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It is tentatively suggested that the superconducting
state of metallic electrons may arise by application of per-
turbation theory to Bloch’s theory. The excited states of
a metal, on the usual theory, form a continuum whose lower
boundary is the normal state. It is shown that under some
circumstances there are nondiagonal matrix components of
energy between states of this continuum, which would tend
to depress a few of the lowest states below their normal
positions. These special states of the metal would resemble
a thermodynamic phase, stable only at the lowest tempera-
tures, and having practically zero entropy, in agreement

with present theories of the thermodynamics of super-
conductivity. They would also tend to have extremely low
resistance, on account of the small concentration of energy
levels per unit energy range. It is therefore suggested that
these states may constitute the superconducting state. It is
shown that superconductivity is not to be expected for the
alkalies, or for Cu, Ag or Au; and that it is to be expected
only at extremely small temperatures for transition nietals,
as W, Fe, Ni, Pt; thereby accounting for most of the metals
which are known not to be superconducting at tempera-
tures so far attained.

HE electron theory of metals has developed

far enough so that it ought to be possible to
explain superconductivity. And the study of the
superconducting state itself has progressed, both
experimentally and theoretically, so far that its
explanation should not be too difficult.! The
present paper does not present a complete theory
of the superconducting state, but it does indicate
apoint in the electron theory, so far not explored,
where we may very plausibly expect an inter-
pretation of the phenomenon to be found. Briefly,
the suggested explanation is the following. Al-
most all discussions of the metallic state have
used the Bloch theory, or some refinement of it
like that developed by Wigner and Seitz. The
essence of such a theory is the use of a model
where each electron moves in a periodic potential
field, and where a wave function for the whole
crystal can be made up by assigning to each
electron of the metal a different wave function
in such a periodic field. Brillouin? has attempted
to show that a wave function of this type can
exhibit superconductivity, but the criticisms of
his attempt are generally believed to show that
this is impossible. Instead, it is generally thought
that a correct theory must depend on some sort
of cooperative action between the electrons, of a
type not describable by Bloch’s theory. Theories

1For a general review of superconductivity, with
references, see H. G. Smith and J. O. Wilhelm, Rev. Mod.
Phys. 7, 237 (1935).

2 L. Brillouin, J. de phys. et rad. 4, 334 (1933); 4, 677
(1933).

of this sort have been suggested by Kronig® and
Frenkel;* but neither one has made close enough
connections with the accepted theory of metals to
lead to any real hope of solving the problem. In
contrast to those attempts, we shall proceed by
well-known methods, asking how we should
expect Bloch’s method to be in error, and how
to correct this error. In atomic structure, the
analog to Bloch's method is the one-electron
method, treating each electron as if it moved in
a central field, and building up a wave function
by assigning to each electron an orbit in the
central field. It is at once observed, however, that
there is degeneracy; using these unperturbed
wave functions, a number of states, correspond-
ing to different orientations of orbits and spins,
prove to have the same energy. We proceed by
computing the nondiagonal components of the
energy matrix between such states, and carrying
out a perturbation calculation, which yields per-
turbed energy levels falling into the well-known
multiplet classification, with perturbed wave
functions which are linear combinations of a
number of the unperturbed functions. In the
problem of metals, the present suggestion is that
we must take the Bloch theory only as a first
approximation; that, on account of degeneracy,
we must find nondiagonal energy components
between Bloch states, and make linear com-
binations according to perturbation theory.

3R. de L. Kronig, Zeits. f. Physik 78, 744 (1932); 80,
203 (1933).
4 J. Frenkel, Phys. Rev. 43, 907 (1933).
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Plausible reasons are given for the belief that,
when this is done, while most of the energy levels
of the electrons will not greatly change their
nature, the very lowest states of the electronic
system as a whole will be rather profoundly
affected, and these will lead to the supercon-
ducting state. In the first section we consider
this perturbation problem; in the second, we
show that the resulting energy levels and wave
functions may reasonably be connected with the
existence of superconductivity.

