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again obeying a 1/v2 law, but of negligible im-

and from this, one sees easily that the cross
section for deuteron formation without emission
of radiation is of the order

portance compared to the magnetic dipole
capture process, unless there is a stable singlet
level, extremely close to zero potential.

I wish to use this opportunity for expression
of my gratitude to Professor J. R. Oppenheimer
and Dr. Robert Serber for their generous interest
and many valuable suggestions during the course
of this work.
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The Effect of Nuclear Motion in the Dirac Equation
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Corrections to the Dirac equation, relativistic to the order n /c', due to the motion of the
nucleus, for the case of an electron in the field of a heavy particle of mass M, are derived with the
aid of the Breit two-body relativistic interaction, to the order m/J!/I, m being the mass of the
electron. A calculation of the value of the correction for a 1s electron gives a result in agreement
with that obtained from the Schrodinger treatment to the order m/M.

HE Dirac equation is limited in its applica-
tion to such problems as the treatment of

the energy levels of hydrogen, by the fact that it
is valid only for the case of one body moving in an
external field. As a consequence, „the application
to the energy levels of a single electron moving
around a nucleus is justified only to the extent
that the electron may be considered to move in a
fixed field of force while a discussion of the effect
of the nuclear motion on the energy levels by
means of this equation is not available. A dis-
cussion of the "Mitbewegung" has been given by
Bechert and Meixner' making use of the rela-
tivistic two-body interaction of Breit' in which
both the nucleus and electron are treated in the
Pauli approximation. The original treatment of
Breit for the two-body interaction, however, sug-
gests an approach in which the effect of the
nuclear motion introduces small perturbing terms
in the Dirac equation. In the discussion below
these terms are evaluated to the order v'/c' and
(m/M) 2 m, M, being the mass of the electron and

' Bechert and Meixner, Ann. d. Physik 22, 525 (1935}.
'G. Breit, Phys. Rev. 34, 553 (1929}.

heavy particle, respectively. The correction due
to the terms in (m/cV)2 turns out to be smaller
than the hyperfine structure term by a factor
m/M and may therefore be discarded as un-
observable. We are therefore left with the equa-
tions (11), (12) in which the terms may be taken
to represent the effect of the mitbewegung to the
order m/3E and v'/c'.

Our procedure in obtaining the desired correc-
tions is to eliminate from the two-body equation
of Breit, the "small" components of the wave
function by expressing them in terms of the
"large" components in the usual way in which
the Dirac equation is reduced in the Pauli
approximation. The large and small components
mentioned refer of course only to the dependence
on the nuclear coordinates.

2.

As our starting point, we consider the equation'
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where the subscript 1 refers to heavy particle oi
mass 3f charge Ze, subscript 2 referring to elec-
tron; r vector distance between the two particles
pointing from 1 to 2. The n's are the usual Dirac's
o.'s while the wave function 0 has sixteen com-
ponents, and V= Vy —Z V2, Vy and V2 being
potentials at particles one and two, respectively,
due to the external Field. Disregarding the last
term temporarily, (1) becomes, putting
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Ei and H~ being the electric and magnetic in-
tensities, use having been made of the following:
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where A, 8 are two vectors commuting with e.
Substituting in (5) and solving for po —M'c we

(p0+ Me+222 p2+P2222c)fa lrl' pleb 0 (3) obtain

where p, consists of the "small" components and to terms of the order (21/c)', and of the result

pb of the "large" components of the wave func-
tions, referring to the heavy particle, (2) breaks
up 1

(p0 Mc+n2—p2+pbnzc)lfb el pl/ —=0, (4)
P0 —Mc+n2 y2+P2nzc

where the o-'s are the negatives of Pauli's and
both p and pb are four component functions.

From (3), we obtain to the order (I/M)2
and (v/c)2
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We must now reduce the term

Substituting this in (4), we obtain
Z8 0'. i 'C2 Cy' I 0!2' I Z8

X
2c
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in a similar manner. Following a procedure of
Breit's' instead of eliminating the small com-
ponents from this term by the above procedure,
it is convenient to calculate its average value and
replace the small components in the integral for
the average by their values in terms of the large.
For this we require to calculate the integral of

The last term may be simplified as follows: 3 G. Breit, Phys. Rev. 39, 616 (1932).
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where
e, no (e, r)(no r)

Q=—+
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over the coordinate space of both particles.
Making use of (4a) this becomes

r ~ na'no (ni'r)(no'r) f4' )+
r r' Epb)
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r' EP.)
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The term containing V' r/r' is zero even for s
states on account of the factor e2 r and may
therefore be disregarded. This may be verified by
a direct calculation for the special case of a
Coulomb field which is the application with
which we shall be concerned.

