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. ; and in defect (in each case the minimum is for P=0), b', (a+b)',
8(a+2b) (a+b)(2a+b)

1ia+10b
(a+2b)(2a+b)' (a+b)(a+2b)(3a+2b)(3a+b)' (a+2b)(3a+2b)(4a+b)'(19a'+35a'b+21ab'+4b')

3a+2b 19a'+35a'b+ 21ab'+4b' 633a'+1559a'b+1525a'b'+ 736a'b'+ 174ab'+16b'

Table I shows the convergence for b =0,
b=a, a=0.

It is hoped to publish in the near future
approximate solutions by this method of a
number of problems for which approximations
with known limits of error are not otherwise
easy to obtain. The iteration for these problems
has to be carried out numerically.

The author wishes to take this opportunity to
thank Professor Bohr for the hospitality of his
Institute last spring when he spent two months in

Copenhagen. During that time the author's ideas
about the above method took their present form.

TABLE I. Convergence for b =0, b =a, a =0.

a2
1.5 a'
1.454 a'

b=a

12 a2
7.5 a'
6.857 a'

a=0

4 b'
2 b2

1.6 b')

REMARKS

Approximations in excess

1.4458 a' 6.592 a' b' Actual value'

1.441 a'
1.421 a'
1.333 a'
a2
0

6.380 a'
6.077 a'
5.4 a'
4 a'
a2

b2-

b2

b2 ~
b'
b'.

Approximations in defect

~ Jahncke and Emde, Funktiontafeln, p. 238.
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From the results of Feenberg and Wigner for the wave
function and term character of the ground state of light
nuclei (mass number between 6 and 16), the nuclear spins
are determined. For those nuclei which contain (or lack)
a single proton (or neutron) and an even number (singlet
state) of particles of the other kind the considerations of
Inglis suffice to determine the spin. For those nuclei which
contain a half-filled p shell in one kind of particle it is
necessary to calculate the fine structure splitting explicitly.

From the spins thus found and with the experimental
values for the magnetic moments of the proton and neutron,
the nuclear magnetic moments are calculated. The effects
on the nuclear moment of the Heisenberg forces and of the
motion of the 1s shell are considered. The moment of Li'
which is of particular interest, is calculated to be 3.07
nuclear magnetons. This is in agreement with the measured
value of 3.20 n. m.

1. INTRQDUcTIQN

T has been pointed out by Bethe and Bacher'
-- that the individual particle model (Hsrtree
model) swords one the opportunity to construct
a rational theory of nuclear spins and magnetic
moments for light nuclei. On the basis of this
model, by assigning quantum states and indi-
vidual wave functions' to each nuclear particle,

~ H. A. Bethe and R. F. Bacher, Rev. Mod. Phys. 8,
82 (1936). In $36 these authors have treated the case of
the Li' nucleus.

2 These are determined by a suitable auxiliary central
field which may be assumed to be the same for each
particle. Following the usual procedure we shall take for
this field an oscillator potential.

one can calculate, in the same manner as in
atomic spectra, the energy of the various terms
which arise from any given configuration of
neutrons and protons. From the spin and orbital
momenta of the nucleus in the ground state
found in this way and from considerations as to
the coupling of these momenta the magnetic
moment of the nucleus may be calculated. It is
to be expected that the model will break down
for all but light nuclei' and that even for these
light nuclei one can obtain only roughly correct

' The model may be expected to give relatively reliable
results for nuclei up to 0" where the 2P shell is just
completed.
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TABLE I. Ground states of light nuclei as given by Feenberg
and 8'igner.

TABLE II. Coegcients for the parent wave functions.

Row Ci Cg CB

NUCLEI
GROUND STA rE

TERM

OI5NI5

3S
2P
3p

2P

'S
2P

He6 CI4
Li6 N14
Li' Be' N'3 C'3
L;8 BI2
Be8 CI2
Beg B&

Bel 0

Bio

WAVE FUNCTION

C,(iD2P)+ C,(IS P)
CI (2P2P) +C,(2D2P)
Ci ('S'S) +C2('D'D)
Ci('S'P)+ C2('D'P)+ C3('D'D)
Ci(iSiS) +.C,(IDiD)
Ci( P2P) +C2('D'D)

Li'
Li'
Be'

0.681
0.785
0.731

0.732
0.619—0.344 —0.589

For the unlike particle interaction we have
(cf. reference 5)

U„„=A„.(1 —g/2)e "'~ "P~,

quantitative results for the energy. Nevertheless,
it is plausible that the order of the levels will be
given correctly and it is only this feature of the
results that need be used here.

