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In the positron theory considerable interest attaches to the consideration of processes in
which the occurrence of electrons and positrons is transitory only, such as the scattering of
light by a Coulomb field (Delbriick), and the scattering of light by light (Euler and Kockel).
Calculations of such effects can frequently be simplified on account of cancellations brought
about by the distribution’s symmetry between electrons and positrons. An abstract proof is
here presented for the theorem which predicts the appearance of such cancellations in the
general case. Certain modifications are found to be required when interactions other than the

usual electric forces are introduced.

I. INTRODUCTION

N interesting feature of the Dirac theory of

the positron is the possibility of processes
in which electrons and positrons, though they are
not actually created so as to be experimentally
observable, are able to play the part of catalytic
agents producing effects which otherwise could
not appear. Examples of such effects are the
scattering of light from a Coulomb field, sug-
gested by Delbriick,! and the scattering of light
by light, suggested by Halpern? and by Debye
and calculated by Euler and Kockel.? The linear
field equations on which the present electro-
dynamics is based do not provide any direct
interactions between different components of the
field such as would produce such scatterings; but
the transitory or virtual presence of charged
particles provides a means of mediating indirect
interactions. Thus for instance the possibility of
the Delbriick scattering may he seen by sup-
posing that the incident light quantum produces
a (virtual) pair, that these particles are scattered
in the Coulomb field, and that in being destroyed
they emit the scattered light quantum. The
transitory presence of the pair is possible even
when there is not enough energy available to
produce an actual observable pair.

It is to be expected that the symmetry between
the two kinds of particles can be used to simplify
calculations of such effects; in particular, since
electrons and positrons are induced in equal
numbers and are oppositely affected by electric

1 M. Delbriick, Zeits. f. Physik 84, 144 (1933).

2 0. Halpern, Phys. Rev. 44, 885 (1934).

2H. Euler and B. Kockel, Naturwiss. 23, 246 (1935);
H. Euler, Ann. d. Physik 26, 398 (1936).

fields, it would seem likely that cancellations
should occur. Immediately after the Delbriick
effect was suggested, it was remarked by
Oppenheimer that, on account of such a cancella-
tion, the transition probability for such scattering
is of order (Za)* instead of (Z«)?% Such reasoning
has been applied in some other cases. Neither a
statement nor a proof of the general theorem
involved has been published, however, and it
evidently is by no means universally known. The
writer has recently been interested in obtaining a
proof so formulated that one can readily see how
the result has to be modified in the case of
hypothetical particles which obey the Dirac
equations and are subject to other sorts of forces
than the usual electric ones.? In this note such a
proof is presented.

II. STATEMENT OF THEOREM AND OQUTLINE
or Proor

Theorem: In calculations wusing plane wave
Sfunctions as a basis (“Born approximation’) for
processes in which the appearance of electrons and
positrons is transitory omly, the odd order con-
tributions vanish identically.

This statement applies to calculations actually
possible with the existing theory. The way in
which it would have to be modified if nonelectric
forces were introduced will be made clear in the
discussion of Section IV.

It is evident that to any set of transitions
through intermediate states by means of which a
given process can be brought about, there corre-

4¢W. H. Furry, Phys. Rev. 50, 784 (1936); Abstract ‘No.
28, American Physical Society, New York, October, 1936.
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sponds another possible set in which the roles of
electrons and positrons are reversed. The proof
of the theorem consists in showing that the
corresponding contributions to the probability
amplitude are equal and opposite if the order of
the transition-scheme is odd.

A typical nth order term in the probability
amplitude is N/D, with

N=3 - (ut(k, o, )Oulk’, ¢, 7)) -

spins

(n factors), (1)
D=(AE);- - (n—1 factors). (2)

Here u(k’, ¢/, 7') is the four-component amplitude
of the Dirac plane wave function of an elec-
tron of momentum kwmc, spin o, and energy
remct(e=(1+k2)3} 7==1); O is a four-rowed
matrix characteristic of the type of interaction
regarded as producing the transition from
k', o, 7') to (k, o, 7); and the (AE)’s are the
energy differences between the initial state of the
total system and the various intermediate states.
If (1) were written out in full, the various
k’s, o’s, r’'sand O’s would have to be distinguished
by subscripts. Since only a typical factor has to
be discussed, a simpler notation is used to save
writing.

Turning now to the analogous term in which
the roles of electrons and positrons are inter-
changed, we find that its relation to our original
term is described as follows:

(a) All energy differences (AE) are unchanged,
because the dependence of energy on momentum
is the same for both kinds of particles.

