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Cosmic-ray showers indicate that at high energies inter-
action between nuclear particles is concerned with the
creation and destruction of matter. It may, therefore, be
expected that a complete relativistic theory of nuclear
forces will involve explicit reference to the phenomena
described at present as the electron-neutrino field. Theories
of this kind are still too incomplete and self-contradictory
to be reliable in practical work. It is, nevertheless, possible
to set up equations which are relativistically invariant for
transformations involving low velocities, Such equations
form the subject of the present report. They are restricted
to energies of relative motion that are small in comparison
with the rest mass. By means of them it should be possible
to discuss relativistic effects for ordinary nuclear energy
levels. Possible forms of classical equations contain an
interaction energy between two particles in the form given
by Eq. (13.2). Here a, b are arbitrary real constants. The
vector from particle 1 to particle 2 is r, the velocities of the
particles are v&, v2, the velocity of light is c. If a = b =1, one
obtains a generalization of Darwin's equation, which
describes the motion of electrically charged particles. For
a = —1, b = 1 particle 1 acts on particle 2 approximately as
though it produced a scalar potential field responsible for
the acceleration of particle 2. The requirement of invariance

for wave equations of particles with spin (Pauli types)
makes it necessary to have spin-orbit coupling which
should give rise to the fine structure of nuclear levels.
For ordinary interactions the spin-orbit energy may have'
the form given by Eq. (15.4), where b is an arbitrary real
constant, y is the momentum and e is Pauli's spin matrix.
For bg = —1 one obtains the type of coupling taking place
between extranuclear electrons. If b;, =1 each particle
interacts only with its own orbit as though it were moving
in a scalar field, It is the latter hypothesis that is simplest
and corresponds to a= —1, b=1 of the classical equation.
Extensions of the above classifications have been made to
the Majorana [Eqs. (15,7), (15.8)) and the Heisenberg
)Eq. (15.9)g exchange interactions. The simplest type in
the Majorana case appears to be in satisfactory agreement
with experiment for Liv and agrees in order of magnitude
with other cases. Extensions to Dirac's types of equations
have been made. They lead one to expect coupling between
spins of nuclear particles in apparent qualitative but not
quantitative agreement with experiment for the deuteron.
This agreement is not sufficiently good to establish a
form of interaction energy but indicates a possibility of
doing so in the future.

T has been noticed by Inglis' that the apparent
- - inversion of doublets in nuclei can be ex-
plained as a result of taking into account the
effect introduced by Thomas in the discussion of
the fine structure in atomic spectra. A nuclear
particle, such as a neutron, is subjected to
forces the actual nature of which is not known.
There is no reason to consider these forces as
being representable by an electromagnetic field
and it is more likely that they owe their origin
to the electron-neutrino phenomena. The direct
inHuence of the electric field on the spin which
is important for the fine structure of atomic
spectra is thus presumably absent in nuclei.
Very schematically one may consider a single
nuclear particle as moving in the combined field
of the other particles. In this rough approxima-
tion one may attempt to regard a single nuclear
particle as exposed to the field of a scalar
potential due to the remainder of the nucleus.
This potential will be provisionally supposed to
be a function of space-time and to be independent
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of the time in the coordinate system in which
the nucleus is at rest. For such a model it
follows that the Thomas term is the only one
that exists for a neutron and that for a proton
it should be combined with the effect of the
electric field of the nucleus that is expected from
the Dirac equation for a particle in a central
field.

A proof of this has been already given by
Furry, "who saw the possibility of inserting the
scalar as an addition to the mass term mc' in
Dirac's equation. The same result can be ob-
tained 'oy considering the .transformation proper-
ties of wave functions. The latter method is
desirable in order to bring out the connection
with the treatment of many particles as well as
in order to establish the interactions inde-
pendently of special Dirac equations. It will be
given in Section 1.

The neutrons and protons in a nucleus have
. approximately equal masses. In this respect the
nucleus differs qualitatively from an atom which



RELAT I V I ST I C EQUATIONS 249

is composed of a 'heavy nucleus and several
light electrons. Even in an atom the spin-orbit
interactions are describable by a central field
only somewhat accidentally. The correct de-
scription must be made by considering inter-
actions between all pairs of particles. ' Calcula-
tion shows' that the naive central field picture
is approximately correct mainly because electrons
in inner shells are so firmly bound that their
action on a valence electron is comparable with
that of a static distribution of charge. No such
simplicity is apparent in a nucleus. It is therefore
desirable to understand what kind of spin-orbit
and orbit-orbit interactions may be postulated.
In Dirac's theory spin effects may usually be
considered as of the order v'/c' in comparison
with the kinetic energy, where v is the velocity
of the particle and c is the velocity of light.
It is, therefore, reasonable to require that the
theory of nuclear particles be relativistically
invariant to this order. It is presumably im-
possible to have a completely relativistically
invariant theory for the interaction between
several particles with a finite range of force and
without explicit reference to a field. It is super-
Huous, therefore, and probably fruitless in the
discussion of the present problem to require
complete invariance. In Section 2 possible
classical interactions between particles will be
discussed and enumerated. It will be found that
those among them that have special physical
interest form a two-parameter set. Two types
deserve special mention. One of them is the
most immediate extension of Darwin's equation
for two charged particles interacting according
to the laws of classical electrodynamics. The
other corresponds to each particle setting up a
scalar field in a reference system in which it is
at rest. It is this type that is related most closely
to the interaction discussed in Section 1. In
Section 3 possible types of wave equations will
be discussed. It will be seen that: (a) The
presence of spin-orbit interactions is a general
consequence of the transformation properties of
wave functions; (b) Their exact form is not
uniquely determined by the transformation
properties, but all possible forms of physical
interest may be considered as linear combina-
tions of electromagnetic interactions with pure
Thomas terms; (c) A possible extension of the

scalar one-particle picture gives only the Thomas
terms. The effect of Majorana and Heisenberg
exchange will be also considered in this section.

1. ONE PARTICLE

It will be supposed that the particle in its
free state is describable by Dirac's equation.
The fact that the magnetic moment of nuclear
particles is not that given by Dirac's equation
in its original form does not contradict this
supposition, because it is possible to introduce in
Dirac's equation direct interactions between the
magnetic field and the magnetic moment in
the manner proposed by Pauli. 4 The transforma-
tion properties of Dirac's equation are the same
whether a true magnetic moment of the Pauli
type is introduced or not. It is on the other
hand questionable whether Dirac's equation or
any of its modifications gives an exact account
of the properties of nuclear particles. In fact
high energy collisions involving relative velocities
of nuclear particles comparable with c indicate
from experiment, ' in the light of Heisenberg' s
theory' of showers, the importance of processes
involving the creation and destruction of par-
ticles. For this reason it is preferable to base
theories of nuclear spin-orbit interactions on
corrections of the order v'/c' rather than on an
exact form of a single particle equation.

