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A*(1) B*(1) C(1) D(1)
2J' (2/r12) dv1dv2.

A*(2) B*(2) C(2) D(2)

If now A, B, C, D represent modulated functions, it is easy
to show that unless the sum of the k's for A and B equals
the sum for C and D, the integral over the crystal will

states differing in the wave functions of two electrons at
most. If the initial wave functions of these two electrons
are symbolized by A, B and the final ones by C, D, then it
can be shown that the matrix component will be just as for
a two-electron problem involving only these two electrons:

vanish. If this condition is satisfied, however, the integra-
tion of dv& only over the cell surrounding one atom will

lead to just 1/¹h of the whole integral, if N is the number
of atoms. Furthermore, if dv1 is integrated over one cell,
the major contribution to the integral will come when dv2

is integrated over the same cell. Now within a given cell,
the wave functions of all the states of a single band are
similar. Thus if A and B refer to states of the same band,
the first determinant will be small, and if C. and D states
of the same band the second determinant will be small,
verifying our statement that the matrix component is large
only when A and B refer to diITerent bands, and C and D
refer to diferent bands.
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A method is described by which successive approximations to the wave functions and energies
of stationary states can sometimes be obtained in a form allowing definite limits of error to be
stated. Two examples in which the solution is otherwise known are worked out and the rate of
approximation is found to be rapid.

THE ITERATIQN PRocEss

J~ONSIDER the homogeneous linear equationI~
NP=XDf, (1)

where N and D are two Hermitian operators
operating on a range of functions P of certain
variables x. Suppose a function q 0 in the range
can be expanded in the series

converging geometrically: and we have a process
for approximating to P,.

When a function q approximating P, has been
found, if Eq. (1) has a discrete proper value
next lowest in absolute value to P„we can
approximate in like manner to its corresponding
proper function by replacing p at each stage by

p.—I (f*q.)/Q*&) I P, (6)

+0 c14'1+c24'2+ ' ' '
q (2) where P* is the (Hermitian) conjugate to P and

(f*f) means their summed product.
where p„are proper functions of (1) correspond-

ing to proper values )., (some of which may be
distributed continuously). Then, if we operate
on po repeatedly with N 'D giving the sequence
of functions p1, p2, ~ such that

NV -+1=DV»

we shall have y„=X~ "c~P~+X2 "cgk~+ . (4)

LIMITS OF ERROR

We can usually find from an approximate
proper function P, by modifying it if necessary
so that the zeros of NP' and DP' coincide, a
function P' such that bounds p, and v exist for
which

p —(NQ'/DP') —v (all x).

Thus, if Eq. (1) has a discrete proper value of
lowest absolute value, X„and if the coefficient
of the corresponding proper function P, in

vis. c„does not vanish,

There is then a corresponding proper value ) of
(1) satisfying

@~X~v.

y„-X, "c,P, (n—+~),
If in particular D is positive definite, and if

(5) Eq. (1) has a discrete lowest proper value, X&,
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so that the corresponding proper function P~ is
nodeless and minimizes (P*NP)/Q*DP) in the
range; then, for any nodeless function q in the
range, a lower bound p exists such that

Nq/D—p (all x), (9)

and then p —X~~(y*Np)/(p*Dp). (10)

(If an upper bound v also exists, the Ritz ex-
pression (p*Ny)/(p*Dp) is less than v and is a
better approximation to X~.)

If in addition ) ~ is the proper value of least
absolute value, then for the sequence given by
(3) the successive ratios

(~o*Nv o)/(v o*N~~)/(v o*N~2)/ (11)

give successive approximations in excess to 'A~,

(note that (po*Np, ) =(p,*Np„,), so that alter-
nate ratios are Ritz approximations using happ, (py,

p2, ); while the successive minimum values
for varying x of the ratios

Nyp/Nq g/Np2/ (12)

(provided that the denominator is a nodeless
function, which, after some point, it usually
will be) give successive approximations in defect.

For problems involving absolute minima of
quadratic expressions, better limits of error than
that given by (10) can be obtained but the
well-known comparison theorem results stated
above seem to be the best available for relative
minima, especially for proper values other than
the lowest.

