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and JV„, denotes the molecular weight of the con-
stituent. The N's corresponding to a given f are
calculated with Eqs. (7) and (8), the mass ratios
with Eq. (10), and, finally, y» with Eq. (9).The
values of S'„, adopted in the present calculation
are S'11——18.015, S'12=19.021 and g 22=20.027.

The calculated value of x»o corresponding to
f=0.2 is —0.6807 )& 10 '. When this value is sub-
stituted in Eq. (9) the calculated mass suscepti-
bilities of the remaining three mixtures are
xo.4= —o 6885) xo.6=—0.6739, and xo.s= —0 6600
all X10 '. These agree with the observed data
of Table II with a maximum discrepancy of 2 in
the fourth figure.

The present value of the molar susceptibility,
yW, of D20 is —12.95~0.01X10 ' compared
with the value —12.97X10 ' for H20. Other in-
vestigators have obtained the values 12.90,'

76 1o and 12.96~0.02 all X —10 . It should
' Selwood and Frost, J. Am. Chem. Soc. 55, 4335 (1933)'

Cabrera and Fahlenbrach, Naturwiss. 22, 417 (1934)~"J.H. Cruickshank, Nature 208, 135 (1935).

be noted that the difference of amount 0.02 X 10 '
here found between the molar susceptibilities of
H20 and D20 rests upon the adoption of the
value 1.1058 for the density of D20 at 21.3'C.
An earlier measurement of this quantity by
Lewis and Luten" yielded the value 1.1035, and
the molar susceptibility of D20 calculated from
the present data with this figure is —12.97 X10 '.
The experimental verification of the additivity
law subsists whichever value is chosen.

In conclusion the writer gratefully acknowl-
edges his indebtedness to Dr. W. B. Ellwood, of
the Bell Telephone Laboratories, for his assis-
tance in securing the magnet; to Dr. H. C. Urey,
who supplied the mixtures of H20 and D20; to
Dean G. B. Pegram, in whose home in New
York City this research was conducted; and to
Dr. A. P. Wills, who suggested the problem and
followed the progress of the work with helpful
counsel and encauragement.

» Lewis and Luten, reference 7.
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A phenomenological theory of the piezodielectric effect in

homogeneous isotropic or anisotropic solids is presented.
This theory rests upon the assumption that the changes in
the dielectric constants e;; are linear in the six components
of applied mechanical stress. It is shown that 36 piezo-
dielectric moduli are required for a complete description of
the piezodielectric effect. The number of independent
moduli is two in isotropic solids, eight in alpha-quartz and
tourmaline, and twelve in Rochelle salt. The matrices for
the piezodielectric and piezooptical moduli are identical in
all crystal classes which we have considered. The term
electrostriction is applied to the case in which the com-
ponents of strain are quadratic functions of the applied
electrical field. The character of electrostriction in any solid

is predicted by considering the piezodielectric effect to-
gether with the first and second laws of thermodynamics.
The relation of electrostriction to the piezodielectric effect
is very similar to the relation of the converse piezoelectric
effect to the direct piezoelectric effect. The equations for
the components of "electrostrictive strain" in isotropic
solids and alpha-quartz are given in detail. General ex-
pressions for "electrostrictive stress" are derived. The
equations of motion of a perfectly elastic, piezoelectric and
electrostrictive solid which is subjected to mechanical and
electrical fields are then stated. From considerations of
crystalline symmetry and Neumann's hypothesis it can be
seen that every solid may exhibit electrostriction whereas
relatively few solids are piezoelectric.

1.THE THEQRY oF THE PIEzoDIELEcTRIc EFFEcT

HE term piesodielectric effect is here applied
to those changes in the dielectric constants

e;; of a homogeneous solid which result from the
application of mechanical stress. The following
considerations are limited to the case in which

the changes are linear in the applied stress.
Direct experimental evidence for this linearity
has been recently obtained by A. H. Scott. '

Let the x, y and s components of the electric

'A. H. Scott, Nat. Bur. Stand. J. Research 15, . 13
(1935).
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field intensity 8 and of the electric induction D
be denoted respectively by Bl, 82, E3 and Dl, D2,
D3. The dielectric constants ~;j in the initial or the
unstrained state are now defined by the relations

given by
3 3 3

2E= P Q e,;E(E;= P D;E;.
i=1 j=l

3

D, =Pc;;E;, i=1, 2, 3,
j=l

in which it can be shown that

6ij =6)i.