1. PERTURBATIONS OF BLoCH WAVE FUNCTIONS

It is well known that the stationary states
of an electron in a periodic potential field can
be classified into certain energy bands. Each
band contains a large number of levels, each of
which can be occupied by one electron of each
spin; in simple cases, a band contains as many
levels as there are atoms in the crystal. The
lowest stationary state of the crystal, on the
Bloch picture, then arises when the electrons are
placed in the lowest available levels. If the
crystal is an insulator, the electrons will just fill
some bands, leaving all the others entirely
empty. For a metal, on the other hand, the
number of electrons is such that one band at
least is only partly full. If two or more bands
overlap in energy at the top of the filled levels,
each one will contain some electrons in its lower
levels, but its upper levels will be unfilled. It is
this case which we shall consider; for our con-
siderations would indicate that the existence of
more than one partly filled band is essential to
superconductivity. For many purposes it is
convenient to classify the levels according to the
vector k, the momentum or wave number vector,
defined by the condition that the wave function
is multiplied by a factor exp (¢k-R) in going
from one point of the lattice to a point removed
by a distance R, where R is the vector from the
nucleus of one atom to that of another. We can
then set up a k space, and can show that all the
essentially different wave functions can be de-
scribed by k’s lying in a polyhedral cell surround-
ing the origin. Each energy band is represented
by a set of k values filling this zone with uniform
density. Energy contours can be drawn within
the zone, and for the type of metal we are
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considering, there will be at least two zones for
which only the levels within a certain energy
contour will be filled.

Excited levels in the Bloch theory occur when
one or more electrons are displaced from their
original positions to other, necessarily higher,
states. To a first approximation, the change in
the energy of the system as a whole when an
electron is displaced is given by the change in
one-electron energy of this electron, and if only
a few electrons are excited, we can add their
separate excitation energies. It is now clear that
above the lowest energy level of the system as
a whole we have a continuum of excited levels.
Any electron can be displaced to any unoccupied
level; and if we choose to displace an electron
which is just at the top of the occupied levels,
and displace it to the bottom of the unoccupied
ones, we shall do a negligible amount of work.
There are so many electrons of this maximum
energy, and so many unoccupied levels close
above, that there are a great many states with
energy hardly higher than the normal state. If
the Bloch wave functions are correct, these
excited levels of the system as a whole will
really represent the excited levels of the metal.
This will be the case if the matrix component of
energy vanishes between any two levels of the
continuum. But if these matrix components do
not vanish, but instead have appreciable values,
we must carry out a perturbation calculation;
and since the states form a continuum, which is
even worse than ordinary degeneracy, the per-
turbations may make important changes in the
final energy levels and wave functions.

In the appendix, we consider the nondiagonal
matrix component of energy between two Bloch
states. We come to the following conclusions:

The matrix component is practically zero
unless two, and only two, electrons have changed
their levels from one state to the other.

The matrix component is zero unless the sum
of the k vectors of all electrons is the same in the
initial and final state. Since only two electrons
are changing their k's, this means that the change
in k of one should be equal and opposite to that
for the other.

The matrix component is very small unless
the two electrons which move in the transition
were originally in two different energy bands;
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and unless they are finally in two different energy
bands. This shows that if we assume only one
band to be partly occupied, as in an alkali metal,
or Cu, Ag, Au, the Bloch states themselves will
form good approximations, and no further
perturbation calculation is necessary. Thus our
theory would not lead to superconductivity for
these metals, and it is significant that none of
them have been observed to be superconducting.

In accordance with the matrix components
just described, we can examine the perturbation
problem. Let us start with a given low energy
state of the metal as a whole, given by the Bloch
theory. This will have matrix components to a
great many other states, but we know from
perturbation theory. that the other states of
almost the same energy will have the most effect.
We shall ‘therefore classify all the transitions
from this state to others of about the same
energy. In particular, we consider all transitions
in which one electron changes its k value by Ak,
the other by —Ak. We have two partly occupied
energy bands, which we may call 1 and 2. Then
we assume in the transition that an electron in
band 1 goes into band 2, with change of Ak, and
an electron in band 2 goes into 1, with change of
—Ak. Furthermore, to have no appreciable
increase of energy, each electron must have been
originally at the top of the filled levels, and
must have gone to the top of the filled levels in
the other band. We may therefore obtain all the
transitions of this type by the following con-
struction. We start with our polyhedral zone,
and plot in it the energy surface representing the
top of the filled levels of band 1; we call this
surface 1. Similarly we plot in the same zone the
surface for band 2. We then displace surface 1
by the vector Ak, and consider the line of
intersection of the displaced surface 1 with
surface 2. As a rule, these surfaces will actually
intersect. Going back:to the original surface 1,
we can draw on it the line which was carried
into the line of intersection by the displacement.
Then we have lines on both surface 1 and surface
2, of the same shape, and the second displaced
the amount Ak from the former. In other words,
the electron which is removed in the transition
from band 1 may come from any point of this
line on surface 1, and by the displacement it
will be carried to a point of the line on surface 2;

