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interaction of a particle moving under the action
of a nonelectric force, 4 that this scalar may be
associated with a scalar potential such as occurs
in Nordstrom's special-relativistic gravitational
theory. One sees from (18a) that in applying our
theorem to any process in which such an interac-
tion might play a part we must omit the matrix
elements of this 0 in counting the number of
factors in the numerator (1) to get n. This is
just what is to be expected, since the reason for
the alternation of relative signs from order to
order in the electric case is to be found in the
opposite action of the field on the two signs of
charge. The result is of some interest aca-
demically, though at present there seems not to
be much utility in the concept of a particle which
is susceptible both to the action of nonelectric

forces and to creation and destruction in pairs.
The operators 04 and 05 of (18d) and (18e)

cannot be associated with any sort of interaction
which has a classical analogue, on account of
their unsuitable transformation properties as
regards reflection. If, however, an interaction
between two matter fiel-ds is described by a
biquadratic form in the Dirac amplitudes, the
antisymmetry under reflection can be eliminated
by squaring. In fact Wigner, and also Bethe and
Bacher, " have remarked that these operators,
quite as well as the others, can reasonably be
used in neutrino theory. It is possible that the
symmetry property here described may find
applications in this connection.

"H. A. Bethe and R. F. Bacher, Rev. Mod. Phys. 8, 190
(1926).
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The Slater method of obtaining wave functions for metallic lattices is applied to the face-
centered lattice. The solutions previously obtained by Krutter for this lattice were mainly
for certain simple lines in momentum space. Methods are developed for obtaining more general
solutions from these special ones. On this basis the entire 110 plane is worked out. For certain
new lines in this plane especially simple solutions are given. An approximate method suitable
for calculating energy contours in momentum space for small values of momentum is developed.

INTRQDUcTIQN

LATER' has proposed an extenison of the
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method of Wigner and Seitz' for the cal-
culation of wave functions in the periodic field of
metallic lattices. He applied his method to the
body-centered lattice with metallic sodium par-
ticularly in mind. The method has been applied
to lithium' (body-centered), to copper4 (face-
centered), and with modifications to diamond'"

and the sodium chloride lattice. '

' J. C. Slater, Phys. Rev. 45, 794 (1934).
~ Wigner and Seitz, Phys. Rev. 43, 804 (1933)and 46, 509

(1934).
3 J. Millman, Phys. Rev. 47, 286 (1935);F. Seitz, Phys.

Rev. 47', 400 (1935).
4 H. M. Krutter, Phys. Rev. 48, 664 (1935).
'George E. Kimball, J. Chem. Phys. 3, 560 (1935);

F. Hund, Physik Zeits. 36, 888 (1935).' Ewing and Seitz, Phys. Rev. 50, 760 (1935); W.
Shockley, Phys, Rev. 50, 754 (1935).

Briefly, the method consists of dividing the
lattice into polyhedral cells centered about each
atom and containing those points of space nearer
that atom than any other atom. The wave
function P in one of these cells is expanded in
terms of surface harmonics times radial functions
which are numerical solutions of wave equation.
For an atom at a center of symmetry this func-
tion is most conveniently handled in the form
P=u, +iu„where u, is. a real even function of
the coordinates having the atom as a center
(i.e. , is expanded in harmonics of even t) and u„
is an odd real function. The functions in other
cells are obtained by translating P and multiply-
ing it by e'" where R is the translation vector.
The wave function and its normal derivative are
required to be continuous from cell to cell at
the midpoints of the cell boundaries.
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nature of this functional relationship that we
are concerned.

Krutter has already made a satisfactory choice
of the 12 expansion functions. With a modifica-
tion~ of notation, these may be listed as in Table
I in accordance with their representations in
the octahedral group' which is the point group
for the cell center.

Fro. 1. Cell for the face-centered lattice showing the
vector positions of various lattice points and the midpoints
of the faces.