It is here assumed that the electrostatic energy P

(1) per unit volume in the strained state is likewise
given by

3 3

2)= Q Q (e,;+e„;)E;E;
i=1 j 1

The change which is brought about in e;; by the
application of stress is denoted by e;;. It is
assumed that the dielectric constants in the
stressed state are e;;+eij, in which

3 3

2&=2&—2E= Q P e,;E~E;.
i=1 j=1

(9)

Let p represent the change in the electrostatic
energy per unit volume due to the piezodielectric
effect. Then,

6

e;;=+ g„;I,X~
k=1

6

e;;=+ b, ;gxl„
k=1

or

where Xk and xk are, respectively, the compo-
nents of mechanical stress and strain after the
notation of Goranson. '

From arguments similar to those used to show
that eij= cj; it can be shown that in the stressed
state e;j+eij =e;i+ej;. Hence

6 3 3

2y=Q Xg Q Pg;;gE;E;.
k—1 i= 1 j=1

In a given crystalline group the number of
independent moduli which are different from
zero can be reduced from considerations of
crystalline symmetry and Neumann's hypothe-
sis. ' This reduction can be made by means of an
energy method through the energy function p. A
primed Cartesian coordinate system is related to
the unprimed, rectangular crystallographic axes
by a set of linear transformations which corre-
spond to rotation through an angle 8 about an
axis or to reflection across a plane. Thus with
respect to the primed system

e;;=e;;

and giga =g jik

Since i or j=i, 2, 3, and 0=1, 2 6, 36 con-
stants g;jk or b;,k are thus required to describe the
piezodielectric effect in crystalline media. The
constants g;;q are called the piesodielectnc modtdi.
These are by assumption independent of Xk.
They are in general a function of the tempera-
ture. In nonisothermal processes Eq. (3) is more
general when written in the form 6 3 3

2O' = Z Xy' 2 2 g''~A''E .

~hen p is referred to the crystallographic axes,
it can be shown4 that for most of the crystalline
groups eij=0, when i /j.

(4) p may be written in terms of the components
of stress by substituting for e;; in (9) the corre-
sponding values given by (3). Thus

Xk

sjt —Q gjjfgdXQ
k=1 p

i=1 j=l
(6)

When the linear transformations

where the initial state is unstressed.
The electrostatic energy E per unit volume of

an anisotropic solid is usually assumed to be'

X&' ——F~(X„, 0) and E,' = G, (E„,8) (12)

are substituted into (11), p' becomes an explicit
functionof Xk, E,8 and 8. Let the valueof eor

"-R. W. Goranson, Thermodynamic Relations (1930).
3 Voigt, Lehrbuch der KristallPhysik (1910), p. 413

4 Reference 3, p. 414.' Love, Mathematical Theory of Elasticity (1920), p. 155.
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the nature of the reAections correspond to a
"covering operation. "' Since the energy p is
invariant with respect to the coordinate system,
the necessary equations for determining the
number of independent piezodielectric moduli
are obtained by equating the coefficients of
8 8„in (10) to the corresponding coefficients in
p'. This is similar to the manner in which the
elastic constants are reduced by Love. '

The reduction to the number of independent
piezodielectric moduli has been carried out in
the above manner by the writers for (1) the
isotropic case and for those crystals which in
Voigt's' notation possess the symmetry (2) A,'A, '
(alpha-quartz), (3) A.'E, (tourmaline), (4) A,2A, '
(Rochelle salt), and (5) A.2Z, . The following
matrices state the relations which were found to
exist among the piezodielectric moduli. For the
sake of ready comparison of these matrices with
those which are already known to exist for the
piezooptical effect, the writers have reduced g;;I,
to a second-order tensor by means of the con-
vention g;+=g» (k and k=1, 2 ~ 6) in which the
integers h, i and j are related by the scheme

h 1 2 3 4 4 5 5 6 6
i 1 2 3 3 2 3 1 2 1 (13)
j 1 2 3 2 3 1 3 1 2.