197

and the electron which is removed in the tran-
sition from band 2 may come from any point of
the line on surface 2, and by the equal and
opposite displacement will be carried to a point
on surface 1. If we allow a certain small tolerance
in the energy values, it is clear that the surfaces
will be replaced by thin shells, and their inter-
section by a thin filament of finite volume, so
that there will be a finite number of such
transitions for each value of Ak, and a great
many when we consider all possible values of Ak.
Thus it is clear that a given state will have
nondiagonal matrix components to a great many
other states, which however resemble it in having
the same total number of electrons in each of
the two bands, and in having the same vector
sum of the k’s, Of course, if we allow transitions
to states with appreciably different energies, we
have a great many more.

We shall make no attempt to solve the
extremely complicated perturbation problem
presented in this way. We can, however, make
certain statements regarding the nature of the
solution. First, we consider the perturbed energy
levels. The second order perturbation theory
cannot be applied quantitatively in the per-
turbation of a continuum of levels, but it leads
qualitatively to the correct result: each unper-
turbed level is, so to speak, pushed away from
every other level with which it has a matrix
component, by an amount proportional to the
square of the matrix component, and inversely
proportional to the energy difference between
the unperturbed levels. This means that in the
middle of a continuum, a level will be pushed
approximately equal amounts in both directions,
and will as a result hardly be affected by the
perturbations. But at the.edge of a continuum,
the push is entirely one-sided, and will result in
the few levels near the edge being shoved away
from the others, so that they will spread out
into energy regions previously unoccupied. In
our case, the unperturbed continuum has a lower
boundary, coming at the lowest energy of the
metal as computed by the Bloch theory. The
effect of perturbations will be to spread out the
few lowest states, so that they will lie lower than
they otherwise would, and will correspondingly
have a lower density of states per unit energy
range. Effectively, there will be a relatively
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small number of special states below the lowest
Bloch states.

Next, we consider the wave functions. In such
a perturbation of a continuum, the energy levels
which are not much affected, lying in the middle
of the continuum, will have wave functions which
also are not much changed by the perturbation.
But those which are repelled from the other
states, at the bottom of the continuum, will have
wave functions which are combinations of those
unperturbed wave functions which do the re-
pelling. Thus in our case one of these special
states will have a wave function which is made
up of all those Bloch states having the same
vector sum of k's, the same number of electrons
in each of the two bands, and approximately
the same energy; and we have seen that there
are a great many such states. These states will
all be on a par in the calculation, and will have
approximately the same coefficients in the linear
combination; states satisfying all the conditions
except that they have appreciably different
energy will also appear, but with smaller
coefficients.

A simple example of such a perturbation
problem has been worked out by the writer and
Shockley,® in a discussion of the absorption of
light by an alkali halide crystal. The problem
there discussed was essentially the following, if
considered from the present point of view: there
are electrons in two bands, but in particular one
band contains only one electron, the other has
all its levels but one occupied. All such states
consistent with a given vector sum of the k’s
were set up, and the perturbation problem was
solved, taking account of all these states. The
problem was carried out only in one dimension,
but this should hardly change the general results.
It was carried out in terms of atomic functions
rather than Bloch functions, but it is an easy
matter to transform the unperturbed functions
to the Bloch form. Thus it is seen that essentially
this problem was specialized only in the small
number of electrons in the second band, and
while that simplifies the calculations greatly, it
would hardly be expected to change the results
profoundly. It was found, just as we have
described in the preceding paragraph, that the
energy levels and wave functions in the middle