For the face-centered lattice, the translations
are of the form u(0&-', &-', ), etc. The polyhedral
cell (Fig. 1) is a rhombic dodecahedron whose
surfaces are planes bisecting the lines from the
origin to the points c(0&-', &-', ), the midpoints
of the faces being R,a,~,= a(0~-«' ~«), etc.
Each pair of diametrically opposite midpoints
gives rise to two equations of continuity for P
and the normal derivative f' of the form

Tp] $Qg Q~ —0)

Ng +TpyyQ& =0,

where To~~ ——tan kR yoy=t an(k„+k, )a/4. ug and
u„and their derivatives in respect to increasing
r are evaluated at Rp~~. It is convenient to let
k=(27r/a)rIf x is .i.ncreased by 111, the e'"'R

and tan k R terms are unaltered in value. Hence,
our solutions are periodic in x-space with the
periodicity of a body-centered lattice having
~1~1~1, ~200, etc. , as lattice points. The
tangent factors take the simple forms: Tp&~

= tan m («„+~.)/2, etc.
The six independent directions give twelve

conditions and, in order to satisfy them, f is
expanded in terms of twelve linearly inde-
pendent functions with arbitrary coe%cients.
The homogeneous system of equations for these
coefficients is then soluble if, and only if, its
determinant vanishes. This establishes a func-
tional dependence between ~ and the energy
parameter, which enter through the tangent
factors and the values and derivatives of the
radial functions, respectively. It is with the

I. SPECIAL DIRECTIONS

No means have been developed for dealing
with the determinant for general values of x.
However, for special directions of x it is possible
to get relatively simple expressions. This is a
consequence of symmetry of the directions. For
the 100 direction, x =@00, for example, the func-
tions can be separated into their various sym-
metry types about the x axis. When this is done,
it is found that each type must satisfy the
boundary conditions separately and that the
satisfying of the conditions on the 110 face, for
example, satisfies simultaneously the conditions
on the 1—10, 101, 10—1 faces. This reduces the
order of the determinantal equations from the
12th to at most the 3rd order for these directions.
The corresponding solutions for this line and for
011 and 111have been published by Krutter and
are listed in Table II, along with new solutions
developed in this paper.

II. THE 001 PLANE

For values of x lying in certain planes, suf-

ficient symmetry is still preserved to be of con-
siderable help. For x in the 001 plane, that is x

TABLE I. Expansion functions of Krutter,

FI
r2
r,

Ng FUNCTIONS

s
(x2 y2) d (y2 z2)d

yzd, zxd, xyd

Nt«FUNCTIONS

r xp, yp, zp
F5 x(y' —z')f, y(z' —x2)f, z(x' —y2)f

7 Since all the surface harmonics are evaluated for
directions such as 0+1+1 the factors r ' may conveniently
be omitted. x, y, z are then understood to be on the sphere
of radius = V2. The radial functions s, p, d and f have the
customary significance. The ratios s'js, p'/p, d'/d and
f'/f are denoted by cr, m, b and q.' For a discussion of the representations of the octahedral
group see H. Bethe, Ann. d. Physik 3, 133 (1929).



ENERGY BANDS FOR CRYSTALS 131

of the form uv0, it is possible to separate func-

tions into sets which are even and odd with

respect to s~ —s. There are only four functions
of the odd type, leading to a fourth-order deter-
minant which has been expanded by Krutter
and is listed in Table II. The even set appears
too complicated to handle in general; however,
in addition to the lines 100 and 110 which lie

in this plane it is possible to get reduction along
the line ~=N10.

Line I, x=u10'
The simplicity of this line is due to its lying in

a 001 plane and a 010 plane simultaneously (Fig.
4a). Hence, it is possible to utilize odd and even

classifications for y~ —y and s~ —s. The
results of this classification are shown in Table II.

It is to be noted that Eq. (Ia) is reasonably
simple for numerical work, since by virtue of the
relation C 1=1 it is a quadratic in T'. Thus, for

given values of 0-, ~, 5, and p, it is possible to
solve directly for T and thus find u.

