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energy by a suitable constant, ~ 8 or by allowing the
particles to interact at a greater distance than they really
do. With (2b) we found that multiplying the potentials
by 1.36 yields a function for the sum of all energies which
has a minimum value of —246 mc' at o =0.80 (taking
~=o since very little improvement is obtained from vary-
ing both r and o independently). The second method
(method (i)) is believed to be somewhat more reliable.
With (2b) the radius of action must be increased by the
factor 1.3 to make the minimum value of E(O") agree with
experiment. The minimum is assumed at o-=1.01 (again
taking o-=r for the same reason as before). To obtain the
numerical results discussed in the text we use the values

Lvm = 15.74, Xv~ = 1.41,
Lvv = 10.05, Xvv =0.90,
L, =0.892, E, =0.055, Method (i). (24)

CE(s) = 1.09, CE(ps) = 1.63,
3(1 g)D(o o )A v/ = 14.95

6(1—g) a(~)A,.=120.00.

In computing the kinetic and Coulomb energies a is re-
placed by n/(1. 3)'.

The straight-forward application of this procedure to
the models (2a) and (2c) is not very satisfactory, because
an increase in the strength of the potentials or in the radius
of action which serves to fit the experimental 0" energy
will give far too much energy to the lighter elements.

Finally it was found most satisfactory to make the
calculations without modifying either the range or depth
of the potentials. With o. =1.01/(1.3)~ the kinetic and
Coulomb energies are exactly as in method (i). The other
matrix elements have the values

Lvm =9.83, Xvn = 1.44,
Lvv =6.19, Xvv ——0.90, Method (ii).

3(1 g)D (o, (J)A y ~ = 12 .13,
6(1—g) B(o.)A = 77.37.

(25)

The correlation energy is introduced by adding to the
total computed energy a linear function of the number of
particles. Since the general linear function contains two
parameters it is possible in this way to fit exactly the
measured binding energies of two different nuclei, i.e.,
He' and 0".Then the energies of all the others are uniquely
determined.
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The structure of the multiplets of nuclear terms is investigated, using as first approximation
a Hamiltonian which does not involve the ordinary spin arrd corresponds to equal forces
between all nuclear constituents, protons and neutrons. The multiplets turn out to have a
rather complicated structure, instead of the S of atomic spectroscopy, one has three quantum
numbers S, T, Y. The second approximation can either introduce spin forces (method 2), or
else can discriminate betw'een protons and neutrons (method 3). The last approximation dis-
crirninates between protons and neutrons in method 2 and takes the spin forces into account
in method 3. The method 2 is worked out schematically and is shown to explain qualitatively
the table of stable nuclei to about Mo.

ECENT investigations' appear to show that
the forces between all pairs of constituents

~ ~ ~ ~

~

~

of the nucleus are approximately equal. This
makes it desirable to treat the protons and
neutrons on an equal footing. A scheme for this
was devised in his original paper by W. Heisen-

*A paper delivered at the Tercentenary Conference of
Arts and Sciences at Harvard University, September, 1936.

~ M. A; Tuve, N. P. Heydenburg and L. R. Hafstad,
Phys. Rev. 50, 806 (1936); G. Breit, E. U. Condon and
R. D. Present, Phys. Rev. 50, 825 (1936).

berg' who considered protons and neutrons as
different states of the same particle. Heisenberg
introduced a variable v which we shall call the
isotopic spin, the value —1 of this variable can
be assigned to the proton state of the particle,
the value +1 to the neutron state. The assump-
tion that the forces between all pairs of particles
are equal is equivalent, then, to the assump-
tion that they do not depend on v or that the
Hamiltonian does not involve the isotopic spin.