By a similar procedure, the second bracket of
(9) can be reduced and when combined with (10)
gives at length

1 e2 r r
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Mc r r3 r3
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4M2c2
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+Q(no po+Pomc)ei pi] —ei. pi(po+Mc) 'Q Consequently the complete Hamiltonian may
be written, in ascending order of magnitude

+Q(Po+Mc) 'ei pi iPb. in m/M

The first bracket may be simply transformed
by exchanging n& po+P&mc with ei pi so that in
the first term it finally operates on pb* and in the
second on i' Furtherm. ore, one can substitute in
the first bracket to a sufficient degree of ap-
proximation

(nb' P2+ pomc)pb = —(po ™)pb
Thus we have for X at length, omitting the

integral sign

where
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where use has been made of (6).
Using (7) the first bracket is transformed as

follows:

A*(ei piQ+Qei pi]A
2Mc

These results may be checked against those of
Bechert and Meixner by eliminating the small
components of the electron wave function in FI
and II& in the usual way. We reduce then to the
results 5, 6, 7 of their paper.
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We apply the preceding result to the calcula-
tion of the energy levels of a single electron in a
Coulomb field. We may gain some idea of the
relative importance of the various terms by
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comparing them with the term of Hq

Ze' r e r
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p being the magnetic moment of the heavy par-
ticle, to which is due the hyperfine structure.
Simple considerations show that the terms in the
second bracket of II, are of the order (m/M)n'Z'
while those in the first are (m/III) nZ in terms of
the h.f.s. term. The contribution of H, may
therefore be dropped in applications to the der-
ivation of the term values of a single electron in
a central field. The terms in Hq on the other hand
are either of the order of magnitude of the
hyperfine structure term or differ from it by a
factor of at most 1/cxZ.

For application to s terms, these considerations
require a slight refinement since H, then becomes
infinite. The more exact calculations result in the
replacement of the factors 3I2c' in the denom-
inators of the terms in II, by (po+ Mc)'. Since the
chief contribution of these terms to the energy
comes from a region r=e'/M. c' 10 " cm their
meaning is doubtful unless we cut the wave
functions off at about r equal to 10 "cm. In this
case also the terms in H, may be dropped as
being negligible. We take as the terms of our
Hamiltonian for the one electron case in the
Coulomb field of the nucleus assuming zero
external magnetic field
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with the omission of the h.f.s. term, and the same
definition of k as in Dirac. Thus for sg, p~, pg,

p~ states, k has values —1, 1, —2, respectively.
Use has been made here of the relations
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Finally by squaring (13c) we obtain
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In terms of radial functions, the average value
of H& is given by
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where p& and p2 satisfy the equations
where the substitution p =p~ ———p2 has been
made. The subscripts have been omitted on the
right since all the terms refer now to the electron.

We calculate the contribution of H~ to the
energy for an s state first transforming to polar
coordinates. In these coordinates we have4 in the
absence of an external field where
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Dirac, Quantum Mechanics, second edition, p. 266,

(11) A and &2 are subject to the normalizing condition

jf (y '+y, 2)dr=1,
a
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As a check on the calculations, it is convenient
to use

L(E+eAO+mc') 'p&'
(2M) 2Mc'

+ (E+eA 0 mc')—'&22]dr.

The first form (14) is convenient if one does not
desire derivatives in the expression, the second is
more compact and has the additional advantage
that for 1s states

d$2 d$1

dr dr

Since in the derivation, Eq. (1) from which we
start presupposes the existence of an equation of
Dirac type for both particles and since present
data on nuclear moments seems to indicate that
the heavy particles are not described by such an
equation, the question naturally arises as to the
extent to which our results are limited by this
condition. The answer to this question may be
based on two circumstances. In the first place,
the effect of the magnetic moment of the heavy
particle is represented in our result by the term
in (10')

For Is states these expressions give

m mc'
6$"=— n'Z'.

M 2

This relativistic result is to be compared with
what one might expect from naive considerations:
AW=(m/M)mc'(1 —(1—n'Z')i). In the case of
the former one has for Z =90, a correction
BW= 0.215(m/M) mc' while the latter gives
.245 (m/M) mc~. The strict relativistic treatment
therefore gives an appreciable effect.

We close this section by giving the Mit-
bewegung corrections for the case of two elec-
trons revolving around a nucleus. If we refer to
the electrons by the subscripts 1 and 2, we have
in place of Hg above, for two electrons, omitting
the h. f.s. term

Hg' (p g+ p2)' Ze' (a,)+, i
—

i (pi+p2)
c 2Mc 2Mc' ( r, )

(ay reap Ze' f aqua+], Ir~. (p~+p2) +
E r, ' ) 2Mc' 0 r2)

fa2'ryl
(pi+p2)+i lr2 (pi+p~),

E. r')
where r~ and r2 are vector distances pointing
from the nucleus to the electrons 1 and 2, re-
spectively. From this the generalization to any
number of electrons may be simply made.

e p&(r
where p =—

C

Zeh
0')2'

which is formally the same as that obtained from
the single electron equation for a nuclear mag-
netic moment p so that by giving p appropriate
values the h.f.s. is correctly given, insofar as it be
considered to arise from a magnetic doublet at
the heavy particle, by this calculation even
though the heavy particle does not obey a
Diracian equation. Presumably, then, the other
terms which do not even involve the magnetic
moment of the heavy particle are correct.

The other justification for believing our result
to be correct to the stated degree of approxima-
tion is due to the fact that (1) may be derived in
the case of two electrons by means of the quan-
tum electrodynamics. ' This derivation should
hold also in case one of the particles is moving
sufhciently slowly to. be treated in the Pauli
approximation in which case the applicability of
the Dirac formalism to this particle would not
then be a necessary prerequisite to the validity
of the resulting interaction.

In conclusion it is a pleasure to acknowledge
my indebtedness to Professor G. Breit for most
generous advice and discussions. I should also
like to express my thanks to the physics depart-
ment of the University of Wisconsin for its kind
hospitality during the past summer when part
of this work was done.


