The Spectra of Sc IV,* Ti V, Mn VIII and Fe IX in the Isoelectronic Sequence A I to Fe IX

P. GERALD KRUGER, S. G. WEISSBERG AND L. W. PHILLIPS Department of Physics, University of Illinois, Urbana, Illinois (Received April 29, 1937)

The successful excitation of scandium in a vacuum hot spark has enabled the completion of the spectroscopic data in the isoelectronic sequence A I to Fe IX and has led to the identification of radiation connecting the higher terms with the ground state $({}^{1}S_{0})$ in all ions up to and including Fe IX.

IN a previous report¹ the radiation $3p^{6}S_0$ $-3p^{5}5s^{3}P_{1}^{0}$, ${}^{1}P_{1}^{0}$ for various ions in this sequence was reported. Since then the spectrum of scandium has been strongly excited and thus it is possible to fill the gaps in the previous report due to a lack of scandium data at that time. At the same time additional data have been obtained in Ti V, Mn VIII and Fe IX.

Newly identified lines are given in Table I. In order to correlate the new data with those previously presented, displaced frequency graphs for ions of the sequence are given in Figs. 1 and 2 and the corresponding data in Tables II and III.

In Table IV are listed the series limits calculated from two members of the $3p^{6} {}^{1}S_{0} - 3p^{5}ms {}^{1}P_{1}^{0}$ series (designated by $L({}^{1}P_{1}{}^{0})$), and the limits $L({}^{3}P_{1}{}^{0})$ calculated from the first two members of the $3p^{6} S_0 - 3p^5 ms^3 P_1^0$ series. A comparison between the difference $L({}^{1}P_{1}{}^{0}) - L({}^{3}P_{1}{}^{0})$ and the known ${}^{2}P_{3/2, 1/2}$ splitting in the chlorine-like ions is shown in columns 4 and 5.

Tables V and VI give the revised term values and ionization potentials for all ions of the sequence.

TABLE I. Newly	identified lin	nes in argon-lik	e ions.
Relative Intensi-			

Ions	INTENSI- TIES	λ(Α)	ν(cm ^{−1})	TRANSITIONS
Sc IV	6 8 3 2	298.027 293.260 217.187 215.317	335540 340994 460432 464432	$\begin{array}{c} 3p^{6} {}^{1}S_{0} - 3p^{5}4s {}^{3}P_{1}{}^{0} \\ 3p^{6} {}^{1}S_{0} - 3p^{5}4s {}^{1}P_{1}{}^{0} \\ 3p^{6} {}^{1}S_{0} - 3p^{5}5s {}^{3}P_{1}{}^{0} \\ 3p^{6} {}^{1}S_{0} - 3p^{5}5s {}^{1}P_{1}{}^{0} \end{array}$
TiV	6 5	164.450 163.140	608088 612970	$3p^{6} {}^{1}S_{0} - 3p^{5}5s {}^{3}P_{1}^{0}$ $3p^{6} {}^{1}S_{0} - 3p^{5}5s {}^{1}P_{1}^{0}$
Mn VIII	10 15	124.055 122.168	806094 818544	$3p^{6} {}^{1}S_{0} - 3p^{5}4s {}^{3}P_{1}^{0}$ $3p^{6} {}^{1}S_{0} - 3p^{5}4s {}^{1}P_{1}^{0}$
Fe IX	6 8	105.236 103.580	950245 965437	$\begin{array}{c} 3p^{6} {}^{1}S_{0} - 3p^{5}4s {}^{3}P_{1}{}^{0} \\ 3p^{6} {}^{1}S_{0} - 3p^{5}4s {}^{1}P_{1}{}^{0} \end{array}$

* Some of these data have been reported by L. W. Phillips and P. G. Kruger. Bull. Am. Phys. Soc. Wash-ington Meeting 12, 28 (1937). ¹ P. G. Kruger and S. G. Weissberg, Phys. Rev. 48, 659 (1935).

TABLE	П.	Radiated	frequen	cies ·	with	first	and	second	differ-
		ence	s. First	serie	es me	mber	s.		