The calculation of the term energies for nuclei
of mass number between 6 and 16 has been given

by Feenberg and Wigner. 4 On the assumption of
Russell-Saunders coupling, which is almost
certainly valid because the magnetic forces are
very small compared to the nuclear forces, and
neglecting Heisenberg forces, ' in which case both
the spins of the neutrons and protons are good
quantum numbers, they find for the ground
state the results given in Table I.

In the third column of the table the first
term in the bracket gives the parent term of the
neutrons and the second that of the protons
except in the cases of the nuclei in italics for which

neutrons and protons are to be interchanged. As
is indicated, in most cases the wave function for
the ground state is a mixture of wave functions
arising from different parentages in the neutrons
and protons. The coefficients Ci, C2 and C3

with which the various parent wave functions
are multiplied depend, of course, on the specific
nuclear forces though not very sensitively. ' In
addition, in the absence of Heisenberg forces
between unlike particles, they are independent
of the exchange properties of the forces between
like particles. '

I'~ being the Majorana exchange operator, with
g=0.22, A„=37 MV and a=2.93)&10 " cm '
For the like particle forces we take only

(2)

with A =21 MV. Then the coefficients are as
given in Table II.

If the Heisenberg forces are not neglected the
resultant spins of both the neutrons and protons
will no longer be good quantum numbers. Thus
the 'P term of the p' configuration and the 4S

term of the p' configuration will interact with
the other terms (i.e. , '5, 'D and 'P, 'D, respec-
tively). Then the wave function for Li', e.g. , has
an additional parent wave function C3('P'P).
We shall consider the effect of this addition to
the wave function in )4(a).

2. THE NUCLEAR SPINS

We now consider the total angular momentum
J of the nucleus in the ground state. For the
nuclei whose ground state is an S term we can,
of course, obtain J at once from Table I. How-
ever for the nuclei whose ground state term is
'P, i.e. , those with odd mass number, and for
Li' and 8" whose ground state term is 'I', we
have to consider the spin-orbit forces which
split the levels of the multiplet.

In the case of Li' the fine structure splitting is
due to the single p proton, the two p neutrons
entering in a singlet state. Here we can apply

4 E. Feenberg and E. Wigner, Phys. Rev. 51, 95 (1937).' The Heisenberg operator can be written as P~
—,'P~(1+a'I. o'2) where P~ is the Majorana operator and

ei and e2 are the spin operators referring to the two
particles. The part ~2P~ can be incorporated into the
Majorana operator and the part —,'P~(0'I e2) neglected.' See $2 reference 12 below.

' See appendix.

8 This range of the forces has been chosen by Feenberg
and Wigner (reference 4), somewhat larger than that
deduced from the theory of binding energies of O', H' and
He4 (namely, a =2.3 X 10 " cm) in an attempt to com-
pensate for the correlation forces between the particles
which the present model fails to take into account. The
particular value chosen for a makes the calculated energy
of 0"agree with experiment.
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1 BVi
i(1; s;),

a Er rlrj;
(3)

in which 1; and s; are the orbital and spin
momenta (in units of h) of the ith particle.

We must calculate the matrix element of this
interaction with the ground state wave function
for Li'.

+('P) = C~4~('P'P)+ C~A('D'P) (4)

9 D. R. Inglis, Phys. Rev. 50, 783 (1936).

the considerations of Inglis' who has pointed
out that the Thomas part of the spin-orbit
interaction will preponderate over the magnetic
interaction. This is due to the fact that the
Thomas term comes from the specifically nuclear
forces while the magnetic interaction is due to
the weak electrostatic forces. The nuclear forces
being attractive, this leads to an inverted doublet
for Lir and therefore a spin of 3/2.