Thus, for example, g32~ ——g23~
——g4A, . With this

convention (2) and (3) are conveniently written
in the form

(14)&ij = &h,

and
6

e"=eg=P g»Xk, k=1, 2 6.
k=1

(15)

gll
g12

llg»ll =

0
0

g12 g12

gll g12

. g12 gll 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

(16)

' Reference 5, p. 150.' Reference 5, p. 153.
8 Reference 3, p. 97.

When the elements gI, ~, of these matrices are
known from physical measurements, the piezo-
dielectric effect is calculated by means of Eqs.
(13) and (15).

Isotro pic case:

A, 'A ' and A,'E,:
gll
g12

llg»ll =

0
0

g12 g13

gll g13

g31 g33
—g41 0

0 0
0 0

g14 0
—g14 0

0 0
g44 o
0 g44

g14

0
0
0
0

2g41

(g11 g12)

. (17)

A,2A.2 and A.'E.:
gll
g21

llg-II= 0"
0
0

g 12 g 13

g22 g23

g32 g33

0 0
0 0
0 0

0 0 0
0 0 0
0 0 0
g44 0 0

gS5

0 o g66

(18)

' F. Pockels, Lehrbuch der XristalloPtik (1906), p. 498.
'0 N. Gunther, Ann. d. Physik 405, 783 (1932).
"G. Szivessy, IIandbuch der Physik, Vol. 21 (1929),

p. 832.
"Compare (16), (17) and (18) with matrices found in

reference 11, p. 841.

A phenomenological theory of the piesooptical
egect has been studied by Pockels, ' Gunther" and
Szivessy. " The reduction of the piezooptical
moduli q;; was made by the so-called geometrical
method since a suitable energy function was not
available. It will be observed that the matrices"
for the piezooptical and the piezodielectric
moduli are identical in form. This may be ex-
pected since the indices of refraction are closely
related to the dielectric constants. To predict the
piezodielectric effect in the remaining 27 crystal
classes not considered in (16), (17) or (18) one
may thus employ the known piezooptical ma-
trices. It is, however, preferable to determine the
piezodielectric constants by the energy method
of Eqs. (11) or (12) since the writers do not
present proof that the energy and geometrical
methods necessarily lead to identical matrices
for all crystal classes.

The writers have not succeeded in finding the
relations which exist between the piezooptical
and the piezodielectric moduli. A knowledge of
these relations would enable one to determine the
piezodielectric moduli from measurements upon
the piezooptical effect as well as from measure-
ments upon the piezodielectric effect and electro-
striction.
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2. ELECTROSTRICTION

When solids are subjected to electric fields,

they suffer deformations in which the com-
ponents of strain may be linear and quadratic
in the x, y and s components of the applied field.
The case in which the components of strain are
linear functions of the components of the electric
field is known as the converse piezoelectric
effect."The term electrostri cti on is here applied to
the case in which the strain components are
quadratic functions of the applied field. A phe-
nomenological theory of electrostriction does not
appear to have been developed. It will be shown
that electrostriction is related to the piezo-
dielectric effect in a manner similar to that in
which the converse piezoelectric effect is related
to the direct piezoelectric effect. If the piezo-
dielectric effect and electrostriction are thus
assumed to exist, the energy function p together
with the first and second laws of thermody-
namics may be used to predict the nature of
electrostriction in any medium from its piezo-
dielectric properties.

When a body is subjected to mechanical stress
or to electrical fields, the resulting physical
changes depend upon the thermodynamical con-
ditions under which these changes take place.
We suppose that during the change a quantity
of heat dQ crosses the boundary of the small

volume element under consideration and that
mechanical work dW is done by the volume
element. So long as energy transfers are limited
to mechanical work and heat, the corresponding
change in the intrinsic energy u is.

du=dQ —dW,

in which it wi]l be understood that du, dQ and
dW are referred to some path. If the volume
element possesses a piezodielectric effect, energy

may appear in the electrostatic form. For the
purpose of the following argument only the piezo-
dielectric portion of the electrostatic energy need

be considered. Consequently, over any path

du= TdS+Q Xgdxg+-,'Q E;dD;, (21)

where $ is the entropy and T is the Kelvin tem-
perature. This potential function u is suitable for
discussing the adiabatic case d$=0.