III. THE 011 PLANE

For this plane, x=mvv, the symmetry in the
interchange of y and s is preserved. Hence, the
functions can be separated into two sets: odd for

interchange of y and s and even. The tangent
factors for the dodecahedron are shown in Fig. 2.

Only four need be considered, since the two

others, 101 and 110, are related to 110 and 101

by interchange of y and s.

Odd set'

There are five functions odd in this plane. By
the same method as given by Krutter for the
odds of 001, we obtain the solution given in

Table II.
We shall establish this equation by a different

method which we shall use later with the even

set. Since the odd functions vanish on 011, the
expression cannot involve K= Tp11. Hence, the
determinantal equation will be a polynomial in

L and M of no higher degree than the second in

each term, since each tangent factor occurs in

only two of the continuity Eqs. (1) and (2).

'This solution was developed independently by the
writer and Dr. Krutter. The writer is indebted to Dr.
Krutter for a check of his work.

TABLE II. Classification of the solutions for the face-
centered lattice. '

100
direc-
tion K =u00 Tno =tan mu/2 =M

100, s, (2x' —y' —z')d) xp
100b (y' —z') d, x(y' —s')f
100, ysd
100d xyd, yp, y(x —z )f'
100, xzd, zp, z(x2 —z2)j

3P+3o-5/~(o-+28) =0
M'+8/q =0
3E arbitrary for 8=0
3P+2B/(~+y) =0
3P+28/(vr+q) =0

111
direc-
tion

111'

K =uuu

s, (xy+ys+zx)d, (x+y+s) p
2x2 —y2 —z

+x(y+z) —2yz1d
(2x —y —s)p,

[y(x2 z2) +z(x2 —y&) jf
Ly' —"+x(~-z)]d, (y-z) p,

[y(x' —z') —z(x' —y') jf
[2x' —y' —z'

—x(y+s)+2ys jd
Ly' —z' —x(y —z) jd
[x(y' —z') +y(z' —x')

+z(x~ —y2) jf

To11 =tan m.u =K

E.'-)f-20. a/7r(~+ s) =0
E'+46/(vr+3p) =0

+2+4~/( +3&)=0

X arbitrary for 8=0

X arbitrary for 6 =0
X arbitraryfor q = ~

011
direc-
tion

To11=K =tan vru,
T1o1=L = tan m-u/2

001
plane K =uv0

T1o1 =tan ~u/2
Ton =tan xv/2

x.d, y.d, .p z(x~ —.2)f

T'
'

6(-+') T. +8(-+~) b(--y)
101+ 011+2' p 27l p 2' rp

011
plane X =u'vv

T1o1 = tan ~(u+v)/2
Tiio = tan ~(u —v)/2

(y' —s')d, x(y —s)d, (y —s)p, x(y' —z')f)
[y(x' —z') —z(x' —y') ]fB(m+3'), B(~+3q) 6(vr —q)

2~(~+ v )
'"

2v (~+v) 2 v (~+v)

Line
I K =u10

T11o = tan ~(u —1)/2
= —cot mu/2 = —C
T1o1 = tan ~u/2 = T

I„s, (2x' —y' —z')d, (y' —z')d, xp, x(y' —z')f
(T'+C') (»+~) (~+~)+2(~—~) (~—~)

+26(b+ 2(r) +6m y =0
Ib xyd, yP, y(x' —z')f C'+b(~+q)/2~p=P

xzd, sp, z(x' —y')f T +B(~+p)/2~y=0
Id yzd u arbitrary for 8= ~

For the even set of the 011 plane, 311direction, and Lines
II, III, and IV see text.