In the absence of magnetic forces there is
complete symmetry between neutrons and pro-
tons. Therefore the spins will be the same for
any pair of isobars which may be obtained from
each other by the interchange of neutrons and
protons. Thus the doublet in Be' is inverted
(1=3/2) with the same fine structure splitting
as for the Li' doublet. Because of the opposite
signs of the magnetic moments of the proton and
neutron, the magnetic forces will slightly enhance
the splitting in Li~ as compared to that in Be~.

The nuclei N" and C" are the images of Li7

and Be' with respect to the half-closed shell of
neutrons and protons; that is, the p shell for the
former nuclei lack the particles which are
contained in the latter nuclei. Moreover, just as
in atomic spectra, the spin-orbit energy for the
completely filled p shell is zero. Therefore the
splitting for N" and C" is of opposite sign to
that of Li" and Be'. These nuclei should then
have a regular doublet and spin -,'. Obviously
0" and N", lacking a single p particle, should
also have regular doublets and spin -', .

For Li, beside the single p proton, it is
necessary to consider the contribution to the
splitting of the half filled shell of neutrons. The
Thomas part of the spin-orbit interaction may
be written as

writing the M~ for each kind of particle, Ml, "
and Mz, ", as a superscript. For reference we give
the wave functions in the mourn, scheme. For the
three-neutron wave functions with 3f~"=-', one
obtains"

'P'=2 -*[(1+0+0 ) —(1+1——1+)],
Po 2—,*[(1—0+ 1+) (1+0+ 1—

)] (6 1)

P '=2 **[(0+0 —1+)—(1+—1+—1 )],
'D' = (1+1-0+),

'D'= —2 l[(1+1 —1+)+(1+0+0 )],
DO=6 l[(1+0+—1 )

+ (1 o+ —1+)—2(1+o —1+)].

(6.2)

In (6) the numbers in the round bracket give
the value of m& for each neutron and the symbols
+ and —refer to the sign of the spin component
in a given direction s. Each round bracket, of
course, is a normalized antisymmetrical (determi-
nantal) wave function and orthogonal to all the
others. If we take for the proton wave function
(m&+), the wave function (4) as given obviously
refers to the substate &=2, J=2. The coeRi-
cients C& and C2 may be taken from Table II."

In the calculation of the spin-orbit energy it
will be sufficient for our purposes to assume that
the particles in the p shell move in a central
field. For any central field (one-particle inter-

» MJ.~ ——2 mf, , ML,"= 2 mf, .
protons neutrons"For notation see Condon and Shortley, Theory of

Complex Spectra (Cambridge Press), p. 169. The angular
part of the single particle wave function for mf, =1, 0 and—1 contains 2 &(x+iy), z and 2 &(x—iy), respectively."In calculating these coefficients the wave functions
(5) and (6) with the interactions (1) and (2) are used.
As an example of the insensitivity of the coefficients with
regard to the magnitude of the force constants it may be
mentioned that if we take A„„=A, we obtain CI ——0,791
and C2 ——0.612.

The P wave functions compounded from neutron
and proton wave functions with the magnetic
quantum number' MI, =MI. +Ml."=1 for any
multiplicities are

for L„=j., L =1:
4~=2 'I(P'P') —(P'P') I

for L„=2, L =1:
4 =1o '*I6'(D'P ')+3'(D'P') —(D'P') I (3 2)
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action) the matrix elements of (3) are simply
proportional to the matrix elements of

1; s;= —(1. s + P l„s„).
neutrons

For the single proton, of course, only the diagonal
terms (fqll, s IP&) and g2ll ~ s I/2) give a
nonvanishing result. We find

(4 ll s I%)=2CP(1ll s I1)
1

+—C2'I6(-1ll- s-I —1)+(1ll- s-I1)I
10 (7)= —,'(CP —Cg') =0.058.

The numbers in the matrix element refer to the
value of M~

For the three neutrons we may transform the
neutron wave functions to the JM scheme
according to"

P(L, 5, M; Ms = g')

t
L+M+-', q:

+)
2L+1 )

(L M+-', q
'—

I
q('L r )), (8)

2L+1 )

in which the subscripts in p refer to the values
of J and the superscript v on the quantum
numbers has been suppressed. For the neutrons
we have 3f= 3fl,+—,'. We find that only the cross
term gives a nonvanishing result.