5 J. C. Slater and W. Shockley, Phys. Rev. 50, 705 (1936).
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of thé continuum were hardly affected by the
perturbation, but that in this case just one level
at the bottom split off, having an appreciably
different energy, and a very different type of
wave function, from the states of the con-
tinuum. Its wave function, as we have stated,
was a combination of all the unperturbed func-
tions, in which those of approximately the same
energy are represented to approximately the
same extent, but those of higher energy are not
so strongly represented. While these results are
not all at once apparent from the paper quoted,
they can be derived from the discussion given
there without difficulty.

The example mentioned above resembles the
present problem not only mathematically, but
fundamentally. To see this, let us adopt the
same method used there, that of considering the
energy levels of the system as a whole as a
function of lattice spacing. To fix our attention
on a definite case, let us consider the crystal of
magnesium, which satisfies our condition of
having two energy bands partly occupied, and
which is known to be superconducting. At large
distances, the band of 3s electrons is filled, the
bands of 3p are entirely empty, so that the
lowest state of the crystal is a single state, and
the crystal would be an insulator. As with an
alkali halide, the lowest excited state would
come by removing one electron to the 3p band.
If the bands are spread out at all, this will result
in a continuum of excited states, depending on
which 3s electron is removed, which 3p state it
enters. But it was shown in the paper mentioned
above that the very lowest excited states will
not belong to the continuum. Instead, the lowest
of all will come from the process which is de-
scribed in an atomic model as excitation of the
3s electron of one atom to the 3p level of the
same atom; next there will come discrete states
arising from ionization of one atom, removing
its 3s electron to the next nearest neighbor, and
there creating a negative ion, with two 3s and
one 3p electron; still further discrete levels
will come from removal of the electron to further
and further neighbors; and finally the continuum
will arise from the process of removal of an
electron from one atom to a distant atom,
creating a widely separated pair of ions. These
discrete levels lying below the continuum are
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most marked at large distances, but while more
and more of them merge with the bottom of the
continuum as the lattice spacing diminishes,
some of them are still separated from the
continuum at the actual lattice space.

Now let us see how the situation is affected by
the fact that in magnesium at small distances
the 3s and 3p energy bands broaden so that the
higher energies in the 3s band lie above the
lower ones of the 3p band. Let us consider the
state where the 3s band is full, the 3p empty,
as a zero of energy at all lattice spacings. Then
at the point where the overlapping of bands
commences, the bottom edge of the continuum
of excited levels will have descended to touch
this zero of energy, and at smaller lattice spacings
it will be lower than the zero. In other words,
the state where 3s is full, 3p is empty, is no
longer the lowest state in the Bloch theory;
the energy will be diminished if the highest 3s
electron goes into the lowest 3p state. But all
this time, there is a discrete state even below
the bottom of the continuum of excited levels.
Therefore at the actual distance of separation,
if we had the artificial state where all 3s levels
were full, the transition of one electron which
would make the greatest reduction in the energy
of the system would not be a transition to an
ordinary .Bloch state at all, but rather would
be this special type of transition, essentially to a
state where the excited 3p electron is attached to
the same atom from which, as a 3s electron, it
was removed. Now this represents merely the
gain in energy that can be produced by the
transition of one electron; but clearly other
electrons also will make transitions with reduc-
tion of energy, also to special states, until finally
there will be an equilibrium. :

We see, in other words, that by this method
of tracing energy levels from large distances to
small ones, just as by the direct perturbation
method, we conclude that there will be special
stationary states of the electrons of the system
as a whole, lying slightly below the ordinary
Bloch states, and representing special linear
combinations of these low lying Bloch states,
including a great many Bloch states with the
same vector sum of the k's, the same number of
electrons in each of the partly occupied energy
bands, and about the same energy. It would be
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very difficult to make any accurate calculation
of the exact nature of these states, but we shall
show in the next section that the simple proper-
ties already mentioned are enough to make it
very plausible that these states should represent
the superconducting state of the metal.