Furthermore, the symmetry of the problem
assures us that if xp ——Nvv is a solution, —xp must
be an equally good solution. Hence, our ex-

011, s, ysd, (2x' —y' —s')d, (y+z) p, [y(x' —z')+z(x' —y') jf
2J:2L2~&(5~+~)+@2~(~+&)(5~+&)
+4KL&(~—~) (rr —$) +2L2$(~+ y) (0 +2/) +12+0= p

0», x(y+;)d, xp I.2+a/~ =0
011, (y' —z')d, (y-z) p, L2+2B/(m-+q) =0

011& x(y —s)d, x(y' —z')f L'+6/y =0
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pression must not be altered by replacing Kp

by —xp. Similarly, replacing xp by x = —uvv

and ~ =I—v —v must leave its value unchanged.
This means that the determinant must be
invariant under the four (including, of course,
identity) symmetry operations in the 011 plane.
If we denote the four operations above by I,
R, S, T, we see that determinant D regarded as
a function of x must satisfy the relationship
D = ID =RD =SD = TD. The transformation
scheme of the individual factors is readily found.
For example,

Tggp
——tan v (u —v)/2 = M,

RM=tan v. (—u+v)/2= M, —
SM=tan v( —u —v)/2= L, —
T3II=tan v (u+v)/2=L.

This is expressed in tabular form in Table III.
From this it is possible to list the allowable
terms which may occur in D. For example, if
LbiV' occurs, it must be present in a combination
with L'3f' that is unaltered by the operations
R, S and T. From the group property of I, R,
S, T, it may easily be verified that the only such
form is (I+R+S+T)L'M'= [1+(—1)'+'][L'M'
+I'MP]. Hence, the most general form of D will

be, except for a factor independent of L and 3II,
D =A+BLM+ C(L'+ M') +L'M' It is now
possible to evaluate the constants, A, 8 and C,
from the solutions in special directions.

100 direction

Tol I

~K

Fro. 2. Cell for the face-centered lattice showing the values
of the tangent factors for @=use (the 011 plane).

This is equivalent to the solution in Table II.

Even set

The procedure of the odd set can be carried
out for the even set also. For this set we expect
to get terms in E as well as L and 3II. The allowed
form is given below. Since only the ratios of the
coeScients can be found by this method, the
coefficient of the zeroth order term has been
made unity.

D = 1+[BK(L M)+ CLM+—DK'
+E(L'+M') ]+[FK'LM+ GK'(L'+ M')

+HKLM(L M)+ JL'M']—+PK'L'M'.

100 direction

For this line E=O, L=3EI, and

D=1+[C+2E]MP+JM4=0.

7r(v. +p) (26+p)
A =2|'P/q(v-+pp),

B+2C= b(v. +3pp)/q (v+ p). 6o-6'

For this 3II=L and D=O reduces to D=A From Table II we see that this must have the
+(B+2C)Mp+M'=0. This must factor into factors M +30//&(2g+o) and M +28/(v+p).
100b and 100d (100d —100e is odd in the 011 Fquating the ratios of coefficients, we get
plane and has the same equation as 100d and
100e); the two known solutions for the odd func-

C+2E =
(5(rv. +467r+3a q )

tions. Hence, D must contain M'+ 8/&p and 6fT6
M' +28/( +vy) as factors. Therefore,

011 direction

For this M= —L and D=O becomes D=A
+ ( B+2 C)I.'+L4 =0. The—known solutions
110c and 110d are the same as 1005 and 100d.
Hence, 8=0, and

011 direction

For this M= Land
~
M~ 4 ~K—

~

&0 and

D = 1+2BKL+( C+2E)L'—
+DK'+ (—F+2G)K'I.'

—2IIXL'+ JL4+PE'L4 = 0.

D=2~'/p (~+p) Proceeding as above, we find that the factors
+[8(v.+3q)/2p(7r+q)][L'+MP]+L'MP=O. are 011a and 011b and that the coefficients are



ENERGY BANDS FOR CRYSTALS 133

(p —m-) (o.—8),8=
6o.6

(a+q) (2|'+o)+6o7r—C+2E=

From these three lines we thus get 11 equa-
tions for the 9 coefficients of D. From them we
can determine all the coeScients and have two
extra equations as a check. The results are given
in Table IV.

(~+ V) (&+5o)

12o.8

L2~(»+ )+( +~)(~+&.)3—F+2G =
12o.5

~(m. —q)(o.—8)II=
6o.b'

m (~+ q ) (2b+o.)J=
6o.b'

m'q (58+o.)I'=
6o.5'

IV. SPEcIAL LINEs IN THE 011 PLANE

For certain lines in the 011 plane, D takes a
specially simple form.