(O'I Pl„.s„l 4) =2C~C (P~l Pl„s„If')

= —2(20) 'C~C2{3'*(1
I
pl„s„

I
1)

+(0IZ1. s. lo)I (9)

From (8) we have

(L=1, M, l
gl„s, lL=2, M,) =

—I:(4:—M~')/151'('&~i2I 21 s.
I
'D3/2) (1o)

and taking the value for the matrix element

"The phases are chosen so that the nondiagonal matrix
elements of L, are positive. Cf. Condon and Shortley,
reference 11, p. 66 and $14.

from Condon and Shortley'4 this becomes

(1, Mr.
l
Pl„.s,

l
2, Mr.) = —-',

I (4 —Mr, ')/3]&. (11)

Thus we obtain

(O'I pl„s„l+)= —',(5/3) &C~C2 ——0.313. (12)

Comparing (7) and (12) we see that the contri-
bution to the spin-orbit energy of the three
neutrons is of the same sign as the contribution
of the single proton. " Thus with a positive
value for the matrix element of Pl; s, it follows

from (3) that the spin-orbit displacement of the
level J=2 is negative. Therefore the multiplet
is inverted and the lowest state of Li' has tetal
angular momentum J=2.

Neglecting magnetic forces, the spin-orbit
energy of a half-filled shell of protons is also
given by (12). (Moreover, the magnetic forces
give a contribution with the same sign as that
of the half-filled shell. ) Thus in B" the main
contribution to the spin-orbit energy will arise
from the half-filled sheJ1. The contribution of
the five p neutrons, although of opposite sign,
is much smaller (cf. (7) and (12)) and will not
reverse the order of the levels. Therefore we

have again an inverted multiplet with ground
state J=2."

For Be', B', B" and C" we have to consider
only the spin-orbit energy of a half-filled shell in

one kind of particle, the other kind of particle
entering in a singlet state. A calculation similar
to that given above leads to the result that these
nuclei should have inverted doublets, ground
state J=3/2.

It may be noted that the attribution of the
major part of the spin-orbit interaction to the
nuclear forces leads to the conclusion that the
members of the isobaric pairs Be~ Li~, C" B"

"Reference 11, p. 268. We set &(r) (their notation) =1
and therefore |„=1.

"We are indebted to Professor Wigner for pointing out
an error previously made in this calculation.

"Although it is true that the central field model used
here is somewhat crude it ought certainly to give the
correct sign for each contribution to the spin-orbit energy.
Furthermore, in view of the result that the contribution
to the energy of the half-filled shell is about five times as
large as that of a single particle, it seems safe to conclude
that the sign of the spin-orbit splitting obtained here is
correct.
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N" C" and 0"N" are completely analogous in
the sense that they have the same ground state
J. If only magnetic forces were considered one
must conclude that the doublet of one member
of the isobaric pair would be regular and that of
the other member inverted. Therefore, in the
P transformations between the two members of
the pair, one would expect a spin change 6J=0
in the former case and 6J=1 in the latter. The
former value is in agreement with the known
fact that the observed I8 transformations (the
last three pairs mentioned) belong to the first
Sargent curve. "

The Russell-Saunders coupling, which has
been assumed in our considerations, leads for
many nuclei to a fairly narrow doublet of which
the lower level is the ground state. Experimental
evidence for this has been obtained by Rum-
baugh and Hafstad" who observed a doublet
fine structure in the proton group from Li'+H'
=Li'+H'. The intensity ratio of the two groups
was about 1:2, that is, the ratio of the statistical
weights of the two levels of the doublet in Li'.
It may be suggested that similar fine structure
may be observable in the proton groups from
the reactions

Blo+H2 B11+Hl
C12+H2 —C13+H 1

N14+ H2 N15+ Hl

if thin targets are used. The best studied of
these is the carbon reaction for which the range
curve for the 14 cm protons has been given by
Cockcroft and Lewis. "These authors also gave
for comparison the range curve for the protons
from the D—D reaction at the same deuteron
energy (560 kv). The straggling of the D—D
protons might be.expected to be larger than that
of the C—D protons for two reasons. Firstly,
for the D—D protons there is a greater variation
in energy with angle, the recoil of H' being
larger than that of C". Secondly, the excitation
function for the D—D reaction is flatter (smaller
potential barrier) so that deuterons of a larger
range of energies would be effective. Actually