The original discussion of Thomas does not
apply directly to particles whose spin is de-
scribable by means of a Pauli or a Dirac equa-
tion. For a Dirac particle the spin is a secondary
characteristic. As has been pc inted out by
Schroedinger, ' a Dirac particle is unable to move
uniformly in a straight line when left to its own
devices. This property of the particle gives rise
to the spin. It is, therefore, necessary to consider
the Thomas term directly from the point of
view of the wave equation rather than in terms
of a classical analogy.

According to Dirac' the Lorentz transfor-
mation

x'=x ch 8 —ct sh 8, ct'=ct ch 8—x sh 8,

p =p ch 8 posh 0, po =ppch 0 —p, sh 0,
(1)

ch 0= (1—v'/c') l, sh 0= (v/c)(1 —v2/c2)

po E/c (ch 0=—cosh 8, sh 8—=——sinh 8)
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induces the transformation

P& —gay///2P P&@—Ptgay///2 (2)

on the wave function. This means that the trans-
formed wave function P' satisfies the Dirac
equation in the transformed system E' and that
all physical quantities calculated by means of
f' in X' are related by relativistic formulas to
corresponding quantities calculated by means of
P in the original system X.

The Dirac equations can be written as

(Po+3IIc)C+(op)%'=0,

(po 3Ic)+—+(ep) 4 = 0,
(3)

where the 0 are Pauli spin matrices, 4 is the
two-component Pauli wave function, and C is
also a two-component wave function. Both C and
+ are column matrices. The Dirac function P is
a column matrix having the two elements of 4 in
first and second place and the two elements of +
in third and fourth place. From (3) one obtains
in sufficient approximation

C = —(op) @/2Mc. (3')

This approximation is valid for interactions of
both the electromagnetic and the scalar types.
The occurrence of terms in the vector potential
in (3) leads only to negligible corrections in (3')
because these terms can be taken to be of the
order e'v/c'r, where r is the distance between
nuclear particles and v is the velocity. This
quantity is of the order of nw for r e'/r/ic~,

where m is the electronic mass, while the opera-
tions involved in i7ir//Bx giv—e rise to 3A,
where M is the nuclear particle mass. Similarly
the addition of a scalar interaction energy to
Mc' or of an electrostatic potential to po gives
rise to insignificant corrections for forces having
the approximate range e'/mc'.

Using (3') in (2)

O'= Ich (///2)

—(2~ )-'(p+ FAX ]). h (~/2) I+. (4)

This approximation neglects some effects of
order r/'/c'. However, an inspection of Eq. (4)
shows that effects of order v'/c' are additive and
no essential error is committed. 9 Substituting
Eq. (4') into Eq. (5) and multiplying by S '
from the left one obtains on account of the
presence of J the term

J—S 'JS= (l'i/4'')Lg JXv]v. (6)

This term must be canceled by the introduction
of a suitable term into Q. It will be supposed
that Q contains only terms of order v'/c'. There-
fore one may take S 'QS= Q. Thus in the
approximation of Eq. (4') there is a part Qo of

Q such that Qp Qo must be equal to the right
side of Eq. (6). This can be accomplished by

Qo = —(I/i/43Pc') L~JX ir jp. (6')

This is the Thomas term which must, therefore,
be included in order to enforce invariance.
In addition it is possible to postulate the presence
of other terms in e entering Q. Such terms must
form an invariant to the order r/'/c'. It is im-

possible to form such an invariant by having
VJ, e, and p entering the expression once.
There exists, in consequence, no term which can
be added to Q which has an essential relation
to Qo.

Transforming Eq. (5) to variables in X' one
finds that

—E'+Sic'+ — —Jp" p"

2M 83''c'

other quantities in X in terms of quantities in X',
the wave equation should return to its original
form. It will be supposed that J is a scalar.
It will thus transform into itself. The quantity Q
is introduced into Eq. (5) in order to correct the
remaining terms for lack of invariance. Instead
of considering all of Eq. (4), it will be first
approximated by

O'=S%'; $=1+iv[p Xo//4Mc' .(4')

Let now the wave equation be of the form

/'i 8 P' P4
——+Mc'+ — —J+Q 4=0. (5)
i Bt 2M 83XI'c'

Substituting + in terms of +' and expressing all

V p2

(3P 'J+ J'p ') ——J
43fc' 2c'

+ {&'~&«3.+Q +'=0 (7)4''
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The terms containing v have to be compensated

by Q —Q'. A possible Q, determined in a manner

analogous to that in Eq. (6'), gives an invariant

form by substitution into Eq. (5)

O' O' O'J+ pJp—E+Sic'+ — —J+
2M 83Pc' 4 3''c'

([p&&VJ]—[&JXp])~ +=0. (8)
8HEI'c'

P

) P,*g,dr=~I + *(1+P'/4M'c' )@ dr . (8')

(p = 1, 2, 3, 4; n = 1, 2).

It is possible, however, to transform the wave

function + so as to have a Hermitean operator.
Thus if

+&'& = (1+p'/8M2c') 4 (9)

Eq. (8) becomes

p' p' p'J+2I Ju+ Jp'
—E+Sic'+=— ——J+

2M SM'c' 835'c'

PL

([p Xv Jj—[vJXp])~~ p&'& =0, (9')
SM'c'

which is Hermitean. The modified function +('~

satisfies the simple normalization condition

4 ~'&*+ &'&dr =
J

P„*g„dr=1,
aJ

(9//)

which follows from Eqs. (8') and (9). An elegant

treatment of the single particle problem due to
Furry' can be carried out introducing the scalar
—J into the Dirac equation as an addition to
the rest mass energy Mc'. The equation in the
Dirac form is