Ion	$3p^{6} {}^{1}S_{0} - 3p^{5}4s {}^{3}P_{1}{}^{0}$			3p6 1	3p ⁶ ¹ S ₀ - 3p ⁵ 4s ¹ P ₁ ⁰		
A I K II Ca III Sc IV Ti V V VI Cr VII Mn VIII Fe IX	93743 163237 243927 335540 436876 549300 672332 806094 950245	69494 80690 91613 101336 112424 123032 133762 144151	11196 10923 9723 11088 10608 10730 10389	95392 166462 247693 340994 443780 557653 682445 818544 965437	71070 81231 93301 102786 113873 124792 136099 146893	10161 12070 9485 11087 10919 11307 10794	

TABLE III. Radiated frequencies with first and second differences. Second series members.

Ion	$3p^{6} {}^{1}S_{0} - 3p^{5}5s {}^{3}P_{1}^{0}$			$3p^{6} {}^{1}S_{0} - 3p^{5}5s {}^{1}P_{1}^{0}$		
A I K II Ca III Sc IV Ti V V VI Cr VII Mn VIII	113635 212993 328580 460432 608088 771759 951110 (1145500)	99358 115587 131852 147656 163671 179351 (194390)	16229 16265 15804 16015 15680 (15039)	114965 215019 331398 464432 612970 778925 960340 (1159000)	100054 116379 133034 148538 165955 181415 (198660)	16325 16655 15504 17417 15460 (17245)

TABLE IV. Series limits calculated from two members of each series.

Ion	L(1P10) (cm ⁻¹)	L(³ P ₁ ⁰) (cm ⁻¹)	$\begin{array}{c} L({}^{1}P_{1}{}^{0}) \\ -L({}^{3}P_{1}{}^{0}) \\ (cm^{-1}) \end{array}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
A I K II Ca III Sc IV Ti V V VI Cr VII Mn VIII Fe IX	128,854 258,234 415,568 599,413 809,040 1,046,420 1,308,280	$\begin{array}{r} 127,398\\ 256,776\\ 413,267\\ 596,295\\ 805,465\\ 1,040,090\\ 1,299,700\\ (1,585,000)\\ (1,893,000)\end{array}$	1456 1458 2301 3118 3575 6330 8580	1432 2165 3124 4328 5825 7657 9944

FIG. 1. Displaced frequency diagram. First series members $3p^{6} \cdot S_0 - 3p^{54}s \cdot ^3P_1^{0}, {}^1P_1^{0}$. Horizontal scale, 1 div. = 4000 cm⁻¹. Vertical scale, constant second difference is 10500 cm⁻¹.

Ion	3p ⁸ 1S ₀	3p ⁵ 4s ³ P ₁ ⁰	3p ⁵ 4s ¹ P ₁ ⁰	3p ⁵ 5s ³ P1 ⁰	3p ⁵ 5s ¹ P ₁ ⁰
	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)
A I K II Ca III Sc IV Ti V V VI Cr VII Mn VIII Fe IX	127103.8 256637 413127 596295 805465 1040090 1299700 (1585000) (1893000)	33360.86 93400 169200 260755 368589 490790 627368 (778906) (942755)	31711.62 90176 165434 255301 361685 482437 617256 (766456) (927563)	$\begin{array}{r} 13468.4\\ 43644\\ 84547\\ 135863\\ 197377\\ 268331\\ 348590\\ (439500)\\ (538000)\end{array}$	$\begin{array}{c} 12138.4\\ 41618\\ 81729\\ 131863\\ 192485\\ 261165\\ 338360\\ (426000) \end{array}$

TABLE V. Term values.

FIG. 2. Displaced frequency diagram. Second series members $3p^{6} \, {}^{1}S_{0} - 3p^{5}4s \, {}^{3}P_{1}^{0}, \, {}^{1}P_{1}^{0}$. Horizontal scale, 1 div. = 4000 cm⁻¹. Vertical scale, constant second difference is 16000 cm⁻¹.

TABLE VI. Ionization potentials.

Ion A I K II Ca III Sc IV Ti V V VI Cr VII	IONIZATION POTENTIAL (volts) 15.69 31.67 51.0 73.6 99.4 128.3 160.3	FIRST DIFFERENCE (volts) 15.98 19.33 22.6 25.8 28.9 32.0 (35)	SECOND DIFFERENCE (volts) 3.35 3.3 3.2 3.1 3.1 (3) (3)
V VI Cr VII Mn VIII Fe IX	128.3 160.3 (195.5) (233.5)	32.0 (35) (38)	(3) (3)