in the undistorted
crystal the functions u& are independent of k,
holds less well.

Because the theory uses the Debye model for
heat motion and the Hartree approximations for
the electrons, both of which are certainly none
too good, the excellent agreement for the alkalies
is not really significant. In our calculation the
effect of the shorter wave-lengths (near f ) is
probably overestimated since in this case the
compensation of the ionic charges might not be
so complete. On the other hand, the effect of the
long wave vibrations (small f) is probably
underestimated. Our matrix element is pro-
portional to f' and therefore becomes very small
for small f.Other effects neglected in our approxi-
mation may be important in this range, though
for the average they do not matter much.

The matrix elements for small f will be most
important at low temperatures, since then they
alone are thermally excited. A substitution of our

expression (38) for the matrix element in the
Bloch formula for the conductivity at low
temperatures would lead to proportionality to
T' instead of the usually assumed T' law. We do
not consider this as a serious objection against
our theory. As mentioned above any neglections
will be much more serious for small T. It will

probably not be justified to take UI, , for the
Fermi energy as equal Uo, and the distinction
between the two should introduce a term similar
to the Bethe-Bloch theory, though much smaller.
We have not investigated the resistance at low

temperatures more closely in this paper because
the whole theory for this case is still not in
order. The new W.S. results on the eigenvalue
distribution in monovalent metals exclude the
possibility of the Unzklcpp-I'rosesse of Peierls and
therefore the mechanism of producing equilibrium
between thermal and electronic motion is
uncertain.

(4. WAVE FUNCTIONS IN THE DISTORTED

CRYSTAL

We discuss in this section the properties of the
wave functions which we have used, and the
problems which an accurate treatment of a
distorted crystal by the self-consistent field

method would involve. This leads to another
approximation for the calculation of the integral
(33) which gives practically the same results as
those given in the last section.

To obtain the self-consistent field and wave
function in a crystal Wigner and Seitz divide the
crystal into elementary polyhedrons constructed
by passing planes perpendicularly through the
midpoints of lines joining the neighboring atoms
with each other. If the potential and wave
function are found for a single polyhedron they
can be found for the entire crystal from the
periodicity properties. It has been found that the
self-consistent field in any polyhedron is given in

good approximation by that due to the ion in the
polyhedron and that the boundary condition for

No, vanishing derivative normal to the faces of
the cell, can be replaced by the requirement that
the derivative normal to the surface of a sphere"

' We use the following notation: R is the coordinate
vector in the crystal. The equilibrium position of the nth
ion is denoted by R„.A shift in the position of an ion is
denoted by BR so that R„=R„'+SR„.The coordinate
vector taken from the center of an ion to a position in the
cell is denoted by r so that in the nth cell we have R =R„+r.
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("s sphere") of equal volume shall vanish. "That
this substitution involves only a very small error
is insured by the extreme flatness of the wave
function in the outer parts of the polyhedron.

If one inserts the form (1) for the higher
functions in the Schrodinger equation one obtains

Aup+4~ik grad uI,

+ (8''m/k') (El, —k'k'/2m —v) u/, n ——(4. 1)

This is different from the equation for uo by the
shift in the energy, k'k'/2m and the term
4mik grad uf, . If the term 4zik grad u~ is treated
as a perturbation term one finds that the' first
order change of energy vanishes. Wigner and
Seitz have computed for the Na ion the second-
order term also and have found it to be very
small, due to the flatness of uo. It is for this
reason that the higher functions are fairly well

approximated by multiplying uo by the term
exp 2~ik R.

We have now to consider the distorted crystal.
The first difference from the normal case is that
the ions and their contribution to the potential
will be shifted to new places.

While the ionic potential alone gives approxi-
mately the complete self-consistent field in an
undistorted crystal a distortion will give rise to
other terms, one due to imperfect compensation
of negative and positive charge and another due
to deformation of the electron charge distri-
bution. If such terms did not appear one could
take the wave functions simply as the Wigner-
Seitz functions around each ion. They would join
smoothly even in a distorted crystal due to the
flatness in the outer portions of the cell.

If the distortion were such that no change in
volume of the cell were produced the only new
potential would be a weak electrostatic action of
one cell upon neighboring cells. This would be
caused by the distortion of the cells from almost
perfect spheres to ellipsoids. If this small term is '

neglected one would obtain a solution for any
wave number k by taking the solution which
behaves like exp (2mik r) in the cell and multi-

plying it by a factor exp (27rik R„) in the
nth cell. This function would be practically
continuous over the whole crystal since it would
approach exp(2vrik R) between the ions and it

'7 The potential and charge distribution are then
spherically symmetric and a cell does not contribute to the
potential outside its boundaries.

w'ould be a solution of the Schrodinger equation.
To this approximation there would therefore be
no transitions between different states and thus
no contribution to resistivity. The fact that the
molten monovalent metals show no additional
resistivity which can be attributed to the dis-
order of the liquid state can be taken as an
empirical justification of the above argument.

If, however, we consider displacements which
cause a change in the volume of the elementary
cell the situation is quite different. If we took
for Uo simply the Wigner-Seitz function around
each ion they would still join smoothly. They
would, however, give a nonuniform electron
charge distribution. Cells which were reduced in
volume would be positively charged while those
increased in volume would be negative. Such an
effect would cause a strong electrostatic dis-
turbance. However, since the electrons in the
metals considered behave nearly like free elec-
trons, as we have pointed out above, this effect
will be almost perfectly compensated by redistri-
bution of the negative charge.