The term in p is here symmetrized so as to be

Hermitean. The terms in p'Jand pJp form a non-

Hermitean operator. This is due to the fact that
the total probability of finding the particle is not

given by the volume integral of
~

4'l' but by

result inasmuch as Furry's Eq. (10) is strictly
invariant. It should be noted that the transition

from Eq. (7) to Eq. (8) is not unique. Thus it is

possible to use instead of p' J+pJp in this

equation the quantity (3P'J+ Jp2)/2 without

changing the transformation properties, and

more generally an arbitrary constant times

p' J+Jp' —2p Jp can be added to p'J+p Jp.
There is thus a greater freedom in the forms of

two-component. equations invariant to order
v'/c' than is apparent from Eq. (10). The equa-

tions obtained in this manner are identical,

however, from the point of view of classical

analogy, and in the absence of another clue it is

impossible to give reasons for preferring one to
another. The particular form (8) may perhaps be

advocated on the grounds that it is equivalent

to Eq. (10).
It is possible to add to the operators in

Eqs. (8), (9') any quantity invariant to order
v'/c'. Thus J'/Mc' multiplied by a reasonably

small number may be added. The addition of a
term in this quantity is, however, only of

trivial interest in the present case because such

a term may be considered as being incorporated

in J. The addition of commutator-like terms

such as (p'J+ Jp' —2pJp)/Mc' amounts to add-

ing terms in derivatives of J and also offers no

essentially new possibility. Terms in f&'J and

pJp can occur only as in Eq. (8) to within the

freedom of adding a commutator. Using p' and

p4 it is impossible to have an invariant except that
already occurring in the equation. Within the

above discussed set of the simplest possibilities,

Eqs. (8) and (9') are thus essentially unique.

The parts of the operators occurring in Eqs.
(8), (9') which do not contain e can be in-

terpreted as corresponding to the wave equation

of a particle without spin, invariant to order
v'/c'. The verification is analogous to the step
from Eq. (7) to Eq. (8). A slight difference from

Eq. (8) is found in the order of factors. Allowing

the wave function to transform itself by

0"'= (1+v'/4c' —vP, /2Mc') +' (11)

fPO+(+p)+P(M& J/c)IS'=0 ( 0) it is found that

Expressing the components 4 in terms of 4 by
means of Eq. (3') and substituting into the
second Eq. (3) modified by Mc—&Mc —J/c, it is

found that 4' satisfies Eq. (8). This is a natural

P'
—E+3Ec'+ — — —J+——4' = 0

2M 8M'c' 2M'c' (11')

is an invariant form.
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The transformation of Eq. (11) gives Lo=+M,v /2++ J;,(r;;), (12')

((@o*@o]~
~

1+
~

@o*@o
E 2c')

Av ( 8@o

2i 3Ic' E Bx

/+0+)

ax )

In obtaining Eq. (8) it was supposed that the
contributions due to time derivatives of J arising
in the transformations are small. This require-
ment can be satisfied by supposing that there
exists a frame of reference in which Jis a function
only of space and does not depend on time.
This frame may be called the rest frame. The
other frames considered above are those obtained
by the application of a small translational
velocity to the rest frame. For such transforma-
tions VJ is an invariant since it changes only by
terms of order (v'/c')W J on transformation. If J
is only a function of the distance r from a fixed
point there is no necessity of symmetrizing the
last term containing g because then

Lpxv J]=-Lv Jxp].
If J, instead of transforming as a scalar,

transforms as the time component of a four-
vector, one obtains essentially the same results
as are derivable from the ordinary Dirac
equation.

2. CLAssIcAL EQUATIoNs FQR SEvERAL
PARTICLES

It will be supposed that the system can be
treated by means of a variational equation,

"o)~Ldt = 0.

The trajectory of the dynamical system in the
reference system X corresponds to segments of
world lines in an interval t~(t(tg. The La-
grangian L will be supposed to be given approxi-
mately by

One may, therefore, io terpret 4'*4' as the
particle density and use the normalizing con-
dition

14o "+od r =1.

where M; are the masses, v; the velocities of the
particles, and r;; are the distances between them.
In addition to Lo the function L will be supposed
to contain terms of the order (v'/c')Lo. These
terms will now be determined by the requirement
that Eq. (12) should determine the same world
lines independently of the coordinate system
used. For a system of noninteracting particles
(J;;=0) there is an obvious solution corre-
sponding to describing each particle separately.
In this case one may use

Lo +DE;c'[1———(1—v /c)"].

Expanding each term of this sum one obtains

Lo PM;(v,——'!2+v /8c') (J=0)

to the required order. For this Lo the integral in

Eq. (12) is not invariant because: (a) each term
of the sum contains M;c'f dt which is not in-
variant. However, the variation of this quantity
is zero and its inclusion is harmless. (b) In the
transformation X—&E' it is impossible to deal
with identical segments of world lines in both
systems. If the end points of the world line for
i are kept the same, those ofj have to be changed
in X' from what they were in E. This circum-
stance also does not matter because the varia-
tions of the coordinates of i and j are supposed
to be independent of each other. Therefore the
variations over that portion of the world line
of j which is common to X and X' for fixed end
points of the world line of i are automatically
the same as long as each term of Ldt is invariant.
It is thus seen that the invariance of Ldt is
su%.cient for the invariance of the world lines.
It is obviously not a necessary condition as is
seen in the case of the addition of terms in J'dt.

The terms J;; substituted into Eq. (12) give
rise to noninvariant quantities. These will now
be calculated. It will be supposed that in calcu-
lating the correction terms it is legitimate to
neglect the curvature of the world lines. This
assumption does not follow from considerations
of invariance. It simplifies the discussion by
preventing the explicit occurrence of accelera-
tions in the Lagrangian. For electromagnetic
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2C F C'f elf I+3fg

and hence

J(")=J(r) (13)

(vr)' (vr) 3II&(rv2) + V2(rv&) dJ
+

2c' c' 3II+3f2 rdr

In order that Ldt be invariant it is necessary that
L should transform as ds/dt where ds is the
differential of the four dimensional distance.
The transformation formulas for ds/dt are
different for the world lines of 1 and 2. The
world line of the center of gravity of 1 and 2

gives a still different transformation of ds/dt.
At this stage, therefore, the definition of the
world line is still arbitrary, since one has the
above three choices, each of which has some
physical plausibility. This arbitrariness of the
choice of the world line would destroy the
possibility of having a sensible description of
the system by means of Eq. (12) if it were not
for the fact that the results of Eq. (12) are
independent of the choice in the following sense.
Let 3E&, M2 in Eq. (13) be given arbitrary values
and let the same values be used for the definition
of the path of the center of gravity. Let the
transformation of L be similar to that of ds/dt
along this path of the center of gravity. The
results of Eq. (12) will be seen to be independent
of the values of M~ and M2. This means that it is
possible to use either the path of 1 or that of 2

and that the results of the two procedures are
consistent.