' H. A. Bethe and R. F. Bacher, reference 1, Table XV,
p. 195."L.H. Rumbaugh and L. R. Hafstad, Phys. Rev. 50,
681 (1936). See also L. A. Delsasso, W. A. Fowler and
C. C. .Lauritsen, Phys. Rev. 48, 848 (1935)."J.D. Cockcroft and W. B. Lewis, Proc. Roy. Soc.
A154, 261 (1936).

the straggling is somewhat less for the D—D
protons. This might be taken as a rather weak
argument for the existence in the C—D reaction
of two proton groups superimposed on each
other with an appreciable difference in range,
say of the order of one cm.

] (i).Z
pI.(') ——

Q2

L(L+1)+l (o(/ (o+1)—1 (f)(/ (o+1)
(14)

2(L+1)

1„&'& and 1„&"are the neutron and proton orbital
momenta (units of l),) in the ith parent wave
function. The total orbital momentum L is
their sum.

The total magnetic moment p is obtained by
adding the projections of p8 and pl. on the total
angular momentum J=L+S.

P =k(g&+g&) ~

(15)

S(S+1) L(L+1)—
+(gs —g~) (15.1)

2(~+1)

3. THE NUCLEAR MAGNETIC MOMENTS

The magnetic moments of the nuclei in the
ground state may now be calculated according
to the following procedure. The neutrons and
protons enter the wave function for the ground
state, as given in Table I, in either a singlet or
doublet state. The part of the magnetic moment

pg which is due to the spin of the neutrons and
protons will then be

(1) 0 if both kinds of particles are in a singlet state,
(2) ~ the proton moment, or p„ the neutron moment, if

the protons, or neutrons, are in a doublet state,
(3) p~+y, if both kinds of particles are in a doublet

state and the nucleus is in a triplet state.

We shall take p =2.85, in units eh/2Mc, and
p„= —2.00.

In addition to p8 there is the contribution to
the moment of the orbital motion of the protons.
This is given by

p, g
—C 2p, g&»+ g 2p

where
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where the g factors are defined by

gsS=gs& grt-=~a, (16)

For the nuclei with inverted multiplets the
ground state J=L,+S and we obtain the obvious
result

p =pl, +ps. (17)

For the nuclei with regular multiplets the
ground state J=L San—d (15.1) reduces to

20 The nuclei not listed in Table III have zero spin.
2' J. H. Manley and S. Millman, Phys. Rev. 50, 380

(1936).
"M. Fox and I. I, Rabi, Phys. Rev. 48, 746 (1935)."Using atomic wave functions due to James and

Coolidge a value of 3.33 was calculated for p(Li7) by
J. H. Bartlett, J. J. Gibbons and R. E. Watson, Phys.
Rev. 50, 315 (1936).

24L. P. Granath, Phys. Rev. 42, 44 (1932). G. Breit
and F. W. Doerman, Phys. Rev. 36, 1262 (1930),

The nuclear magnetic moments, in units of
the nuclear magneton eh/23IIc, calculated from
the formulae (13), (14), (17) and (18) and the
nuclear spins deduced in (2 are given in Table
III."

These values for the magnetic moment have
not been corrected for the presence of Heisenberg
forces. This correction will not pertain to those
nuclei which have an S ground state (cf. )4(c)).
In )4(a) we shall give the calculation of the effect
of the Heisenberg forces on the moment of Li7.
We find there for the corrected value of the
moment p(Li') = 3.07.