2. THE SUPERCONDUCTING STATE

At any temperature, the probability of finding
the whole system in a state of energy E will be
proportional to exp (—E/kT). Thus at the
absolute zero only the lowest of our special states
will have any chance of being realized. At very
low temperatures, since the special states lie
below the Bloch states, the chances will be very
good that the system will be found in a special
state. But as the temperature rises, so that the
exponential exp (—E/kT) is not too small for
the Bloch states, the latter can be occupied.
Now the number of Bloch states per unit energy
range will be enormously greater than the
corresponding number for the special states.
Thus when the probability that the Bloch states
can be occupied at all becomes appreciable, on
account of their great number the chance will
become practically a certainty that the system
will be found in the Bloch states. There will be,
then, a gradual, but in the end an extremely
rapid, change from the special to the Bloch type
of state, as the temperature is increased. As we
shall see, this is what is observed.

To an approximation, we may take the special
states as representing one phase of the electrons,
the Bloch states as another, forgetting that one
sort really will merge smoothly into the other.
The special phase will have a lower internal
energy at the absolute zero of temperature than
the Bloch phase; that is, the lowest special state
has a lower energy than the lowest Bloch state.
But, in thermodynamic language, the en-
tropy of the special state at any temperature
will be negligible compared with the entropy of
the Bloch phase. The reason for this is that the
entropy of a phase depends essentially on the
number of stationary states which belong to
that phase. Then we can get the equilibrium
condition of the phases thermodynamically by
equating the thermodynamic potentials Z of the
two phases. At zero pressure, the thermodynamic
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potential may be written Z=FE,— Ji7SdT, where
E, is the internal energy at the absolute zero,
S is the entropy as a function of the temperature
T. Thus we see that the thermodynamic potential
of the special phase will be approximately
independent of temperature. On the other hand,
for the Bloch state, the specific heat C, is known
to be proportional to the temperature, equal say
to C,=AT. Then the entropy is given by
S= fC,/TdT=AT, so that the thermodynamic
potential is Eq—A7T?/2. In other words, while
the Bloch state has a higher thermodynamic
potential than the special state at the absolute
zero, its potential decreases with temperature.
If AE represents the energy difference between
the special and Bloch states at the absolute
zero, it is clear that our approximation shows
that the potentials of the two states should
become equal when AE=AT%/2, T=(2AE/A)},
and that above this temperature the ordinary
Bloch state should be the stable one. From
known temperatures of transition and values of
" A we can get an approximate idea of the order
of magnitude of AE necessary to explain super-
conductivity. Thus for silver 4 is of the order
of magnitude of 0.00015 calorie per mole per
degree. (We choose a nonsuperconducting metal
to determine the value of A, since the super-
conducting ones cannot be followed to low
enough temperatures in the Bloch state to
separate the linear part of the specific heat from
the T part arising from the Debye function.)
For most superconducting elements, the transi-
tion temperature is a few degrees absolute. Take
for instance 7 degrees for T. Then AE becomes
0.0038 .calorie per mole=1.6X10"7 electron
volts per atom. In other words, our special states
need be depressed below the Bloch continuum
by only an excessively small energy of this order
of magnitude to explain superconductivity.
. The calculation we have just made seems to
show without further hypothesis why the ele-
- ments of the transition group (W, Fe, Ni, Pt in
particular) have not been found to be super-
conducting. It is known that these elements
have abnormally large values of the electronic
specific heat, on account of their unfilled inner
shells; that is, they have abnormally large values
of the constant 4, sometimes as large as 30 or
40 times the normal size. Then, if they have
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values of AE comparable with other metals, our
formula shows that the transition temperature
should be something like 4/40 times smaller, or
six times smaller, than normal values. In other
words, it seems plausible that these elements
may really be superconducting, but that low
enough temperatures have not yet been reached
to show the effect. It is notable that our two
categories of elements, first the alkalies and Cu,
Ag and Au, and second the transition elements,
include almost all the elements which have
definitely been observed not to be supercon-
ducting at temperatures so far obtained.