For the path of the center of gravity for the
transformation of Eq. (1)

interactions it leads to neglecting radiation reac-
tions. For nuclear forces it amounts to neg-
lecting xx/c'~ J/Mc ~20rrt/M~10 2 in com-
parison with unity. Here m is the electronic
mass. In terms of this estimate the approximation
is a good one since the effects neglected are of
the order of 10 ' times the correction terms in
V2 C2

For the transformation given by Eq. (1) the
distances between particles 1,2 in X' and X are
related by

(vr) ' (vr) M ~(rv~) +3l".(rv, )r'=r—

ds s' M&(vv~)+ 1IIg(vv2) ds
1 — + (13')

dt' 2c' (3II&+M2) c' dt

It is now required that J—Q should transform as
ds/dt. Since Q contains by definition only terms
of order v'/c', the transformation formula for Q is
determined by means of Eqs. (13), (13'). It is

Q —Q'=—s (vvy) + (vv2)
+ J

2G2 2c J

(vr) ' (vr) dJ
+ — ((v~+v2) r)

2c22G' rdr

MI —M2 d
+ —[(rv) J], where r= r, —r, . (1.3")

2c'(Mi+M2) dt

as is verified by applying the transformation of
Eq. (1) and observing that for the transformation
of Q it is sufficient to use Newtonian rather tha. n
relativistic addition of velocities and to consider
r as invariant in this connection. All other Q can
be obtained from Eq. (13.1) by the addition of
invariants. In this way one obtains among other
possibilities the following expression for J—Q:

J—Q= J—{2a(vgv2)+(1 —a)(v, '+v2') j J/4c'

+ {2b(v~r) (v2r) + (1—b) [(v~r) '

+ (vmr) 'jJ dJ/4c'rdr, (13.2)

The last term in Eq. (13") may be disregarded
because in Eq. (12) it gives rise only to a function
of the end points of the path. The remainder of

Q
—Q' is independent of 3f& and 3E& and is equal

to Q —Q' for M&=IV&. It is symmetric in the
coordinates and velocities of 1 and 2. It is
natural to look for possible Q which are also
symmetric in 1 and 2. Unsymmetric Q are either
reducible to symmetric Q by the addition of a
complete differential to Ldt or else they imply a
different action of particle 1 on particle 2 from
that of 2 on 1. Such a law of interaction is
improbable and will not be considered here.
Only symmetric possibilities for Q will be dis-
cussed.

A possible J—Q with Q transforming itself as
in Eq. (13") is

J Q= J [(v&v2)J— —
—(v~r) (v2r)d J/rdr j/4c', (13.1)



Pi ——Pi'+ [—v'Pi'+v(vPi')]/2c'

(dx' dy' ds'

( dt' dt' dt' )

(14)

where v is the transformation velocity, provided
terms of order higher than v'/c' are neglected and
provided P~' ——0. The forces on 1 are thus
determinable in terms of the force in that frame
in which 1 is instantaneously at rest. The

where a and b are arbitrary real constants. For
a=b=1 Eq. (13.2) agrees with Eq. (13.1).
In this case the Lagrangian Lo+J Q

—is a
generalization of that obtained by Darwin for
electromagnetic interactions, as is seen by sub-
stituting e'/r for J. It will be recalled that
Darwin's approach was that of retarded po-
tentials and that the Lagrangian was found by:
(a) working out the equations of motion for
particle 1 using position and velocity of 2 as
parameters, (b) finding the Lagrangian for 1,
and (c) showing that there exists another sym-
metrical Lagrangian differing from the first one
by a time derivative. It is desirable to explain
why Darwin's equation is of type (13.1) rather
than of some other type contained in Eq. (13.2).
Obviously the distinguishing feature of the form
(13.1) is that of antisymmetry with respect to
reversal of sign of one of the velocities. All other
types in Ea. (13.2) have another type of sym-
metry. In the electromagnetic case corrections
for the velocity vt enter for two reasons. In the
first place particles 1 and 2 interact magnetically.
This interaction is antisymmetric in v& because
it depends on (v~v2). In the second place cor-
rections for retardation must be made. These
corrections can depend on the direction of
motion of 1, while one discusses the motion of 2

only because 1 is moving away or towards 2.
Hence again the addition to the Lagrangian
must be antisymmetric in vI.

It can be verified by explicit calculation that
the forms given by Eq. (13.2) give an expression
for the force which is in agreement with rela-
tivity kinematics to the order v'/c'. According to
relativity if Pz stands for M&v, (1 —vP/c') '~' then
at the same point in space time the rates of
change of P~ and P~' in K and X' are con-
nected by

verification of Eq. (14) is straightforward but
somewhat lengthy and is not reproduced here.
It involves no approximations except that of
neglecting all terms of order higher than v'/c'.

If one sets a = b = 0 in Eq. (13.2) a simple form
for J—

Q is obtained:

J—Q=J—
v'+v ' 1 dJ

J+—[(v&r)'+ (v2r)'] . (14.1.)
4c' 4c' rdr

This is somewhat related to Eqs. (9'), (11') for a
single particle but does not quite correspond to
them. Thus if particle 2 has a suf6ciently large
mass to make v2 small at all times, the above
J—Q is not altogether equivalent to J—v'J/2c'
because

v&'J+ (v~r) 'd J/rdr = (d/dt) [(v,r)J]—(v~r) J

If v2 ——0, this agrees with Eqs (9'), (11 ') .
Comparing the equations of motion following
from Eq. (14.2) with those from Eq. (9'), it is
found in both cases that in the reference system
in which 2 is at rest the acceleration of 1 is the
same function of its position with respect to 2

and its velocity. One may, therefore, regard
Eq. (14.2) as being a generalization of Fq. (9')
and of Eq. (10) if in the latter the effect of the
spin is neglected. One may think of Eq. (14.2)
as giving such a motion of the two particles as
corresponds to particle 2 producing in its refer-
ence system a scalar field which acts on particle
1, and the other way around.

Only two particles are explicitly considered
above. The arguments which lead to Eq. (13")
for Q —Q' can be generalized to any number of
particles having arbitrary interactions in pairs.
The calculation is more lengthy but the result is
simply that, to within a term which is a complete

and is not a complete differential. Working out
the equations of motion for Eq. (14.1) and
comparing them with the equations of motion
following from Eqs. (9'), (11), no simple corre-
spondence is found.