THE CHQIcE QF THE OPERATDRs N AND D

Consider the simple case of the radial equation
of S states of the hydrogen atom: in atomic
units

—2VV —0lr =&0, (13)
of which the proper values are E= —~,
—1/2n', . . ; Z&0. Iteration with N= ——',V'
—1/r, D=1, even if it converged, would not
lead to a state in which we are interested. We
are not, however, limited to this form; change of
scale brings the equation to

'V'P aP/r=bP (a&0—)-—(14)

and iteration with D and X any linear combina-
tions of V', 1/r, and 1, would converge, if at all,

1Trefftz, Math. Ann. 100, 503 (1928); Friedricks, Gott-
Nach. Math. -Phys. Klasse, p. 13 (1929—30).

or, in more general problems,

N=T —Z
D= —U (17)

where T and V stand for kinetic and potential
energies.

Finding the solutions of

TP EP = —x vip— (18)

corresponds to asking how large a potential
energy of given form will lead to a state of
energy 8 fixed in advance. In problems of the
normal states of nuclei it is just this that we
really desire to know. In problems ef the normal
states of atoms, a change of scale will bring the
potential energy to its known value. In problems
of the normal electronic states of molecules
the change of scale also alters the size of the
molecule; but that is in any case one of the
parameters we wish to determine.

In (17) D is positive definite only if V is one-
signed. This will not be true in electronic
problems in general; and we shall have solutions
corresponding to —V also coming in; but the
solution we want will usually be that for X of
lowest absolute magnitude: and once nodeless
approximations to P are found they can be
used to fix limits to Z for given V from (10)
with X=T+ U and D = 1.

Various methods of obtaining and improving
approximate wave functions have been suggested
and applied by various authors the above

~ E.g., Hylleraas, Zeits. f. Physik 48, 469 (1928); Har-
tree, Proc. Camb. Phil. Soc. 26, 542 (1930); Hasse, Proc.
Camb. Phil. Soc. 24; 89 (1928); Fock and Petraschen,
Physik. Zeits. Sowjetunion 6, 368 (1936).

to a solution of this equation (any a).

N = —-,'.v' —p/r+ ~,
D = 'b—V-'+ e/r+ I',

where, without loss of generality, +~0, 8~0:
then ~~0 and $~0 are required to make D
positive definite, and y &0 is required if ),=0 is
not to be in the continuous range of proper
values, between y/I and n/8 If .we take 8=0,
g =0, there is no continuous range; and if further
P = 0, the operation N ' can be carried out
reasonably easily.

We are thus led to take

E= ——,'v' —E
D =1/r
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method seems to be especially simple in theory
and convenient in application to problems in-

volving more than one variable x.

TWO EXAMPLES ILLUSTRATING THE METHOD

The exact solution in each of the following
problems is known; and it happens that in each
the iteration can be carried out analytically.
In the first, radial distance; in the second radial
momentum, ' is used as independent variable.

The radial equation for a straight-sided poten-
tial hole in case of zero energy

The equation to be solved is

and the successive approximations in excess to X
(known to be 2r2/4 = 2.46740. ) are 3, 2.5,
2.471 ~, 2.4678 ~; those in defect 0, 2, 2.4,

2.458;
~

in each case the minimum is for r =0;
~

d PQ dPQ dNQ
note "—

(()() dr" = 22()(1) — = 1 ~.
df df1—Q df 1+0 )

The radial equation for a simple exponential hole
treated in momentum space

The equation

—d'x/«' —c'e "x= —b'x

is known to have the solution

x= J23/~((2c/a)e ( (»"),4

d2$
=CUP,

df =0, 1&f, ))'d(~) finite.

U= 1, 0 & r & 1, with f(0) = 0 and X(0) =0 gives J23~ (2c/a) =0.
Transforming to momentum space by

Thus

r 1

t„+(r)=(1/r)J f tt (t)dtdt, r&1
0 s

1 1

=~) Jf ~.(t)deeds,
0 s

Taking yQ
——r, 0&f &1

X(r) = (2/2r) &Jl sinPr P(P) dP,
0

the equation becomes, if p( —p) = —p(p),
c' - ay(p')

(b'+ p')O(p) =-
,

dp'
a'+ (p —p') '

aV' (p)
Thus (()„+)(p) = —dp'

b'+P' 2r a'+ (P —P')'

t /2, /6 5 /24 —3/12+8/120
and to a term P/(g'+P') in 22„corresponds

C2 p

(a+g) 2 b2 b2+p2 (a+g) 2+p2
= 1/3, = 2/15,

Ip 3 —61r/ 72 0 Sr ' / 144+r'/ —240 r'/ 5040, — In pn+] ~

= 17/315, Thus, taking d)2()
——P, we get

0&f&1

1&f

C2P

b2+p2

C4P

(b'+ p') ((a+b)'+ p')

c'p(3a+ 2b)
P3=

(b'+ p') ((a+b)'+ p') ((2a+b) '+p') (a+2b)

c'P (19a'+35a'b+21ab'+4b'+aP' I

(b'+P') ((a+b) '+P') ((2a+ b) '+P') ((3a+b) '+P') (a+2b) '(a+ b)

c"PI633a' j1559a4b+1525a3b2+ 736a'b'+174ab'+16b'+ (65a'+64a'b+16ab')P'+ 2aP'I

(b'+P') ((a+b) '+P') ((2a+b) '+P') ((3a+b) '+P') ((4a+ b) '+P') (a+ 2b) '(a+ b) (3a+2b)