The approximation of representing the super-
conducting and ordinary states of a metal as two
phases, which we have just considered, is known
to be a fair approximation, as is shown by the
work of Rutgers, Gorter, Casimir, and others.¢
These writers have made a thorough study of
the thermodynamics of superconductivity, and
have shown, just as we have indicated, that the
superconducting. state must really have practi-
cally no entropy. They have further shown that
if the superconducting state shields a conductor
magnetically, as a perfect conductor should, the
magnetic induction B will automatically be zero
inside the conductor, and this introduces a
magnetic term into the thermodynamic potential
which automatically produces a change of equi-
librium temperature with magnetic field, in
quantitative as well as qualitative agreement
with experiment. Thus we do not need to discuss
the magnetic effect on the equilibrium between
states. Furthermore, they have shown that the
approximation of an ordinary phase change is
too crude. In the absence of a magnetic field,
there is no latent heat at the transition point,
only a discontinuity of the specific heat, which
means thermodynamically that the first deriva-
tive of Z with respect to T is not discontinuous,
but only the second derivative. This suggests
that the superconducting state really merges
gradually into the ordinary state as the temper-
ature rises. But that is just what our model
would lead us to suspect; for there is no perfectly
sudden change between our special states and
the Bloch states, only a gradual change, which

¢ A. J. Rutgers, Physica 1, 1055 (1934); C. J. Gorter

and H. Casimir, Zeits. f. tech. Physik 15, 539 (1934);
J. A. Kok, Physica 1, 1103 (1934); etc.
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cannot be correctly described by dividing the
states sharply into two classes. Thus we may
conclude that as far as thermodynamic properties
are concerned, our model of the superconducting
state certainly shows the right general behavior,
and does not contradict the known and well
worked out theory in any particular.

In addition to the fact that the superconduct-
ing state forms a special phase of the electrons
at low temperatures, which probably is the
most fundamental property of this state, there
remains its remarkable property of being able
to carry a current for an indefinite time, without
its dissipation in Joulean heat. This means that
the probability of scattering of the electrons by
the thermal motion of the lattice is zero, or
excessively small, in the superconducting state.
Now it is well known that the study of this
scattering, and the deduction of the value of the
resistance, is extraordinarily difficult for very
low temperatures even in a normal metal; and
we shall make no attempt to investigate the
resistance of our special electronic states, and to
show that the resistance is zero. There is,
however, one fact which makes it very plausible
that the resistance should vanish. The ordinary
formula for resistance based on the Bloch theory
contains as a factor the square of the density of
one-electron energy levels at the top of the
occupied levels. The reason for this is that the
larger the number of unoccupied levels available
for an electron to be scattered into, the larger
is the probability of its being scattered. This
idea has been used by Mott” to explain the large
resistance of the transition metals, in terms of
the large number of unoccupied states in the
partly filled bands of d electrons. The argument
is ordinarily stated in terms of one-electron
levels; but it is clear that what is needed for
large resistance is a large number of energy
levels of the metal as a whole per unit energy
range, in the neighborhood of its lowest level.

”N. F. Mott, Proc. Roy. Soc. A153, 699 (1936); The
Theory of the Properties of Metals and Alloys (Oxford, 1936).
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It is significant that the same metals which,
according to Mott, have an abnormally high
resistance, are those which also have an ab-
normally high electronic specific heat, and there-
fore an abnormally high electronic entropy; for
both these things come from the excess of
energy levels.

Now the situation in our model of the super-
conducting state is just the opposite. In the
neighborhood of the lowest energy level of the
metal, the levels are spread out by the per-
turbation so that an extremely small number of
levels comparatively is spread through a finite
interval of energy. In other words, the number
of available energy levels per unit range- of
energy, which an electron can be scattered into,
is much smaller than normal. It is so much
smaller that as we have seen the entropy appears
to be practically equal to zero. By the same
argument as before, then, the probability of
electron scattering should be very much less for
these states than for the normal states, and the
resistance should be very much smaller. If this
argument, which it is admitted is only quali-
tative, should be correct, the lack of resistance
of the superconducting state would be tied up
with its lack of entropy, and any theory which
would explain one would explain the other. It
would be very desirable to check this suggestion
by an actual calculation of the distribution of
the superconducting energy levels, and of the
corresponding conductivity of the metal. But in
the present state of the electron theory, this
would be almost prohibitively difficult. Under
the circumstances, it seems worth while bringing
forward this tentative model of the supercon-
ducting state, even though it is only qualitative.
If this state can be explained in terms of existing
theories at all, it seems almost inevitable that
it will be in some such way as is suggested here,
in terms of further approximations starting with
the Bloch theory as a beginning. And it seems
significant that one can give at least likely
reasons why such an attempt might be successful.