311 direction

For the 311 direction, x=3@,v, v and X=3EI
= tan (~v) and L = tan (2~v). Hence, there
are only two distinct tangent factors in D. Such
expressions as this result and 011a can best be
used in calculation by making a table of the
values of the terms such as X', E'L', etc. , which
occur in them. Then for a fixed value of the
energy, D is evaluated as a function of v and the
zeros are found.

111 direction. M=O, K= L

D= 1+(B+D+E)K'+GX4=0.

The known solutions are 111@and 111b and the
results are

30.7r+3o. p+287r
j3+D+B=

m-(~+3q ) (o.+8)
G=

8o.b'

TABLE III. Transformation scheme for the tangent factors of
the 011 Plane.

Line II. ~=u-';-',

X= ~, I.=tan ~(u+-', )/2= —cot ~(u —-', )/2=
—C, 3II= tan m (u —-';)/2 = T. For this we must
equate the coefficients of X' to zero, obtaining

(C'+T')G+(D P+P) =0.—

which, as a consequence of CT= 1, is a quadratic
in C' as is solution Ia.

Line III. x= (1—v), v, v

E=tan ~v= T, L= ~, M= —cot xv= —C.
For this we must equate the coeScient of I.' to
zero, obtaining

GT'+ JC'+(E+II+P) =0.
—Q —V —V—K—L—M

—@VV

K—M—L

This is again a quadratic in C'.

V. THE CASE OF K«1

TABLE IV.

COE& Ii ICIENT

B= (q —m.) (0.—5)/606
C= (q —7r) (0.—8)/6o-8
D = (7i-+ q ) (5+50)/120.5
8= (3 +~)(2~+&)/12~S.
F= m. (m- —p) (8—0-)/60-9
C =7r(7r+3 q ) (o.+8)/806'
II= ( —~)( —~)/6 ~'
J=-m'(m+ y) (25+(r)/60+
I' =7r'&(sr+~) /6~v'

TERM

K(L—M)
LM
K2

L'+M2
K'LM

K2(L2+M2)
KLM(L —M)

L'M'
K'L'M2

From an inspection of D it can be seen that
when x~0 either o or 6—+0 or vr or q

—+~.IO It
can also be seen that for a given small value of x,

\

the equation becomes linear in o. for o.—+0;
cubic in 8; quadratic in ~; and linear in p. This
is a consequence of the fact that one s function,
three d functions, two p functions and one f
function compose the even set of the 0'11 plane.

'o The pathological case of several of these requirements
being met at once will not be considered.
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OIT
=$

FIG. 3. Cell for the face-centered lattice showing the
values of the tangent factors for x =n(0 1. 1)+—,'(111),
line IV. T=tan ~u/2, C=cot ~N/2, S=tan 7f-n.

If x is small enough, it is possible to expand E,
I- and 3f in powers of n and v. It is more con-
venient to use symmetry arguments, however,
in order to establish the form of the result and
then evaluate the unknown coe%cients from

special directions. For example, the result for
o-~0 must be

0.+GQ~+ 6V~ =0.

From the 100 condition, we see that

—o =2p'M'/3p = (p'7r'/6p)n'='au'

(here v has its conventional meaning and does
not denote p'/p) and from 111,

—0 = 2p'X'/p =' (p'v'/2p) u' =' (a+ b) u'.

Hence, 2a =b= v'p'/3p, and the a contour is a
circle."

For the p functions, the form must be

(p/p')'+ (p/p') (au'+ bv') + (cu4+ du'v'+ ev4) =0.

The coe%cients of this form can be evaluated
from the 100, 011 and 111 directions.

A similar process or else direct expansion of
D can be used for the d functions; and the same
methods are applicable to the 001 plane or to
general space directions.

For all the cases we shall find that for a given
direction of x the values of 0. and the values of

1/7r will be linear functions of ~x~'. For ~0. and

~

1/v
~

&&1, these quantities will be approximately
linear functions of the energy. Hence the energy
versus r. curves will be single (for s), double

(for p), etc. , parabolas in x.