(6) Our new term is perhaps to be prefixed
with the opposite sign to that given the old, on
account of the different exchange characteristics
of the two sets of transitions.

(¢) Apart from such a possible intrinsic change
of sign, the change in numerator is given by
replacing N as given by (1) by:

N'=2% - -(ut (=¥, o, —7)
spins
XO0u(—k, o, — 7)) - (nfactors). (1')
We have to reverse the direction of all transitions,
change the signs of all energies (in the electron
wave functions as used), and reverse all momenta.
This corresponds to the fact that a positron of
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momentum kwmc is equivalent to the absence of a
negative energy electron of momentum —kmc.

The theorem will be established by proving the
following two lemmas concerning the changes
noted under (b) and (c), respectively:

Lemma I: An intrinsic difference of sign on
account of different exchange characteristics appears
if and only if the number n of transitions is odd.

Lemma 1I: Apart from such an intrinsic
difference of sign, the two numerators are equal
(N'=N), and indeed the separate factors are equal
respectively in pairs.

It obviously follows from these lemmas that
the contributions cancel for odd # in such a way
as to make the theorem correct. However, before
we go on to the formal proofs we should mention
a certain difficulty which arises in connection
with these cancellations. The actual probability
amplitudes for these effects are sums of integrals
of such terms as we have written, the integrals
being taken over one or more momentum spaces.?
Although two convergent integrals must cancel
if their integrands are identically equal and
opposite, this is not in any absolute sense true of
divergent integrals: by choosing different origins
or different coordinate systems for the com-
parison of the two, one can obtain indeterminate,
and frequently infinite, discrepancies. The inte-
grals met with in calculating the sort of transition
probabilities under consideration will quite com-
monly be divergent. The resulting situation is
one which is usual in calculations in positron
theory: to obtain the result, one has to find a
reasonable method of excluding the infinite and
indeterminate contributions, and use what is
left.® In the present case the reasonable procedure
is to match the coordinate systems according to
the physically sensible idea of interchanging the
roles of the two kinds of particles. When this is
done, the result is zero as stated in the theorem.

ITI. Proors oF THE LEMMAS

Lemma I: This is readily seen by inspection in
some of the simpler cases. It may be proved in
general by using quantized amplitudes. The

5 Conservation of momentum holds for the intermediate
states, but it fixes only the fofal momentum of the pair
field. Since this field contains more than one particle, there
remain undetermined one or more momentum differences,
over which one must integrate.

¢ Cf. R. Serber, Phys. Rev. 49, 545 (1936).
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transition scheme (1) can be regarded as charac-
terized by a product of amplitudes

A=---a*Xk, o, 1)a&’, o', ') - -. (3)

Here
aiteit+a;Tat=a0;+0a;0,=0, @)
a,;+a,<+a,]-ai+= 0, 7/?£],
aﬁa,-—l-aiqﬁ: 1. (5)

When such a product is applied to the situation
postulated in the ‘“hole” theory, in which all
levels 7= -1 are empty and all levels = —1 are
full,” we can replace (5) by

at(k, o, +1ak, o, +1)=0,
ak, o, +1at(k, o, +1)=1,
atk, o, —ak, o, —1)=1,
a(k, o, —1)a*(k, ¢, —1)=0.

(6)

The fact that the appearance of particles is
transitory only assures us that if a(k, o, 7)
appears in (3), at(k, o, 7) also appears, and vice
versa; and the fact that the transition scheme
chosen is a possible one means that when
interchanges of adjacent factors are made so
that each factor finds its partner, a nonvanishing
product will be obtained. This product will be 41
if the number of interchanges required is even,
—1if it is odd.

Exactly the same situation obtains for the
product

A'=--at(=K,d, —Na(=k, 0, —7)-++, (3')
which corresponds to (1’) as (3) does to (1).
Apart from irrelevant changes in the designations
of the factors, the only significant difference
between (3’) and (3) consists in % interchanges of
adjacent factors. Thus

A'=4, % even,
A'=—-4, n odd. Q.E.D.
Lemma II. Given
M= (ut(k, o, 7)Oull’, o', ) (7

we want to show that to every u*(k, o, 7) we can

7 The changes in notation which might be made to cover
up the baldness of this statement and replace (6) by a pair
of symmetrical rules would have no effect here except to
make the proof slightly more cumbersome.
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correlate a u(—k, 7, —7)%and toevery u(k, s, 7) a

ur(—k, 7, —1), in such a way that if the original

functions form a complete normalized orthogonal

set the correlated ones do too, and that if
M =(wt(-Kk,7, —7)0u(—k, s, —7)) (7

we shall have M’= M. Let us try to do this by
finding a matrix 4 such that »

u(_ky E’ _T) = {u+(ky a, T)A+}!
(8)
ut(—=k, o, —7)={Auk, o, 7)}.
(The bar indicates transposition.)