APPENDIX

The one-electron functions which we shall assume will
be real solutions of the periodic potential problem, rather
than Bloch’s approximations to these solutions by means of
atomic functions. Then the functions will be orthogonal to
each other, and when we build up a function for the whole

crystal, in the form of a determinant, the relations as far
as matrix components of the energy are concerned will be
as in the atomic problem. As in that problem, the non-
diagonal matrix components of energy will come from the
terms 2/7;; in the potential energy, and will arise between
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states differing in the wave functions of two electrons at
most. If the initial wave functions of these two electrons
are symbolized by 4, B and the final ones by C, D, then it
can be shown that the matrix component will be just as for
a two-electron problem involving only these two electrons:
A*(1) B*(1) C(1) D)

3/ (2/712) dv,dv,.

A*(2) B*(2) C(2) D(2)
If now 4, B, C, D represent modulated functions, it is easy
to show that unless the sum of the k's for 4 and B equals
the sum for C and D, the integral over the crystal will

L. H. THOMAS

vanish. If this condition is satisfied, however, the integra-
tion of dv; only over the cell surrounding one atom will
lead to just 1/Nth of the whole integral, if N is the number
of atoms. Furthermore, if dv; is integrated over one cell,
the major contribution to the integral will come when dv.
is integrated over the same cell. Now within a given cell,
the wave functions of all the states of a single band are
similar. Thus if 4 and B refer to states of the same band,
the first determinant will be small, and if C and D states
of the same band the second determinant will be small,
verifying our statement that the matrix component is large
only when A and B refer to different bands, and C and D
refer to different bands.

FEBRUARY 1, 1937

PHYSICAL

REVIEW VOLUME 51

Approximation to Discrete Quantum States by Iteration

L. H. THoMAS
Ohio State University, Columbus, Ohio

(Received November 23, 1936)

A method is described by which successive approximations to the wave functions and energies
of stationary states can sometimes be obtained in a form allowing definite limits of error to be
stated. Two examples in which the solution is otherwise known are worked out and the rate of

approximation is found to be rapid.

THE ITERATION PROCESS
CONSIDER the homogeneous linear equation
Ny =ADy, (1

where N and D are two Hermitian operators
operating on a range of functions ¥ of certain
variables x. Suppose a function ¢, in the range
can be expanded in the series

¢o=61¢1+62¢2+' * (2)

where . are proper functions of (1) correspond-
ing to proper values A, (some of which may be
distributed continuously). Then, if we operate
on ¢, repeatedly with N71D giving the sequence

of functions ¢i, @2, - - such that
N§0n+1: D‘Pn, (3)
we shall have ¢,=A""ciw1+Ae"cafot+--. (4)

Thus, if Eq. (1) has a discrete proper value of
lowest absolute value, A, and if the coefficient
of the corresponding proper function ¥, in ¢,
012. ¢, does not vanish,

Pn~AT s (), ()

converging geometrically : and we have a process
for approximating to ys.

When a function ¢ approximating ¥, has been
found, if Eq. (1) has a discrete proper value
next lowest in absolute value to \;, we can
approximate in like manner to its corresponding
proper function by replacing ¢, at each stage by

ea—{(*en) /(W) 1Y, (6)

where y* is the (Hermitian) conjugate to ¥ and
(¥*¥) means their summed product.

LimiTs oF ERROR

We can usually find from an approximate
proper function ¢, by modifying it if necessary
so that the zeros of Ny’ and Dy’ coincide, a
function ¥’ such that bounds u and v exist for
which

w=(V'/DY')=v (7)

There is then a corresponding proper value N of
(1) satisfying

(all x).

LEN=w.

(8)

If in particular D is positive definite, and if
Eq. (1) has a discrete lowest proper value, Ay,



