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In the present note the question of the separation of the
kinetic energy of the center of gravity from the total kinetic
energy of the nucleus is considered. This separation is
necessitated in the calculation of nuclear energy levels by
the use of the Hartree method. It is found that under
certain conditions the wave function for the whole nucleus
in absolute coordinates can be replaced by a product of the
same function of the coordinates of the particles relative

to the center of gravity and a 1s wave function for the
center of gravity. These conditions are that oscillator wave
functions be used for the individual particles and that the
nucleus contain only one partly filled shell in both protons
and neutrons with all shells of lower energy quantum
number filled. It then follows that the kinetic energy of the
nucleus is equal to the value calculated in absolute coordi-
nates minus the energy of a single 1s particle.
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' Cf. , e.g. , S. Fliigge, Zeits. f. Physik 96, 459 (193&}.

N the calculation of the energy levels of light
- - nuclei from the individual particle model
(Hartree approximation), it is the usual pro-
cedure to use wave functions in which the nuclear
particles are coupled to a fixed point (absolute
coordinates) rather than to each other. The
kinetic energy T of the nucleus calculated with
such wave functions will contain the spurious
kinetic energy of the center of gravity which
must be deducted. For this purpose several
authors have replaced the mass 3XI of a single
particle by the reduced mass M(1 —1/Ã) where
N is the total number of particles in the nucleus. '
However, such a procedure is correct only for a
two particle problem or for the case that all the
particles are in the 1s shell. It is our purpose in
this note to investigate this point in a somewhat
more general case. This investigation, we shall
find, is greatly facilitated by the fact that the
wave functions ordinarily used, i.e. , those in an
oscillator potential, actually contain the center
of gravity only in a trivial factor. By separating
off this factor one obtains directly wave functions
containing only relative coordinates.

For the oscillator potential

U= —Up+ —,
' M~'r'

co being the frequency of a classical oscillator of
mass M (proton or neutron mass) in the field U,
the individual particle wave functions in abso-
lute coordinates are:

and in general for "energy quantum number'" k,

&=Pi, (x, y, s)e- "'. (2//)

Here c and c' are normalization constants, Py 1 is
a polynomial of degree k —1 and

n = Md/2A.

R = Pr;/X

and g;(P, , g;, f,) =r;(x,, y;, s„)—R(X, Y, Z), (5)

writing the Cartesian components of the vectors
in the brackets, The relative coordinates g; are
of course not independent but fulfill the relation

N

Py;=0.
1

(6)

2 By the energy quantum number k we mean the quan-
tum number which defines the energy of a single particle
in the oscillator field. For the field (1) this energy is
8= —Uo+ &co(k+ -',). The relation between k and the
principal and azimuthal quantum numbers, n and l, is
k=2n —l—1. See H. A. Bethe and R. F. Bacher Rev.
Mod. Phys. 8, 82 (1936), f32.

For the wave function 0 of the whole nucleus
we may take a product of two antisymmetric
(determinantal) wave functions, one for the
neutrons and one for the protons, each de-
terminant being constructed from the spin and
space wave functions (2) of the individual parti-
cles. In all cases the wave function 0' will contain
the factor e ~i"". This factor may easily be
transformed into center of gravity coordinates R
and relative coordinates g; with respect to that
point:
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From (5) and (6) it follows that

(7)

We have now to consider the transformation of
the determinants in the wave function which
remain after the factorization of the gaussian
term (7). For the sake of simplicity we shall first
consider the case in which, for each kind of
particle, the is shell is complete and the 2p
shell is partly filled. In this case each determinant
will have, in general, the form

D(r~) = ~

Pl ''' +1&1 ''' $1P1
P2 ' ' ' +2122 ' ' ' $2P2

D(r,) =D(t,)
and fram (7) @(r,) =e aN»'@(g )

(9)

(9')

It should be noted that in the derivation of (9)
it is essential that the 1s shell be complete. ' It is
also true that the separation effected in (9')
depends on the properties of the oscillator wave
functions in an essential way and this result will

be valid only for such wave functions.
The extension of this result to the case of

higher shells is obvious. The relations (9) and
(9') will be valid in this case if only, for each
kind of particle, all the shells of lower energy
quantum number' be filled. 4 It is sufficient in
each case to consider only a single monomial in
the polynomial I'& since the determinant with
P~ can be written as a sum of determinants in

' Of course the 1s shell for one kind of particle need not
be complete if there are no 2p particles of this kind. The
relation (9) is trivial in the case of only 1s particles.