Experimentally the following moments are
known: g(Li') =0 85" p(Li') =3.20 from atomic
beam measurements" with neutral Li' and the
use of the modified Goudsmit formula" and 3.28
from spectroscopic measurements of hyperfine
structure for Li' II and the use of Breit and
Doerman atomic wave functions. '4

The agreement between the calculated and
measured values of the Li aod Li moments is
quite gratifying since no empirical adjustment
of constants has been made in the theory. A
more decisive measure of the correctness of the
theory can be obtained from the comparison of
the ratio of the moments since this quantity is
independent of atomic wave functions. The
calculated value p(Li')/p(Li') =3.61 is in satis-.
factory agreement with the observed ratio

3.87&0.03." However, it must be admitted
that the calculated ratio lies outside the limit
of experimental error and cannot be changed
sufficiently by any reasonable adjustment of the
value of the proton (or deuteron) moment. "At
the same time, the favorable comparison between
the calculated and observed values of the
magnitude of the moments is an indication that
the atomic wave functions used for Li~ are
rather reasonable.

The general agreement obtained justifies the
assumption, which is made in our calculation,
that the magnetic moments of the proton and
neutron are not affected appreciably when the
particles are bound in the nucleus.

However, there is some experimental evidence
that the magnetic moment of N" is probably
~0.2."It is difficult to reconcile the calculated
moment with this value. In f4 we shall discuss
the corrections caused by admixtures of other
configurations due to Heisenberg forces.

4. REFINEMENTS TO THE THEORY

(a) Heisenberg forces

We now wish to consider the effect on the
magnetic moment of Heisenberg forces. To the
unlike particle interaction (1) the interaction

gA„r """(Pgg ,'P~)—-
is added (cf. reference 5). The values of a and
A, are the same as in the Majorana interaction
and g=0.22. In general the Heisenberg forces
will yield only a small correction to the magnetic
moment as calculated above and it will suffice
to consider its effect only for the case of greatest

- interest, namely Li~."
The complete wave function for the ground

state is

"The ratio of the Li' to Li' moments may be regarded
as equal to the ratio. of the proton to deuteron moments
plus a small correction which is due mainly to the orbital
motion of the protons in Li'. The ratio p /pD is known
(J. M. B. Kellogg, I. I. Rabi and J. R. Zacharias, Phys.
Rev. 50, 472 (1936)) to be 3.35 with an error estimated to
be 3 percent or less. The deuteron moment is given by
the same authors, yD=0.85&0.03. The computed ratio is
p(Li')/p(Li') =0.968lM /pD+0. 306/pD. If we take the
extreme values p /pD =3.45 and pg =0.82 we obtain
p(Li )/p(Li ) =3.71 in place of 3.61 given above.

~' R. F. Bacher, Phys. Rev. 43, 1001 (1933).
"Obviously in considering Li' we obtain at the same

time the correction to the moments of Be', C" and N".
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TABLE III. .Calculated nuclear magnetic moments and spins.

NUcLEUs MAG. MQM. SPIN NUcLEUs MAG. MQM. SPIN

The magnetic moment is given by

p
—(l C 2)~(12)+C 2p(3) (26)

Li'

Li'

Li8

Be'

Be'

B'

10

085 1

3.15 3/2

0.97 2

—1.30 3/2

—1.65 3/2

3.50 3/2

0.85

Bll

B12

Cll

C13

N13

N14

N15

3.50

1.73

—1.65

1.13 1/2 p()=~ ()+p () (27)
—0.75

0.85

—0.28

1/2

1/2

in which the moment due to spin pq(') is given

by a formula analogous to (18)

3/2
where p('" is the moment calculated without
Heisenberg forces and p'" is the moment associ-

3i2 ated with the state P~.

O15 0.67 1/2 g, (S„+1)—g„S
(S —S )

S,. —S +1
(28)

+('P) = Cggg('D 'P)
+C 4 ('S 'P) +C 4 ('P 'P) (2o)

The wave functions P~ and P~ are given in (5.1)
and (5.2) and for the same substate, namely
&=1,

(IS RP) —(1SO 2PI) (21)

The two-neutron wave functions are

~D~=(1 l)x,
'D'=2 'L(o 1)+(10)]x,
'D'=6 'L2(0 0) —(1 —1)—(—1 1)]y, (22.1)

'So ——3 *L(0 0)+(1 —1)+(—1 1)]y,
'P'=2 **L(1 0) —(0 1)]n,n, ,

'P'=2 l[(—1 1) —(1 —1)]cx~ng,

x=2 *(~|Pa—~aPi),

(22.2)

(2-' 3)

(23)

and for the proton

2pm& (m )~ (24)

The indices 1 and 2 refer to the neutrons, 3 to
the proton. n and P are spin wave functions
corresponding to positive and negative spin
component in the s direction.