The requirements as to completeness, ortho-
gonality, and normalization are satisfied provided

(u+('_kl7 El) - Tl)u(_k! o, — T))

= (ut(k, o, u(k’, o', 7). (9)
Substituting from (8) in the left member of (9)
we get

({Au’, o, )} {ut(k, o, T)AT}]).

Since this is a mere number, we do not change its
value by transposition, which gives

(utk, o, 7)ATAu(K’, o', 7")).
Thus (9) is equivalent to the requirement
A*A=1; (10)

i.e. A must be unitary.

The requirement that the new functions so
formed be solutions of the Dirac equations
means that

(rete-k+pulk, s, 1)=0,

(11a, b)
ut(k, o, 7)(reta-k+B)=0
must imply
{Au(ky a, T) } (— TE-(!'k+B) =01
(12a, b)

(= re—a-k48) {ur(k, o, AT} =0.

8 By ¢ we mean not necessarily an index different in
numerical value from ¢ but an index whose significance
may be different, i.e. u(k, o, r) may not be the same
function of & that u(k, o, 7) is of o. There is no need to
trace the correlation between the two types of spin
quantization, because the spin-sums (1) and (1’) are
independent of the type used, as long as we are careful
always to use complete normalized orthogonal function
sets.
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Transposing (12, a, b) we get
(—re—a-k+B)Aulk, o, 7)=0,
(13a,b)
ut(k, o, 1)A+H(—re—a-k+B) =0.
(13a) is implied by (11a) provided
ad=Aa; BA=-—AB. (14)

Since a;, E are Hermitian as well as a;, 8, by
taking the adjoint of (14) we see that it is also a
sufficient condition for (13b) to be implied by
(11b).

On account of the use of transposition in fixing
the conditions on A4, it does not seem to be
possible to prove that an 4 exists satisfying (10)
and (14) without referring to an explicit form of
the Dirac matrices. If we suppose that they have
the form originally given by Dirac, we see that
ag, az, B are real symmetric, while o, is imaginary
antisymmetric. Thus for this representation (14)
means that 4 must commute with o, and «,, and
anticommute with a, and 8; and 7,8 is obviously
a unitary matrix which does this. Having found a
suitable 4 for this one representation, we can
readily determine one for any other. This other
representation must be connected with the one
discussed by a unitary transformation,

ai’ =57 S =Sta;S, B'=S8S, (15)

and one finds that a suitable unitary matrix A4’
is now given by

A'=S5A4S. (16)

4 does not transform according to the unitary
transformation applied to e, 8, and hence does
not have the same expression in terms of e, 8 in
different representations. This is due to the fact
that the conditions (14) placed on A4 are not
invariant under unitary transformation.

We now have only to substitute (8) into (7’)
and apply (14) to evaluate M':

M =M =({Au(®, o', 7)}0{ut(k, o, 1)A+})

= (u+(k, o, )AT0Au(', o', 7).  (17)

From (10) and (14), At*OA4 = +0 whenever O is
a product of Dirac matrices. Thus for such O’s,
M'=+M. In detalil,

FURRY
0,=8: M=—-M, (18a)
0:=1; o;: M=M, (18b)
Os=18a;; iBasa;: M'=M, (18¢)
O =iajonas;tasa;: M'=—M, (18d)
O;=Baiazas: M =—M. (18e)

The various operators have been listed according
to the relativistic transformation properties of
utOpu.® The five types of O, listed give re-
spectively a scalar, a four-vector, an antisym-
metric tensor, an axial four-vector (antisymmetric
tensor of the third rank), and a pseudo-scalar. As
will be explained at the beginning of the next
section, (18b) establishes Lemma II for the case
contemplated in the original statement of the
theorem.

IV. DiscussioN OoF THE VARIOUS OPERATORS

The interactions involved in all effects so far
discussed are those with the radiation field and
with Coulomb fields. These interactions are given
by the product of the potential four-vector with
the four-vector Oz of (18b). Thus Lemma II is
established for all these effects, and with it the
theorem as stated.