A simple correspondence is found, however,
setting a = —1, b = 1. In this case

J—Q =J—(v, —v2) 'J/2c' —(v&v~) J/2c'

+ (v~r) (v~r)d J/2c'rdr (14.2)

(a= —1, b=1).
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time derivative, Q —Q is a sum over pairs of
terms such as are given by Eq. (13")for a single
pair. An extension of Eq. (14.2) to many par-
ticles is obtained by using a sum over pairs of
such expressions. If particles 2, 3, n are
tied by strong forces into a large mass approxi-
mately at rest and particle 1 moves in their
6eld, this generalization becomes equivalent to
Eq. (9') because the time average of v2, v3, v„
can be considered to be 0.

The forms used in Eq. (13.2) can be generalized
by the addition of other invariants. Thus one
could add terms in (vi v2)'r—dJ/c'dr or in

((vi —v~)r)'J/c'r'. The use of such terms cannot
be elimiriated by general principles but appears
to be an unnecessary complication. Similarly one
can add terms in higher derivatives of J, and it
is possible to have approximate invariants of
order of magnitude v/c which in Lorentz trans-
formation undergo changes only of order v'/ca.

elements of volume for each particle. If the
interactions are not of an exchange type and if
the particles have no spin, it may be expected
that the resultant wave equations should have a
possible classical form such as one of the forms
in Section 2. Only the occurrence of com-
mutators in the wave equations will, therefore,
become clearer in such a discussion. The presence
of terms in the spin-orbit and spin-spin inter-
actions and of the effect of exchange is, on the
other hand, obtainable from Eq. (15) and cannot
be inferred from a classical discussion.

It will be supposed that if c~~ in 2 and the
corresponding wave equation, the system will be
invariant under Galilean transformations. Thus
for exchange interactions it will be simplest to
confine oneself to particles of equal masses. In
discussing Lorentz invariance it is easiest to

l

consider
2 = QZ;++ 2;;

3. KAvE EQUATIQNs FoR MANY PARTIcLEs

General methods for setting up relativistic
equations for composite systems have been given
by Heisenberg and Pauli, Fermi, Dirac, and
Dirac, Fock and Podolsky. "These methods do
not apply directly to the problem considered
here because they are concerned with exact
rather than approximate invariance. The ap-
proach of Heisenberg and Pauli by means of an.
invariant Lagrange function can nevertheless be
made use of in a modi6ed form. Instead of
extending the integration over space time as is
done by them it is more natural to consider here
variational integrals over the time and the con-
6guration space because this is the simplest
formulation of a nonrelativistic equation. Speak-
ing of the motion classically, it may be expected
that the interaction energy J should be treated
as small. Otherwise the velocity of at least one
particle will be large and an approximate
relativistic treatment will have no sense. This
assumption corresponds to the similar restriction
of small accelerations made in the classical case
when Hamilton's principle was used. Forms of

|i ~/dr =0, dr =d Vid Vg d V.dt (15)

will be looked for. Here dU~, dU2, dU„are

and to require that (a) the forms 2; should yield
invariant equations for the separate particles and
(b) all the fZ;;dr should be invariant when one
substitutes into 2;; arbitrary 1inear combinations
of products of single particle wave functions,
each single particle wave function being assumed
here to obey the wave equation of a free particle.
Assuming Eq. (15.1), the restriction (b) will

formally give a correct treatment only for very
small J. Nevertheless, it may be expected to be
also applicable, to some extent, also in cases of
reasonably large J, because the largest part of the
interaction energy will be Galileo i'nvariant. Re-
garding the interaction energy as a power series
in 1/c, the first term of it will be thus correct by
assumption and the remaining term will be
established only for small J.This is less than one
might wish to attain but it is not much worse
than the knowledge of corresponding terms for
interactions between charged particles. The dis-
cussion of the classical spinless equations by
means of their equations of motion showed that
even though the assumption of small accelera-
tions was made in using the variational principle,
the transformation formulas for the force are
formally invariant to the order v'/c' independ-
ently of this assumption. Since the classical
equations are better than expected it is possible
that the wave equations behave similarly.
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As in Eq. (4') one may discuss the spin-orbit
interactions separately. Corresponding to Eq. (3)
one now has 2" equations, where n is the number
of particles. Instead of Eq. (2), one has for non-
interacting particles a transformation in which
the exponential function of Eq. (2) is replaced by
a product of similar exponentials. Eq. (3') is
replaced by n equations which determine those
wave function components in which the Dirac
indices for just one particle are in the small group,
(1, 2). The extension of Eq. (2) gives similar ex-
tensions of Eqs. (4), (4') in which there occur
sums over [p;Xo;7. In this way instead of Eq. (6)
one has

This equation is satisfied by

Qo
———P (5/4M, c')[v;J„;Xe~] Pa;I,po/Mg,

s ~ k

Pa;o ——1 (15.3)

A„=s[(p„—pi) j„+J,i(pa —p,)]P„, (15.6)

where I'k&~ is the Majorana operator exchanging
the space coordinates of k and /. Possible forms
for Qo are given by

( —1 q
I[~p'+(1 —a)p][A X,]

k I, E83XI'C')

[p„XJ,,P, , pal](ro
& 42IPc'

f(1-a)
[pzX&aP I i Fo]~i, (15 7)

43Pc'

where a is a real constant. In this case Jo~ rather
than just dJ&&/dr&& enters into Qo. Thus for
a = 1 and a =0, respectively,

(~=1) Qo= 2 (v~&oi)[pixie]
k g 4~2g2

and the a;k are so far arbitrary. Since it was de-
cided to use for J—Q only interactions of par-
ticles in pairs, since the occurrence of po/cV; in
the interaction energy is strange, and since finally
it is simplest to suppose that the interaction
energy of a pair is symmetric, the following form
is sufficiently general for most purposes:

+ +l;l[pkXP/]+i +kl 1

4M'c'

h
(+=O) Qo=Z (VkAi)[pitX&I]

& 435'c'

+— Ja~[pax pi]ep &I.P.
4M'c'

(15.8)

Qo = —2 (&/4~') ( [vA;X ~;]p,;p,/~
i)j
+ (1 b;;)p;/M—,M;]+[v;J;;Xe;]

[f'a;/~~'+(1 f '~) p'/~*~~] I (—15 4)

The b;; may be different for every pair. For
electromagnetic interactions' b;;= —1, so that
2p2 —p~ goes with o~. For b;;=1 an extension of
Eq. (9) is obtained, as is readily verified by
letting all 3I; but one become infinite. Since J;,.
is a function only of r;;, Eq. (15.4) gives a
Hermitean operator for Qo.