' W. Heisenberg, Zeits. f. Physik 77, 1 (1932).
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In addition to this isotopic spin v, we must
keep, of course, the ordinary spin variable s also;
s Rlso cRn assume the tw'o values +1 Rnd

It has been pointed out lately' that the Pauli
principle requires that the wave function

g (rl~l&ly rR~R&2) '
r rn~n&n) (&)

be antisymmetric with respect to the simul-
taneous interchange of Cartesian, spin and
isotopic spin variables of any pair of heavy
particles. This fact is quite analogous to the
slm11ar stRteIIlent fol ordlnRry sp1Il.

Of course, if Eq. (1) is to represent the state
of a given nucleus, say with s~ protoIls and s~
neutrons, it must vanish at every place where
the sum of the v's

ri+&u+ ' '+& W&N —'@z

is not equal to the "isotopic number" of this
element. All wave functions which are finite for
several sums of the v's, refer to states which can
be different elements with finite probabilities.
No such states are known to be of any im-
portance and the mathematical apparatus of
the isotopic spin is, hence, somewhat redundant.
It will turn out that it is very useful in spite
of this.

In addition to the assumption of the approxi-
mate equality of forces between all pairs of
particles, it appears to be a useful approximation
to neglect the forces involving the ordinary
spin, The Hamiltonian depends then on the
space coordinates alone. By keeping both, one
or none of these assumptions, one comes to four
possible schemes;

(1) Take into account forces depending on space co-
ordinates alone.

(2) Take into account forces depending on space and
ordinary spin coordinates, assuming, however, interactions
between a11 kinds of pairs to be equal.

(3) Neglect ordinary spin forces, take into account
forces depending on space coordinates and isotopic spin,
i.e., discriminate between proton-proton, proton-neutron
and neutron-neutron interactions.

(4) Take@0 kinds of interaction into account.

The first is the roughest method, the last the
most exact and it is probable that (2) is more
accurate for light elements, (3) for heavy

3 J.H. Bartlett, Phys. Rev. 49, 102 (1936);W. Elsasser,
J. de phys. et rad. I, 312 (1936), and especially B. Cassen
and E. U. Condon, Phys. Rev. 50, 846 (1936).

elements. On the other hand, of course, one can
obtain most results from symmetry considera-
tions for 1, fewest for 4. Approximation {1) is
identical with the "all orbital forces equal"
model. 4

The statement that Rn operator involves only
one or another set of variables needs further
amplification. As used in the ordinary theory
of spectra, this expression means that the
operator can be cbrit/en in terms of these variables
alone. It did not mean that it cannot be written
in some other way as well. Thus, e.g. , the inter-
change I' of the space coordinates acts only on
space coordinates, although it can be written by
D1rac's 1dentlty,

P= —-' —-'(sg s2)

entirely in terms of spin operators for anti-
symmetric functions. Ke shall keep this defini-
tion for the forces depending on Cartesian and
ordnary spin coordinates for nuclei also.

The operators which involve 7. are, however„
somewh Rt specialized to begin w1th. Us1ng
Heisenberg's notation for isotopic spin operators

0
(4)

0 l~ —i 0 0

the conservation law for electric charge requires
that all operators commute with

rrg+rr2+ +rr =n~ Np=2Tr. —

In addition to this, one hardly would say that

(P interchange of space, Q interchange of spin
coordinates) does not involve the Cartesian or
spin coordinates, since Eq. {5) is a rather
artificial expression, 7-~ and v„having no immedi-
ate phys1cR1 slgn1ficRnce. We shall assume hence
for approximation (3) only such operators which
are equivalent to operators acting on the
Cartesian coord1nRtes Rlone, but In R d18erent
way for protons and neutrons. This is equivalent
to using only operators involving the space
coordinates and the vg's. If we do this, the
results of method (3) must become equivalent
to the usual theory (without 7's) which neglects

4 E. Feenberg and E. Wigner, Phys. Rev. This issue.
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the spin. As a matter of fact, for approxi-
mation (3), the introduction of r is entirely
useless and it is taken up here only in order to
establish the transition from approximation (I)
to (3).