Another possible form of interaction with the
electromagnetic field is that obtained by multi-
plying the tensor O; of (18c) by the field tensor.
For such interactions the theorem also holds.
This form of interaction corresponds to the
particle’s possessing a magnetic moment differing
from that given by its charge and spin. It was
first invented by Pauli as a possible interaction
between a neutral particle (precursor of the
neutrino) and the field ; also it has been suggested
that the proton may possibly obey a Dirac
equation in which such a term is inserted to give
agreement with the observed magnetic moment.
For the electron this interaction must be sup-
posed to vanish.

The only other one of the operators (18) which
can be supposed to describe an interaction of the
particle with a field of force is the scalar O; of
(18a). The writer has recently pointed out, in
connection with the question of the spin-orbit

* Cf. W. Pauli, Handbuch der Physik 24/1, 221. The
rather unsymmetrical appearance of the operators listed in
(18) is due to our use of the original Dirac notation «, 8

instead of the +* notation which is better adapted for
clear display of the transformation properties.
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interaction of a particle moving under the action
of a nonelectric force,? that this scalar may be
associated with a scalar potential such as occurs
in Nordstrom’s special-relativistic gravitational
theory. One sees from (18a) that in applying our
theorem to any process in which such an interac-
tion might play a part we must omit the matrix
elements of this O in counting the number of
factors in the numerator (1) to get xn. This is
just what is to be expected, since the reason for
the alternation of relative signs from order to
order in the electric case is to be found in the
opposite action of the field on the two signs of
charge. The result is of some interest aca-
demically, though at present there seems not to
be much utility in the concept of a particle which
is susceptible both to the action of nonelectric

129

forces and to creation and destruction in pairs.

The operators O4 and O; of (18d) and (18e)
cannot be associated with any sort of interaction
which has a classical analogue, on account of
their unsuitable transformation properties as
regards reflection. If, however, an interaction
between two matter-fields is described by a
biquadratic form in the Dirac amplitudes, the
antisymmetry under reflection can be eliminated
by squaring. In fact Wigner, and also Bethe and
Bacher,!® have remarked that these operators,
quite as well as the others, can reasonably be
used in neutrino theory. It is possible that the
symmetry property here described may find
applications in this connection.

10 H, A. Bethe and R. F. Bacher, Rev. Mod. Phys. 8, 190
(1926).
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The Slater method of obtaining wave functions for metallic lattices is applied to the face-
centered lattice. The solutions previously obtained by Krutter for this lattice were mainly
for certain simple lines in momentum space. Methods are developed for obtaining more general
solutions from these special ones. On this basis the entire 110 plane is worked out. For certain
new lines in this plane especially simple solutions are given. An approximate method suitable
for calculating energy contours in momentum space for small values of momentum is developed.

INTRODUCTION

LATER! has proposed an extenison of the

method of Wigner and Seitz? for the cal-
culation of wave functions in the periodic field of
metallic lattices. He applied his method to the
body-centered lattice with metallic sodium par-
ticularly in mind. The method has been applied
to lithium?® (body-centered), to copper! (face-
centered), and with modifications to diamond®
and the sodium chloride lattice.®

1]. C. Slater, Phys. Rev. 45, 794 (1934).
(1;‘3\27)igner and Seitz, Phys. Rev. 43, 804 (1933) and 46, 509

3J. Millman, Phys. Rev. 47, 286 (1935); F. Seitz, Phys.
Rev. 47, 400 (1935).

4+ H. M. Krutter, Phys. Rev. 48, 664 (1935).

8§ George E. Kimball, J. Chem. Phys. 3, 560 (1935);
F. Hund, Physik Zeits. 36, 888 (1935).

¢ Ewing and Seitz, Phys. Rev. 50, 760 (1935); W.
Shockley, Phys. Rev. 50, 754 (1935).

Briefly, the method consists of dividing the
lattice into polyhedral cells centered about each
atom and containing those points of space nearer
that atom than any other atom. The wave
function ¢ in one of these cells is expanded in
terms of surface harmonics times radial functions
which are numerical solutions of wave equation.
For an atom at a center of symmetry this func-
tion is most conveniently handled in the form
Y=u,+1u, where u, is a real even function of
the coordinates having the atom as a center
(i.e., is expanded in harmonics of even I) and u,
is an odd real function. The functions in other
cells are obtained by translating ¢ and multiply-
ing it by €*'R where R is the translation vector.
The wave function and its normal derivative are
required to be continuous from cell to cell at
the midpoints of the cell boundaries.