It would be desirable to justify this assumption
rigorously by setting up and solving the self-
consistent field problem including the electro-
static forces mentioned. We have not been able to
do so thus far, but as these forces must be small

because of the compensation mentioned, the
main part of the potential will still be given by
the ionic potential. . It must be possible, therefore,
to construct a fairly close approximation to the
function UII by a proper combination of W.S.
solutions. We have made such a calculation and
we reproduce it here not because we believe that
it is a better approximation than that used in the
previous section, but more to show that the final
result does not depend sensibly on the exact form
of Uo. Furthermore one can see by this method
that the irregularity of the wave function near
the centers of the ions is of no importance for our
problem.

The simplest approximation one. can make is
to take the spherically symmetric W.S. function
around each ion and to multiply it by a factor
that will give the proper negative charge in each
cell. This function is given in the nth cell by

(42)

where vo is the volume of the undistorted W.S.
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sphere and 2vfy„ is ——', div 8R taken at the
center of the ion in its actual place in the crystal.
This means, of course, an approximation of the
true continuous function by a step-like function
which otherwise has all the required properties.
To better the 6t at the boundaries one could try
to introduce other solutions of different sym-
metry, but we have not found a systematic way
of doing this,

With Up given by the function (42) the integral
(33) can be evaluated by integrating over each
cell separately and then summing over all cells.
In this evaluation the change of the amplitude
of exp (2s.if r) within the cells contributes to the
integral. We have found by numerical calculation
that neglecting the variation of No in the cell
introduces an error of only about 1 percent, since
the rapidly varying part is small compared to
the wave-length of the elastic wave. The integrals
over the cell can be divided into two parts, one
over the undistorted cell, and another over the
change in volume, and all integrations carried out
by elementary methods.

As a result of this calculation one obtains 6nally

Fpp. ——( fh'r, /4m vp)

X [4 sin x/x —4 cos x—x sin xj (43)

C = (3/2) (F') ' = 1.04Ep. (44)

Ke obtain thus a somewhat higher value than
by the previous calculation. (Compare (40).)
The difference is of course due to the diferent
assumptions about the distribution of negative
charge and it shows roughly the uncertainty
which is involved in our theory at the present
stage.

with x = 27rfr„and where r, and v p are radius and
volume, respectively, of the undistorted W.S.
spheres. This Fpp is the equivalent of (38).
Since it contains f only in the combination fr„
which is dimensionless, the integration (17) to
obtain Ii' is the same for all monovalent metals
with the upper limit x =2vf r, = 2m. ( 3/4~)'*. The
only dependence of (45) on the particular metal
considered is contained in the factor r, /vp 1/rP
which is the same as that of the zero point energy
as shown in the previous section. The Anal result
can also be given the same form as in )3.

APPENDIX

TRANSITION PROBABILITIES FOR NONORTHOGONAL WAVE FUNCTIONS

P = Zc,{ter, exp ( —(2mi/h)E, t}.
s

Substituted in (45) this gives

(47}

Zc, exp (—(2xi/h} E,t) (HP, —E,P,)
s

= —(h /2mi) Zc, exp ( —(2vri/h)E. ,t)P, .
s

Our functions PI, (25) are not strictly orthogonal as one
sees from the discussion of the matrix element (33) which
represents directly the nonorthogonality integral. This is
small as long as div BR+&1 which is fu1611ed in our case. .

The calculation of transition probabilities can then be
carried out in close analogy to the treatment of secular
perturbations with nonorthogonal functions.

We consider the total system of an electron and the
lattice oscillators. The full wave equation

HP = —(h/2~i ) (8p/Bt}

may be solved approximately by a set of functions p, with.
the matrix elements and nonorthogonality integrals

~s= J 4's Hfs Hss'= Jf ' Hfs dss'= J4's' 4's (46}

The Ps are in our case the functions (25) multiplied by the
corresponding oscillator functions. We try to solve (45)
by the linear combination

Multiplication by a particular function P„, and integration
yields

—(h/2~i} c„
= Z'c, exp (—(2~i/h) (E,—E„)t}(H„„—E„ds„,)

+ (h/2m') 2'c, exp (—{2mi/h) (Es—8„)t)d„,.
Introducing the initial conditions; c,, = j., c,,=O, if ipO,
we obtain for small t

—(h/2~i) c„=exp (—(2m ijh) (Z„—1'.„)t) (H„„—E„d„„}
+(h/2mi) Z'c, exp (—(2+i/h)(B, —E„)t)ds„.

Here the terms in Z' (over all the states excluding s1}
contain the factor d„, and can therefore be regarded as
small compared to the derivative on the left side. Therefore
the value for c„as obtained by neglecting this correction
term can be introduced in this term itself, giving

—(h/2mi) c„=exp (—(2~i/h) (8„—B„}t)I t H„„
—& od.o 11—&I:H 0

—~ Od 0 3d-1I. (48}

This has now the same form as the usual perturbation
equations. The second term on the right side being small
compared to the 6rst one we obtain by the usual method

8 4 sin2 (m/h}(E„—E„)t
yo 1=I~a ( +ado |I "

(49)(8„—8„)'
as used ln $3.