It is convenient to define the potential function

6

i —=u —TS QX—kxp.
k

(22)

Thus df'= SdT —gxld—Xq+ ,'g E-;dD;. (23)

The thermodynamic state is usually determined

by three variables (v, p, T) or (xq, X&, T) for
which there is assumed the existence of a function

F(xp, Xg„T)=0. (24)

G(xI„X~, T, E;)=0. (2S)

Any three of the four variables in this equation
may be taken as independent. Let 1, XI, and E;
be chosen as independent variables. The portion
of D; which is due to the piezodielectric effect is

3 6

D;=P P g;;pXgE;.
j=l k=1

(26)

3 6

dD, =g p [g;;g(E;dXI,+XgdE;)
j=l k=1

+ (ag;;p/aT)XgE;d Tj. (27)

By substituting (27) into (23), it is found that in

isothermal processes (d T= 0)

df=Q( —xp+-,'g P g;„gE,E )dXg
i= 1 m=1

The state of piezodielectric substances depends
also upon E; or D, We as. sume, after (24), the
existence of a function

du=dQ —dW+dg. (20) 6 3 3

+2 2 Z E g';-E*X-dE (»)
If the change is assumed to be reversible, Eq.
(20) can be written in the form

"See reference 3, p. 817.

n=l i=1 j=l

( 8'| 8'f
Since f'is exact

~

or provided
BXgBE; BE;BXI,)
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Bxp 3

+Kg'12E*=2Z g'12E'
i=1 i=1

or
BXQ —2Z g'l3E*,

l'3=1, 2 6; j=1, 2, 3. (30)

In carrying out the partial derivatives of (29), it
should be remembered that g; ~

——g;I,.
Suppose that the components of strain are

linear in X„and quadratic in 8; and E; such that

6 3 3

x3=+s2„X„+p pa;;3E;E; (31)
n=l i=1 7'=1

where sI,„are the elastic moduli. If the electro-
strictive effect exists, a comparison of (30) and
(31) shows that the coefficients a;;3 are related
in the isothermal case to the piezodielectric
moduli according to the law

1
~i7'A: = 2gi7A: (32)

In the absence of mechanical stress (X„=O)

3 3

x3=-'2p p g;;3E;E; (4=1, 2, 6). (33)
i=1 7'=1

These components of strain xj, will be called the
components of "electrostrictive strain. "

It will be seen from the above argument that
although gi7I, remain fixed during an isothermal
process, they depend upon the temperature at
which the process takes place. Adiabatic proc-
esses are more complicated theoretically than
isothermal processes since the temperature (and
hence in general g;12) is variable in the adiabatic
case. The theory of adiabatic processes is not
included in this paper, but it may be observed
that provided g;;& are sufficiently slow functions
of T or provided T remains sensibly constant
during adiabatic processes, the corresponding
components of electrostrictive strain may be
computed with considerable accuracy from (33).

An examination of (3) and (33) shows that in

B 3 3

(—x3+-2'p p g;„&E;E„)
BE.

7
i=1 m=1

6 3

=-',—P g g;,„X„E;. (29)
BXA. n=1 i=1

any solid a large piezodielectric effect is associ-
ated with large components of electrostrictive
strain. Further, the piezodielectric moduli may
be measured either from the piezodielectric effect
or from electrostriction. It seems likely that these
moduli can be measured with greater ease and
accuracy from the piezodielectric effect since
small changes of capacity are more easily
measured than the deflections due to electro-
striction. When the relations between the piezo-
optical and the piezodielectric moduli become
known, a third method becomes available for
measuring the piezodielectric moduli.

The components of electrostrictive strain in
the isotropic solid are

2xl gllE1 +g12(E2 +E3 ) y

2x2 gllE2 +g12(E1 +E3 ) i

2x3 gllE3 +g12(E1 +E2 )
X4 —X5 —X6 Oe

(34)

Electrostriction cannot, therefore, give rise to
the shear components of strain in isotropic sub-
stances. In alpha-quartz and tourmaline

2~1 gllEl +g12E2 +g31E3 +2g41E2E3 ~

2~2 g12E1 +gllE2 +g31E3 2g41E2E3 )

2x3 g13(E1 +E2 )+g33E3
2x4 =g i 4(E1' E2') +2g 44E2E—3,
2x3 ——2g, 4E 1E2+2g 44E 1E3,
2x3 2(gll g12)E1E2+4g41E1E3

(33)

In these solids the shear components of electro-
strictive strain are not zero. It will be noted that
the strain components involve cross products of
the components of the electric field. The terms
in these cross products change sign when the sign
of one member E, is reversed. This aspect of
electrostriction does not appear to have been
considered or tested.