The interaction in the electronic shells of
atoms is a sum of terms containing two particles
only and the momenta is no higher than the
second power. The reason for the first is, that
the interaction occurs through a field and this
gives in first approximation only interaction
between two particles. The reason that one can
stop with the second power of the momenta is
that these always enter in the combination p/mc
v hich is a small quantity.

An advantage of introducing the variable r
is'' that one can take over these assumptions
to nuclei. If one does not use the variable v the
interchange of two particles if expressed as a
power series of the momenta is an infinite series'

(X2 Xl) (72 $1) (22 Sl)

PS]102z S3z

(z r3 8 ) "' ( 8 8 ) "' f' &) 8 )"'
EBxl Bxsl EByl 8/2) LB&1 ci&2~

However, it can be expressed by means of
I3irac's identity also entirely without the mo-
menta by means of Eq. (5). It: must be admitted,
however, that the spin cannot be considered to
be small as in the atomic theory. 'Are shall
determine here all interaction forms between
two particles which do not contain higher than
first power terms of lnomenta' as far as the de-
pendence on s and v goes. Nothing can be said,
of course, on the dependence on the distance,
and this factor will be omitted hence. It seems
to be of lesser importance for the present.

The interaction must have spherical sym-

metry, depending on the differences of coordi-
nates and momenta only, be invariant under
inversion, substitution of —t for t and also be

~ J. A. Wheeler, Phys. Rev. 50, 643 (1936}.
6 Some of these were given previously by Cassen and

Condon, reference 3. The expressions given here are in-
variant only under Galilei transformations. (i. Breit has
shown that, in order to ensure relativistic invariance,
correction terms must be added to the expressions derived
here.

respectively, and one axial tensor, with com-
ponents

SgISy2+Sy 1$g2', Sy]Sz2+Sg)Sy2 2 SgISg2+SggSg2 t

SgiSg2 —SyISy2 ' SglSg2+SyISy2 2SzgSzg

The first two of these, (i) and (i'), can be used
as they stand, . cannot be combined with first
power expressions of p, however, since these
change sign under the t'= —t substitution. The
last one (t) gives the familiar expression

(2 ) (S1
' rl )($2r2l ) 23($1' $2)r12

if combined with the similar tensor of the
coordinates. ' It cannot be combined with the p
either. The middle one must be combined with
the vector pl —p2 which gives a useless axial
invariant and tensor and an ordinary vector.
This combined with the distance vector gives the
familiar

(iti) (ib) (ic) x 1
—x,

Pgl Pg2 Pyl Py2 Pzl Pz2

Here s, sy, s, can be the components of one of
the three vectors (v). On the whole, we have 6
invariants. These invariants can be multiplied
with one of the six expressions in ~ which
commute with 7.~j+7~2. These are, first of all

which give the same interaction between all
pairs of particles. In addition to these, we have

and (r2')(rl) 22+22rrlrr2 2(r r1= rr2)

The first of these gives ordinary interaction but
only between like particles; the second gives a
negative interaction for proton pairs, a positive

' (zz} has the property that it is identical with Q12(ii).
It is an interaction which shows saturation.

symmetric in the particles. The first require-
ments determine the dependence on $, x and p.
From the two triples of spin operators, one can
form two invariants

('L) I ' alld (2 ) 2+ 2 (s 1$2+sy1$y2+s 1$g2) Q12

three axial vectors with Z components

(v) Szl+Szs & Szl Sz2 i SglSy2 SylSg2,
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for neutron pairs, none for unlike particles.
These interactions are symmetric in the particles
and can be combined with (i), (2'), (2") and (242),

giving in the whole 16 different forms.
Finally we have

(T2) T r 2 Tr—2 and (T2 ) 2 (T$1T32 T31T22)1

which can be combined with (2b) and (ic) giving
4 more types of interaction.