If the interaction is of the Majorana type, it is
simplest to take the masses as equal to each other
because otherwise the operator must be modified
in order to preserve Galilean invariance. One
obtains

Qo' —Qo ——(v/83fc') + [A&, (X (ox —e&)] (15.5.)
k)L

with

For a = 1 the value of Q, may be thought of as

( =1) Qo= — 2 [P*XP*] '
4M'c' '

E[p;Xp']~' (15 8')
43Pc'

and corresponds therefore most closely to the
expectation on classical theory. From the point
of view of Eq. (15.8') the choice a=1 is the
simplest. It should be noted that with Majorana
interactions p;/M is only approximately the ac-
celeration. If classical analogy were followed
literally, Eq. (15.8') would be more complicated
because the operator representing the accelera-
tion contains many terms. The expression for it
can be substituted for p, /M in Eq. (15.8'). How-
ever, there appears to be little justification for
such a literal use of the Thomas term, particularly
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since p;/M does not represent the velocity. For
exchange interactions involving Heisenberg' s
operator,

Qo ——— P [apI, +(1—a)p, ]43PC' I

. [VaA~Xnx]&I, P. (15.9)

Possible forms for Q can be discussed analo-
gously to the classical Eqs. (13.2) introducing the
momenta and spins into the equations. The dis-
cussion is somewhat simpler, however, if instead
one uses equations of Dirac's type with the
Hamiltonian given by

II= —c(n~p~) —c(n2p~)
—(P,yP, )Mc' —J+Q (16.1)

as well as

II= —c(ngp, ) —c(n2pg)
—(pg+ p2) Mc' p&pm J+—Q (16.2)

using the conservation theorem for particle
density, it is found, on neglecting all terms of
order higher than v'/c', that

( v i v(.'*x').=
~

1+ ~(x*x)+-(.*- x)
2c'J C

~(X*n'X)
+-(xm —xg), (16.5)

c Bx2

where (n*, n' n*) =(n' n2 n') and (x, y, z)
=(x", x', x3). The symbol (y*Vy) stands for
y„*Y„„y,„. From now on the suffix A is omitted
where no confusion is caused. From Eqs. (16.4)
and (16.5) it follows that

J (gs *J(rs'—ri') ys')d Vs'

t ( -
vx (rn, ) dJ v' x' dJ-

=J' (
x* J—— —— ——x ~dV2

c r dr 2c'r dr

and
in the customary notation.

It is also possible to combine the t wo types and
to have J occur partly with pIl82 and partly by
itself. It will first be shown that Eq. (16.1) is
satisfactory with

t ( vx(rnid) dJ
I (Q*JQ)d V2 ——~'

I
~* J

c r dr

J+-n,.J P ~dv„
2c' rdr 2c' c )Q = —', (n~n2) J——',(n~r) (n2r) (dJ/rdr). (16.3)

where r= (x, y, z) = (x2 —x&, y2 —yl z2 zl) ~ (16.6)Only the contributions due to J—
Q to the in-

tegral in Eq. (15) need be considered since the
other terms give an invariant contribution. The
Lorentz frame E is changed to E'. The integral
in X' will be evaluated by comparison with the
integral in IC. The world point (1) corresponding
to (t, x&, y&, z&) will be kept fixed temporarily. In
K, d U2 at a world point A corresponds then to the
same time t. In X', however, the point (t, x&,

yq, zq)=(t', x~', yq', z~') occurs in the integral
together with points B=(t', x2', y2', z~') which,
therefore, have values of t different from that of
(1). Let th'e points B be associated to the points
A by having (x, y, z) & = (x, y, z)z. Then

Using Q of Eq. (13.3)

J"(4*QP)d V2 =J"V*QA&d V2

p( V V VX dJ
+J' ~

4* —(ng*+n2*) J+ J——((ng+n2)r)
E. 2c 2c2 2c rdr

v'x' dJ
P ~dUg.

2c' rdr )
On the left side the ' means that aO quantities are
evaluated in K . Combining this with Eq. (16.6)
and using the transformation formula for p*p it
is found that

(p*LJ—Q]p)d Vm

(16.4) V=
J~ )

p* J—Q+——Lr(n1 n2) J] f (d V2
E. )2cBx

dxs' (1—v'/c') ~dx&, ys' ————ys, zs' zs, ——
ts i~ = (v/c') (x2 x~);- —

v' (x2 —xg)'dJ
J(rv' —r~') =J(r)—

2c r dr

where quantities without suffixes refer to system
X. Consider a wave function P,„=p„x„where q

depends only on 1 and p depends only on 2. Then,
= Jj (4' LJ Q3')dV"- (16 7)
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Since d V&dt is Lorentz invariant, so is Eq. (15).
The use of products &2&t for &t corresponds to small

accelerations. Reducing Eqs. (16.1), (16.3) it is

found that if

IE+J+c«p&+c&22P2+(P&+P.)MC'If=0, (17)

then the so-called "large" components of f satisfy

ari equation of the Pauli type. This equation
contains a non-Hermitean operator and is of the
form

1
&++ [p&Jp& —P&'J

4M'c'

+ P2JP2 —P2'Jj'p+ '

all other terms containing only Hermitean oper-
ators. The occurrence of a non-Hermitean part is

analogous to that already encountered in Eq. (8).
Analogously to Eqs. (8'), (9) it is convenient to
transform the wave function by t ppv*ypv; p v gy'v dr

(17.1)+ &1& = ++ (p 2+p 2) +/8tlI12C2

= jI 'p«&* &2V~ &&, &2
4'&»

&&
dr (17.2)

so as to have the density represented by (+&'&*+&'&).