'The number of filled neutron shells need not be the
same as the number of filled proton shells.

in which n and P are the spin wave functions
specifying the spin component in a given direc-
tion s'. Now in D we may add to any column a
constant multiple of any other column without
changing the value of the determinant. Thus we
may add to the x;n; column —X times the 0.;
column and the former column becomes &,12; by
(5). Similarly the y;P; column can be replaced by
g;P; and so on without changing the value of the
determinant. It follows therefore that

h2 fdRg aN R2+RS aNR2— —

1'dRg —2aNR2
(10)

that is, just the kinetic energy of a single. 1s
particle.

For the kinetic energy T' of a nucleus with all
shells (for both particles) of energy quantum
number X or less filled and with q particles in the
shell of quantum number %+1 we find

T»' ',hcd{q(2K+3) ———3-+ Q 2k(k+1)(2k+1) }
k 1

= —,'hco{q(2K+ 3) 3+K(K+1)'(K—+2) }

= —,'h(o {(2K+ 3)Ã —3

,'K(K+1)(K+2)—(K-+'3) }, (11)

in which use has been made of the fact that the
total number of particles of both kinds in the

which I'& is replaced by the various monomials.
In the transformation of a column containing
x y'z' one gets Pg'I' plus additional monomials
of lower degree. These additional monomials will
coincide within a constant factor (powers of
X, Y and Z) with elements in one of the columns
belonging to a shell of smaller k and therefore
give a vanishing contribution to the determinant.

We may now proceed to the calculation of the
nuclear kinetic energy. The transformation of the
kinetic energy operator in absolute coordinates,

PA, ., gives, as is well known, the kinetic energy
1

operator for the center of gravity, AR/X, plus an
operator 0& depending only on the relative

coordinates. The operator 0& is not the sum of
the Laplace operators 6&,. but will contain in

addition cross derivatives of the form div&, grad &,
.

because the y; are not independent (Eq. (6)).
Therefore it is not simple to calculate the kinetic
energy 1', exclusive of the energy of the center of
gravity, with this operator and the wave function
+(y;). However, T' can be easily calculated as
the difference between the total kinetic energy in
absolute coordinates, 1, and the kinetic energy
of the center of gravity, Tz. 'lis the sum of the
kinetic energies of the individual particles in the
oscillator potential. For the kinetic energy of the
center of gravity we have, using (3),
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The difference between the result for the
kinetic energy obtained here and that resulting
from the use of the reduced mass is

AT»' = T»/N 4kco, —— (12)

shells with quantum number k is 2k(k+1). The
case of greatest interest is that in which the 2p
shell is partly filled and the 1s shell complete. In
this case X= 1 and the kinetic energy is

&GO Pl CO

T, ' =—(5q+9) =—(5N —11).

which for X= 1 is

6Tg' bc'——(N 4)—/2N (12')

This correction varies between 25 and 50 percent
of the energy 4k' for the nuclei of mass number
between 6 and 16, and will have the effect of
raising the energy levels as formerly computed
by about 2 to 4 MV for these nuclei.
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in the variational principle. This leads (neglecting
spin terms) to the equations

p,"P;+(e,—2 V;)Pi =0 (j = 1, N) (2a)

where

N

V;(r;) = Z/r;+ P I ~f~(—r&) ~'/r;I, dri„(2b)
%=1(k+j)0

Z being the nuclear charge, and atomic units
being used. On the other hand, all calculations
which have actually been made so far with the
s. c. f. have proceeded on the assumption that the
field for each electron is spherically symmetrical.
This is effected by making the additional as-
sumption

1i;(r;) =(2n) 'e' &»Pm;l, (0;)R;(r,) (3)

in the variational principle, where we denote by
P ~(8) the norrnalised tesseral harmonic P~~

(cos 8), rn, and l; being the magnetic and azi-
muthal quantum numbers of the jth electron.

HE method of the self-consistent field (s. c.f.)
for an Selectron atom is equivalent to the

assumption

0=A(1) . 4(N)

The assumption (3) is, however, incompatible
with Eqs. (2a), (2b) unless all the electrons are
s electrons. Excluding this special case, therefore,
(3) imposes a restriction on the form of the wave
function which is addhtional to that implied by
(1). Consequently, although the assumption of
spherical symmetry is entirely reasonable from
the physical point of view and simplifies con-
siderably the numerical work, it would appear
that the generalized Eqs. (2) are more accurate
than those ordinarily used, and this seems to have
been the generally held opinion. If this were really
the case, one might solve the more general equa-
tions by approximate methods and estimate the
magnitude of the corrections that would thereby
result. A closer examination, however, leads to
the conclusion that if the assumption (1) is made
(or the generalizations considered below), the
central field assumption is, in effect, a necessary
one if. the solution obtained is to fulfil certain
general requirements.

Let us first of all examine the nature of the
solution of Eqs. (2). There is a degree of arbi-
trariness about the solution, but we may safely
assume that the central field approximation is a
good one. Let us, then, see what type of solution
results when we solve (2) by successive approxi-