Reversibility has been assumed in the theory
leading to (33). Consequently (33) does not
accurately apply to viscoelastic solids of the type
discussed by J. H. C. Thompson. "Rochelle salt
is sufficiently viscoelastic that (33) can be ex-
pected to apply only after the components of
electrostrictive strain have reached equilibrium
with the impressed electric field. These com-
ponents lag varying fields and thus give rise to
hysteresis.

"J.H. C. Thompson, Phil. Trans. Roy. Soc. London
231, 358 (1932-33).
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3. THE ELAsTIc, PIEzoELEcTRIc, EI.EcTRo-
STRICTIVE SOLID

The components of strain in a perfectly elastic
solid which is piezoelectric and electrostrictive
will be considered briefly. In this solid the com-
ponents of strain are increased by the com-
ponents which originate from the converse piezo-
electric eRect. Hence for this solid Eq. (31)
assumes the form

xg= Q sp,X„+-',P P g, ,yE;E;+P d;sE;, (36)

where d;k are the piezoelectric moduli.

With the aid of (38) the thermodynamic poten-
tial g may be expressed using xk, E; and 1as
independent variables. Following a method
similar to that leading to (33), one can show that

Xp ———,P P b;;vE;E; (0=1, 2 6), (40)

wherein Xk are components of "electrostrictive
stress, " i.e., those components of mechanical
stress which would bring about a state of strain
identical with that produced by electrostriction.

Let Rk denote the sum of the mechanical,
electrostrictive, and piezoelectric stresses, i.e.,
let

BX6 BX&r B g
+ + +uX=p

Bx By Bs Bt2

BX6 BX2 BX4 B'v
+— + +p~=p

Bx' By Bs Bt2

BX5 BX4 BX3 B 'R

+ + + p~=u
By Bs Bt'

(37)

If (4) is substituted into (9)

6 3 3

2y=gxgg Qb;;gE;E;,
k=l i=1 j=l

in which b;;k are the "piezodielectric constants. "
These are connected with the piezodielectric
moduli by the relations

6

bijm= Q gijk&kmt
k=l

where ck are the elastic constants.

4. THE EQUATIoNs oF M oTIQN

When a body is not in equilibrium with a
system of mechanical and, "electrostrictive
stresses, " the series of states through which it
passes is described by the equations of motion
and the boundary conditions. When only the
mechanical stresses are present, the equations
of motion are"

Rg=Xp+-,'P Q b;;gE;E;+P e,gE;, (41)

where haik are the piezoelectric constants in the
notation of Voigt. The equations of motion in
elastic, piezoelectric and electrostrictive media
are now obtained by replacing the purely mechan-
ical stresses Xq in (37) by Rq from (41).The solu-
tion of the equation. s of motion and an appro-
priate set of boundary conditions determines the
instantaneous states through which the medium
passes.

The boundary &onditions may specify the X,
F and Z" components of surface traction across
a plane element of normal v at the boundary of
the medium. The components X„, T„, and Z„, of
the surface traction are

X„=Rg cos (XV) +Rg cos (yv) +Rs cos (sv);
F„=R6cos (xv)+Rm cos (yv)+R4 cos (sv); (42)
Z„=Rq cos (xv)+R4 cos (yv)+Ra cos (ev).

The above equations of motion and boundary
conditions are accurate only in the isothermal
case, but when the e6ects of the adiabatic tem-
perature changes are negligibly small, the adi-
abatic case can be solved in the hrst approzjma-
tion as an isothermal problem.

The senior writer is indebted to the Wisconsin.
Alumni Research Foundation whose financial
assistance made possible the time spent by him
on this work.

15 Rqfqrence 5, p. 85, 16 Rt„"fqrqncq 5, p. 78.