The two-component wave function +(" satisfies (t2, P, t&', P') =1, 2, 3, 4; (&2, P, n', P') =3, 4

This equation does not take into account Q and

represents only the result of using Eq. (17). The
expression for Q given by Eq. (16.3) is a general-

ization of a similar term' in the energy for electr'o-

magnetic interactions between point charges. In
the latter case J= +e2/r and the term in Q repre-

sents the combined effect of the magnetic energy
and the retardation in the electrostatic potential.
The term in Q has to be handled with circum-

spection because it represents the last term of an

expansion. It is known" in the electromagnetic
case that that this term is only good for first-

order calculations of the energy and that such

calculations lead to sensible results using directly
Eq. (16.1) and regarding it as a perturbed Eq.
(17). It may, therefore, be expected that the
same procedure applies to the Q of Eq. (16.3).
The result of the calculation may be expressed in

terms of the Pauli function 0(". If

O'AJ 2 P P'
2 2Mc2+ J+— —+P ——+-

4M2c2 '= I .. 235 8M'c2

A

+ ([v~JXP,]s,) I &» =O. (17')
4''c'

(&J=t&.&J=a2J)

then the operator F~ may be called the equivalent

Pauli operator Using it w. ith the Pauli function

in first-order energy calculations is equivalent to
using F with the Dirac functions satisfying Eq.
(17).Since the two parts of Q entering Eq. (16.3)
occur also in other possible equations, their

equivalent Pauli operators are given separately:

1 2k dj
['2 (n&&22) J] = —4Jp, p2+ fr(p2 —p—&) +h'(3 —2o,&22)f+h'[r' r'&2&a2+ (r&2&) (r—&22)j—

8M'c' i rdr

+2hf([r X p2]&2& —[rX p&]&22), (17.3)

dJ-" 1
I

Sh 2h rdf
—2(«r)(~2r) = &4fx'x'P&—P—2'+—fr(P2 p&)+ —r(P2—Pl)—

rdr 83II'c' l dr

—2t'2f([r X P2]0&—[rX p&]&22)+t2'f(12+2&2,&22)

d |' df i df
+I&,'r'

~

—~+i'2' [9r'+r'&2&o2 (r&2&)(r&2.)j, (1—7.4)
dr E rdr) rdr

where f=dJ/rdr, r=r& —r2 ——(x', x', x'). (17.5)

A short calculation shows that the operators of Eqs. (17.3) and (17.4) are Hermitean. The above
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expressions can be expressed more elegantly by means of symmetrical formulas involving J, p&, y2,

(plr), etc. It was thought, however, to be more useful to give the expressions in the above form
because the occurrence of p&, p2 only on the right, uniquely defines the expressions. Combining Eqs.
(17'), (17.3), (17.4} one has as an equivalent Pauli equation in W",

Pl +P2 Pl +P2 kf J—&+2~~' —&+ — + ([rX (2p2 —pl) jlrl —[rX (2pl —p2) jl22)+-
'c' 4~'c 2M'c'

f »f Il rdf h2f
XPlP2 x x Pl P2 r(p2 —pl) — r(p2 —p,)—

4iM'c' 4i3I'c' dr 8M'c'

i'l2 df k2r' d t' df g
X (15+4lrllr2)— [5r'+r ~1&2—(«l)(«2) 1— —

~ ~

e&'& =0; (17.6)
43Pc' rdr 83Pc2 dr ardri

For J= e2/r t—his equation simplifies into Eq.
(48) of reference 13. In that case terms in e,e2,
(air) (02r) combine to give a contribution to the
energy

(he/2M'r)'[els2r ' —3(«l) («2) r '$, (17.7)

which represents the magnetic interaction energy
between spins having each a magnetic moment
lie/2Mc. The interaction energy of Eq. (17.7)
vanishes to the first order for the deuteron. On
the other hand" Eq: (17.6) contains terms which
do not vanish for the S states of the deuteron and
give a net effect in o reg of amount

—($2/6~2g2)(gl02)g J (H2) (17,8)

This interaction gives different energies in the
singlet and triplet states, which corresponds to
experience. The sign of Eq. (17.8) is such that for
simple attractive potentials varying smoothly
and monotonically with r, the energy is higher for
triplets than for singlets. Thus ordinary, non-
exchange, purely attractive interaction energies
of the type of Eqs. (16.1), (16.3) are not likely
to correspond to experience even though they
contain a spin-spin dependence of the interaction
energy. A, repulsion in the region of smaller r
produces a reversal of the sign of the effect of the
expression (17.8). It is conceivable that such an
interaction corresponds to reality, particularly
since a combination of repulsions at small dis-
tances with attractions at larger distances is
helpful for securing stability of heavy nuclei
without the aid of exchange forces.

The presence of terms in ele2 and (air)(e2r) is
secured above through the introduction of the

form (16.3) and not directly through the require-
ments of invariances, A form such as that of Eq.
(17.6) remains invariant if arbitrary terms in
spin-spin interactions are added to the left side,
provided these terms are of order v2/c2. There is
thus nothing binding about (17.8). The only
argument advanced here is that of the attractive-
ness of using a simple Diracian form such as that
of Eq. (16.3).The verification of invariance given
by Eqs. (16.4) to (16.7) is now seen to contain
little more than a direct inspection of Eq. (17.6)
and its comparison with possible spin-orbit inter-
actions of Eq. (15.7) as well as possible classical
forms given by Eq. (13.2). It will thus not be
necessary to go through a formal proof in
discussing Diracian forms.

The use of Eq. (16.2) is somewhat analogous to
that of Eq. (10). It should be noted, however,
that the term in plp2J without Q does not give an
invariant contribution to the Lagrangian. "This
can be verified either in the Dirac or the Pauli
form.

Reducing Eq. (16.2) with Q=O to the Pauli
form one finds

p, 2 p, 4

Z —2MC2+ J+P — +
2M 8M~c2

f "~+2p'Jp'+ JP"
8M'c'

[p;Xv;Zj~, e& &=0. (18)
43Pc'

Comparison with Eq. (15.4) shows that the spin-
orbit interaction is given correctly by Eo. t'1N.
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Comparison with Eq. (13.2) shows that the sum
of the coefficients of p~'J, pIJpi, Jpp is twice
what it should be. The equation can be corrected
for invariance either by arbitrarily modifying
these terms or by looking for Diracian forms
which will automatically give a correct behavior.
By means of Eqs. (17.3), (17.4) such forms can be
reduced to equations of the Pauli type.

It was seen that the classical Eq. (14.2) has a

simpler physical interpretation than Eq. (14.1).
A Diracian form agreeing with Eq. (14.2) in the
sense of the correspondence principle is

IE+c(Rlpl) +c(C2p2) + (01+P2) Mc +P1P2J
+-', (nin2) J+ 2(air)(emr)(d J/rdr) jr=0. (18.1)

Its equivalent Pauli form is found to be, by
means of Eqs. (18), (17.3), (17.4), (17.5),

P P4 p'J+2p Jp +Jp A J
E+2iV—c' J+Q — —— +— + [Vd X p~]&a] —— (p~p2)

i.=i 2M 8M'c' SiUI'c' 435'c' 2M'c'

f h t' rdfy 5' rdf r'd p df q. ~'~'P~'P2' ——I. Sf+ (r(p2 p, ) — 15f+10 +—
I ~

4&'&=0. (18.2)
2M"'c' 4i M'c' E dr ) 83Pc' dr dr E rdr)

Here the spin-orbit interactions are entirely of
the Thomas type and there are no spin-spin
interactions. Thus Eq. (18.1) may be looked at as
a generalization of Eq. (10). It represents an
interaction in which particle 2 is moving ap-
proximately in the field of a scalar due to particle
1. Eqs. (17.3), (17.4), (17.6), (18.2) apply only
to interactions of a nonexchange type.