With these wave functions the complete
secular determinant of the interaction (1) plus

(19) is calculated and the coefficient C~ deter-
mined. We find, with the force constants as
given above,

if S„&S and

g.(S-+1)—g S.
ps"' = (S —S.) (28 1)

S —S„+1

if S )S„.g. and g are the g factors for the
neutron and proton, respectively, and the mo-

ment due to the orbital motion of the proton
pz~') is given by (13). For Li~ the correction to
the moment is —0.075 and we obtain the
corrected moment p, =3.07. The corrected mo-

ments for Be', C" and N" are —1.33, 1.14 and
—0.72, respectively.

R= gr;/X, (29)

N being the total number of particles, and
coordinates relative to that point

(b) Motion of the ls shell

In the foregoing we have omitted all consider-
ation of the 1s shell. From naive considerations
it might be thought that the orbital motion of
the 1s shell, as well as that of the p particles,
around their mutual center of gravity would give
a contribution to the magnetic moment of the
nucleus. It turns out that this is not the case.
To show this we carry out the calculation of the
orbital momentum of all the protons in the nu-

cleus around the center of gravity of the whole

nucleus. We introduce the coordinates of the
center of gravity.

Cg ——0.109. (25) y;=r; —R. (30)
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The orbital momentum operator is then given by

L= P p;Xgrad&.
protons

(31)

and the corresponding magnetic moment by

pc ——eh/2' P p;X grad&.
protons

(32)

The wave function @(r;) may be transformed
into the coordinates (29) and (30) with the
result"

y(r, ) e rivRs @(—y.) (33)

where y is a constant characteristic of the
oscillator potential.

In calculating the orbital momentum (+
~
L

~
+)

we need only consider the proton part of the
wave function. Further, since L is a one particle
operator, any particular term in the expansion
of the determinant in L+ combines only with
that term of 4* which is the same permutation
o'f the particles. We may therefore consider only
the principal diagonal term since all the terms
give the same result. It is then readily seen that
in the operator L only the p proton operators
give a nonvanishing result, the s shell ware func
tions being spherically symmetrical It follows t.hat
we get the same result for the orbital momentum
as we would obtain if the absolute coordinates r;
were used; that is, the motion of the 1s shell
does not affect the magnetic moment.

s' H. A. Bethe and M. E. Rose, Phys. Rev. iin press).

(c) Higher configurations for S state nuclei

In view of the discrepancy between the calcu-
lated and experimental magnetic moment of N'
it might be thought that the wave function of
the ground state might contain an admixture of
higher configurations and that these would give
a different value for the moment. However, it is
easily seen that all higher configurations which
may mix with the ground state give the same
value for the magnetic moment, namely p +p,„.
For example, if we consider Majorana forces
alone, the total spin of each kind of particle and
the total I. being good quantum numbers, the
only terms of higher configurations which can
interact with the 'S('P'P) are other 'S states

which arise from two doublets. Such states yield
only the deuteron moment, p„+p„=0.85. With
Heisenberg forces we may obtain admixtures
of 'S states arising from combinations of either
doublet and quartet states or two quartet states.
In the former case we may have either sS('L'L)
or sS(sL4L). The moments for these two states
are given by (28) and (28.1). This gives p, (4L'L)
=-,'(5p —p„) and p(sL'L) =-', (5p„—y ).These two
states will presumably have about the same
energy and therefore will appear with about the
same coefficients in the ground state wave
function. Thus the total moment p' is obtained
as the mean of these two values which gives
again g' =p =p„. In the case of the state 'S('L'L)
we have

g (S S)+g„(S„S)
p&(4L4I )—

S+1
S

(gn+gu) =Px+tjv
2

(34)

Note added in proof: Dr. Bacher has suggested to us that
a rather large correction to the moment may be expected
when the two states 'S(4L'L) and 3S('L4I) differ in energy
even though this energy difference is not large. If B& and
B2 are the energies of the two states, Eo that of the ground
state and V the matrix element of the Heisenberg forces
between ground state and any of the two states, the cor-
rection to the moment is