"This can also be seen from the more general statement
that for the three-dimensional case of ~K~((1 the cubic
symmetry requires o-+a(K, '+Kg +K ) 0, the equation of
a sphere.

VI. LINE IV. ~=u(011)+-', (111)
For functions of the form P =u, +iu for which

x=m, (011)+-,'(111), it is possible to split the set
of 12 functions into smaller sets of 5 and 7.
Consider the function AP obtained from P by
interchanging y and s; it will satisfy the same
continuity requirements as P save that its L will

be Ax=u(011)+ —',(111)= —x+111. Due to the
periodicity of x-space, —x+111 is equivalent to
—x. Now the complex conjugate P* of, P will

clearly correspond to —x. We can now introduce
an operator P = (A)* which operating on
leaves its x value invariant and also its energy
value (since both A and * do). Since P is its own

reciprocal, we can conclude from the representa-
tion theory of groups (or from considerations of

(P+PP) and (P PP)) th—at we can classify the
functions into two sets according to whether
PP=P or —P.

Set 1

For PP =f we find that Au, =u, and Au = —u„
so that we should use even harmonics which are
even in ys interchange and odd harmonics which
are odd. This gives the set of functions:

s, x(y+s) d, ysd, (2x' —y' —s') d, (y —s)p,
xb" s')f, Ly—(x' —s') —s(x' —y') jf

Set 2

From PP = —P we find AN, = —u, and A I, =u„
so that even harmonics should be odd for yz
interchange; odd harmonics, even. The func-
tions of this set are:

x(y —s)d, (y' —s')d, xp, (y+s) p,
Ly(x' s')+s(x'—y') 3f—

The scheme of the tangent factors is shown in
the Fig. 3. 101 and 110 are equivalent to 110
and 101, respectively, by the P symmetry. The
011 face gives only one condition on each set,
since for set 1 the I„ functions automatically
vanish there as do the u, of set 2. Due to its
complexity, set 1 has not been worked out. The
seventh-order determinant to which it leads can
be easily set up, but the expansion is tedious.

Expansion of set 2

Set 2 is simpler, since all of its functions vanish
on 011, thus leading to only five conditions for
the coefficients. The resultant determinantal
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(b)

FrG. 4. Views of body-centered x-space. c. x lattice and first Brillouin zone showing the various
solutions. b. Fundamental segment of the first zone.
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FIG. 4, c. 001 plane, showing the solutions. d. 011 plane, showing the solu-
tions. Only one-quarter of the diagram is completed; the remainder follows
from symmetry.

equation may be reduced to

(C'+ T') 67r(3+~jp) +2[6'(1+m-(p) +2~'] = O.

This can be treated by the same method as was
used for line Ia.

SUMMARY AND FINAL REMARKS

Fig. 4c shows the first Brillouin zone in body-
centered x-space. Fig. 4b shows the fundamental
segment of the zone which contains all repre-
sentative points. Any point outside the segment
is equivalent to some point of the segment by
the symmetry of the lattice. The solutions for
the 001 and 011 planes are indicated in 4c
and 4d. Four of the five faces of the fundamental
segment are of 001 or 011 type, and the fifth
contains line IV which is a line of symmetry for
this face. Hence the energy contours may be

considered as well known on the surface of the
segment. When this information is combined
with that obtained for

~
x~ ((1 and the sym-

metry conditions' required by reflection planes
in the x lattice, it should be possible to draw
fairly accurate space contours in x-space. "

An attempt to apply the methods used for
the even functions of the 011 plane to the even
functions of the 001. plane has been made. It is
found that there are more coefficients to be deter-
mined than can be evaluated from the known
solutions of 100, 110, and line I. The remaining
coefficients could be evaluated by partial expan-
sion of the eighth-order determinant for the
plane.

"Some space contours drawn according to this scheme
have been published by the writer. Phys. Rev. 50, 754
(1936).