(a+ 2b) (3a+2b)
and the successive approximations in excess to c' are ~, ~, ~, (a+2b)(2a+2b),

3 The great simplification that Can sometimes be ob- Physik 98, 145 (1936).
tained in this way has been pointed out by Fock, Zeits. f. 4 Bethe and Bacher, Rev. Mod. Phys. 8, 111 (1936).
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. ; and in defect (in each case the minimum is for P=0), b', (a+b)',
8(a+2b) (a+b)(2a+b)

1ia+10b
(a+2b)(2a+b)' (a+b)(a+2b)(3a+2b)(3a+b)' (a+2b)(3a+2b)(4a+b)'(19a'+35a'b+21ab'+4b')

3a+2b 19a'+35a'b+ 21ab'+4b' 633a'+1559a'b+1525a'b'+ 736a'b'+ 174ab'+16b'

Table I shows the convergence for b =0,
b=a, a=0.

It is hoped to publish in the near future
approximate solutions by this method of a
number of problems for which approximations
with known limits of error are not otherwise
easy to obtain. The iteration for these problems
has to be carried out numerically.

The author wishes to take this opportunity to
thank Professor Bohr for the hospitality of his
Institute last spring when he spent two months in

Copenhagen. During that time the author's ideas
about the above method took their present form.

TABLE I. Convergence for b =0, b =a, a =0.

a2
1.5 a'
1.454 a'

b=a

12 a2
7.5 a'
6.857 a'

a=0

4 b'
2 b2

1.6 b')

REMARKS

Approximations in excess

1.4458 a' 6.592 a' b' Actual value'

1.441 a'
1.421 a'
1.333 a'
a2
0

6.380 a'
6.077 a'
5.4 a'
4 a'
a2

b2-

b2

b2 ~
b'
b'.

Approximations in defect

~ Jahncke and Emde, Funktiontafeln, p. 238.
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From the results of Feenberg and Wigner for the wave
function and term character of the ground state of light
nuclei (mass number between 6 and 16), the nuclear spins
are determined. For those nuclei which contain (or lack)
a single proton (or neutron) and an even number (singlet
state) of particles of the other kind the considerations of
Inglis suffice to determine the spin. For those nuclei which
contain a half-filled p shell in one kind of particle it is
necessary to calculate the fine structure splitting explicitly.

From the spins thus found and with the experimental
values for the magnetic moments of the proton and neutron,
the nuclear magnetic moments are calculated. The effects
on the nuclear moment of the Heisenberg forces and of the
motion of the 1s shell are considered. The moment of Li'
which is of particular interest, is calculated to be 3.07
nuclear magnetons. This is in agreement with the measured
value of 3.20 n. m.

1. INTRQDUcTIQN

T has been pointed out by Bethe and Bacher'
-- that the individual particle model (Hsrtree
model) swords one the opportunity to construct
a rational theory of nuclear spins and magnetic
moments for light nuclei. On the basis of this
model, by assigning quantum states and indi-
vidual wave functions' to each nuclear particle,

~ H. A. Bethe and R. F. Bacher, Rev. Mod. Phys. 8,
82 (1936). In $36 these authors have treated the case of
the Li' nucleus.

2 These are determined by a suitable auxiliary central
field which may be assumed to be the same for each
particle. Following the usual procedure we shall take for
this field an oscillator potential.

one can calculate, in the same manner as in
atomic spectra, the energy of the various terms
which arise from any given configuration of
neutrons and protons. From the spin and orbital
momenta of the nucleus in the ground state
found in this way and from considerations as to
the coupling of these momenta the magnetic
moment of the nucleus may be calculated. It is
to be expected that the model will break down
for all but light nuclei' and that even for these
light nuclei one can obtain only roughly correct

' The model may be expected to give relatively reliable
results for nuclei up to 0" where the 2P shell is just
completed.