3 V V'"= (" "") .—,
3 V(EI —E2)

(35)+
We may estimate -', (BI+82)—8&——5 MV, V=1 MV, while
8&—82 may be expected to be of the order of the
Coulomb energy for one proton which is about 1 MV for
nitrogen. This gives

(35.1)

which is of the same order of magnitude as the difference
between the elementary theoretical and the experimental
moments. It is satisfactory that this correction increases
with increasing Coulomb energy and decreasing spacing
between the levels arising from different configurations
and is therefore to be expected to be much larger for N'4

than for Li'. Presumably the small moment of N' is due
to the joint action of this effect and others such as devi-
ations from the Russell-Saunders coupling.

One of us (M. E. Rose) wishes to express his
indebtedness to The American Philosophical
Society for a grant,



NUCLEAR SP I NS AND MAGNETIC MOM E NTS 213

APPENDIX

Invariance of the coefficients with respect to the exchange
properties of like particle forces

The most general model for the interaction between two
like particles is a linear combination involving the Major-
ana operator P~ and a scalar (ordinary force). Heisenberg
forces, because of antisyrnmetry of the wave function are
equivalent to (repulsive) ordinary forces and, for the same
reason, the Bartlett operator (exchange of spin coordinates)
is equal to —P~. The interaction involving the scalar
product e~ e2 of the two spin operators referring to the two
particles, which has also been proposed, is equivalent to
—(1+2P~). We must choose the interaction which gives
the correct energy for nuclei with symmetric space wave
functions (H2, H3, He' and He4).

This is V(r) (bP~+1 —b), (36)

in which V(r) is a suitable function of the distance be-
tween the particles and b is an arbitrary constant (limited
only by stability considerations). The difference between

any two interactions for different values of b is obviously a
multiple of U(1 —P~). From this result we can show that
the difference of the interaction energies of the like par-
ticles, using the various force models (36) is the same for all

low terms of a p" configuration.
For 2 or 4 particles the low terms are 'S and 'D. For

these the space wave function is symmetrical. Therefore
the operator (1—PM) gives a zero result in this case for
both terms.

For 3 particles the low terms are 2P and 'D. Considering
the particular substate M = Mg+ Mg = 1,"the wave func-

"We have omitted the superscript on the magnetic
quantum numbers but, of course, they refer to a single
kind of particle and should not be confused with the
symbols used before to denote the magnetic quantum
numbers of the whole nucleus.

tions are lft('P) =2 &(y~ —y2) and p(2D) =2 &(y~+y2);
y~ ——(1+0+0 ) and q2 ——(1+1 —1+). To prove the theorem
for this case we have to show that (s2 ~

V(1 Psr)—
~ y&) =0.

The only set of individual particle quantum numbers which
match in q~ and q2 is the first, 1+. Therefore it is clear
from orthogonality considerations that only the interaction
between particles corresponding to the last two sets of
quantum numbers will contribute to the matrix element.
If these particles are the ith and kth, the wave function

q ~ will contain s;sI, as a factor and is therefore invariant
with respect to the Majorana operator P~'~.

This shows that the difference between the matrix of the
interaction energy for the various force models is a multiple
of a unit matrix and this does not affect the values of the
coef6cients C~C~ and C3.

Exceptions to the theorem

The invariance of the coeKcients is no longer true if the
high terms, 'P and 'S, of the p" configurations are included.
The like particle energy of the state 'P will depend on the
force model. The energy difference for the various force
models is ProPortional to (sP

( V(1 Psr) ~'P) =2('P—
( V)sP),

since the space part of the wave function is antisym-
metrical, and this matrix element is not zero in contrast to
the result for the singlet states. For the 4S state, in the case
of any two force models, the energy difference is twice that
for the doublet states. "

Further, it is not sufficient for the truth of the theorem
that the terms have the same multiplicity. In the con-
figuration d2 the terms 'P and 'F arise. In this case

('P( V(1 Psr) ['P) =2('P( V['P—) W2('F) V)'F),

so that the energy difference with the different force models
depends on the L value of the term.

"E.Feenberg and E. Wigner, reference 4, Table III.