3' dJeff

43Pc' rdr

h' .

[J„,]„„(19)
M'c'rp'

4. APPLICATIONS

According to Rumbaugh and Hafstad'" there
is a level of Li' at about 400 kv above the
normal level. This level is probably the 'P~
part of the 'P normal level of Li'. According
to Hafstad and Tuve" the resonance of the reac-
tion C"+H'—+N"+hv shows indications of fine
structure of the order of 80 kv. According to
Herb, Parkinson and Kerst" there are iodica-
tions of fine structure in the resonances for y-ray
production of Li, B, F, Al, Na, Be when these
elements are bombarded by protons. The order of
magnitude of the difference between adjacent
resonance levels is about 200 kv. The spin-orbit
interactions must be arranged so as to account
for this order of magnitude. Using ordinary
interaction potentials the order of magnitude of
the expected splitting of a single particle moving
in a p orbit is

where the subscript av indicates the average
value. Here J,ff is the effective value of the inter-
action energy due to all the other particles con-
sidered as producing an effective central field.
The nuclear radius is ro. For [J,~q].,„=10 Mev
and ro ——e'/mc' the expected AB is then of the
order of 50 kv. This agrees with the observations
on N" but is too small for the 400 kv splitting in
Li'. These are fitted better with [J,~~], = 20 Mev,
ro ——e'/2mc' which is not unreasonable. Eq. (19)
corresponds to the use of Eq. (15.4) with b=1,
because in such a case the spin-orbit interaction
consists entirely of terms of type

[~,g J;;X&;]p, and
iWi i0i

gives directly the potential in which particle i is
moving. Thus Wigner forces are readily recon-
cilable with present experimental indications as
to the magnitude of fine structure using essen-
tially interactions of the type of Eq. (18.1). The
inversion of the fine structure in Li' is also in
agreement with this type of interaction energy.

For Majorana forces'Eq. (15.7) with @=1 gives
an interaction which is somewhat analogous to
the Wigner case, just discussed, as is seen from
Eq. (15.8'). With this form the following con-
tributions to the fine structure are found for a
proton interacting with a complete shell of
2(2L'+1) neutrons
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(2L+1)(2L'+1)h' /

AZ= — ' {L(L+1)cos 0
32m'M'c'L(L+ 1) ~

XI L[3QiQ2+riQi'Q2+r2QiQu' j
+sin' |/Pc'[(4+L(L+1))Q,Q2+2r, Q, 'Q2

+2r2QiQ, '+rirmQi'Qg'j I

functions used were such that

/vv~/2 + 2 4~8/2/~1/2
(19.3)

Q
—+@c vv~/2 —+@2—8v5/2/3irl/2 ~

J=gg —+&2 (19.4)

and the interaction potential was taken to be

XRI. (1)Rc (2)Pc Jimdridr2. (19.1) The contributions to hE were found to be:
Here L, =azimuthal quantum number of proton;
I.' =azimuthal quantum number of complete
shell; P~=Legendre function of argument cos 0,
where 0 is the angle between the directions of
points 1 and 2; Rc., rQ are the radial functions of
proton and neutron respectively. Derivatives
with respect to r and cos 0 are indicated by '. The
normalization is such that

3h' A (/i v) '/'(/i+4a)
(19.5)

4M2c [n(/i+ v) + (/i+ v) /4$

due to the s shell of neutrons,

3h' A (/iv) "'a
(~Z)..= (~Z).,— (19.6)

2M'c' [n(/i+ v) +/iv)'/2

due to the s shell of protons, and
19.2Rc'r'dr=1; Jt Q'r'dr=1.

h' Anv'(4nv 3i ')—
(19.7)(~&)"=-

4M'c' [2nv+ v' ji/2

due to two p neutrons in a 'S configuration.
Using A =38 mc', a= 16 3EImc'/h', and trying

to fit the apparent experimental value AB = —0.8
@ac', one obtains approximate agreement using
/i = v —40 Mmc'/O'. No precise fit was attempted.
The above values of p and s correspond to values
of (r') & of 1.7X10 "cm and 2.2X10 "cm for s
and p particles, respectively. The maximum in
the number of p particles per unit thickness of a
thin spherical shell (per Ar= 1) would be at
2.0X10 " cm. Since the calculation is not pre-
cise, these numbers may be considered satis-
factory. It may be premature to expect an exact
agreement inasmuch as even in atoms calcula-
tions of fine structure using Hartree and Fock
fields do not always give correct results.

The values of p, and v are seen to agree quite
well with the calculations of Feenberg and
Wigner, "who obtain from mass defect values
of p= v=2no of 26 and 32 in units Mmc'/h'.
Increasing the value of A from 38nzc' to 63nsc
the value of p = ~, as estimated from fine structure
of Liir, drops to 27&me'/h'. The agreement thus
obtained may be partly accidental.

Eq. (19.1) applies only to cases in which a proton
is outside a complete shell. It does not take care
of perturbations due to other states of the shell,
which, according to Feenberg and Wigner, "are
important in nuclear structure. The effect of such
perturbations is not taken into account in this
paper.

For Li' estimates of expected one structure can
be made by supposing that there are two protons
in s states and one proton in a p state. Two
neutrons are supposed to be in s states and two
in p states. The pairs of like particles in s states
form complete shells. Their effect can be com-
puted by means of Eq. (19.1). The two neutrons
in p states are considered here to be coupled into
a 'S term. They effectively form a complete shell
of two particles. Eq. (19.1) applies to their effect
on AZ, provided the result of the calculation is
divided by 6/2=3. This can be verified by ex-
plicit calculation. In addition there is an inter-
change effect due to the fact that the proton in
the p state is a particle identical with the two
protons in the s shell. In the estimates, the radial
wave functions of all particles with the same L,
were taken to be the same, independently of
whether they are protons or neutrons. The radial
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