In approximation (1) we can have only (2) (T2)
and (2')(T2'), i.e. , ordinary and Majorana ex-

change forces.
In approximation (2), all 8 forms derived from

(T2), (T2') and (2) (2') (2") and (2a) The.se are,
in addition to the previous ones, spin-spin
(i")(Tp), spin-orbit (242) (Tp) ordinary forces,
Heisenberg forces (i) (T2'). Furthermore spin-
spin exchange forces (2")(T3 ) and spin-orbit
exchange forces (242)(T2') of the Heisenberg type.
The Majorana exchange forces of these types are
identical with the ordinary forces. Finally, we
have the spin-exchange forces (2') (T2) of Bartlett. '

In approximation (3) we must permit accord-
ing to the preceding section, in addition to those
of 1, only '(i) (Tl) and (2) (Tl'), allowing for
different interactions between different kinds of
pairs. The coefficient of (2)(Tl') is certainly very
small, the proton-proton interaction being very
nearly equal to the neutron-neutron interaction.

In approximation (4), all 20 types become
possible.

We can first define something analogous to the
Z component of the spin momentum by con-
sidering the u's of the type

e'&1 0 0 0

24(V'li 0'2i F31 224) =
0 e'~2 0

(7)
0 e'~3 0

0 0 0 e'~4

—1, —1; —1, 1; 1, —1; 1, 1. Instead of two two-
valued spins, one can introduce one four-valued
spin g, which has the values 1, 2, 3, 4 for the four
different doublets of values of s and v, respec-
tively. This q plays the same role which the two-
valued spin plays in the ordnary spin theory.
However, because of the four-valuedness of q,
instead of the representations of the two-dimen-
sional unitary group (or the equivalent three-
dimensional rotation group), the representations
of the four-dimensional unitary group will char-
acterize the multiplet systems.

Since the Hamiltonian does not contain the
spin coordinates, any transformation which
affects only these, will bring a characteristic
function into a characteristic function. We can
consider first, the permutations of the g; and
second, simultaneous unitary transformations of
all the q.

R44$(g31 ' '
1 gn) QN344332434&3

' ' +314&n

Xg(yl, .
, 8„). (6)

We next go over to approximation (1), and
try to define the analog of the multiplet system.
This can be defined in two ways: either by con-
sidering the functional dependence of the wave
functions on the spins or else by considering
their dependence on the space coordinates. We
shall first consider the spin function. '

The great difference between the ordinary spin
and the spin considered here is that we have, for
every particle, two spin coordinates s and 7.,

giving in the whole four different sets of values

The con&ent pf this section is based on the fundamental
mathematical works of E. Cartan, Bull. Soc. Math. de
France 41, 43 (1913).J. de Math. 10, 149 (1914);I. Schur,
Berl. Ber., pp. 189, 297, 346 (1924) and particularly,
H. Weyl, Math. Zs. 23, 271 (1925). I attempted to compile

in this section —often without giving rigorous proofs—
those results which suffice for the discussion of the physical
problems in question.

These operations all commute and, hence, a
system of functions of the g can be found, the
members of which are merely multiplied by
constants if an R with 24 of the form (7) is

applied to them'

R~«««3&4&F"1 1~3~3u4(g, . q„)
—s4(P1%1+P3P3+143P3+444T4) F"441413443344 (8)

The p, must be integers in this equation, they
will be called diagonal quantum numbers. The v

serves only to discriminate between different
functions of the q with the same diagonal
quantum numbers.

The F„,„,»„,(q& ~ q„)are zero for every set &1&2 ~ p+
of the q, except for those sets in which p1 of them have
the value 1, exactly p2 of them have the value 2, and p3
of them are 3. Then p4 of them will be equal to 4. Other-
wise they can be arbitrary and will still satisfy Eq. (8).



110 E. WIGNER

Since u(p, 22, 22, q) with four equal p is only
multiplication with e'&, because of (6), 8 is
multiplication with e'"&. It is, on the other hand,
multiplication with e'(» &+» &+» &+&«) which shows
that all possible systems of diagonal quantum
numbers satisfy the equation

Py+P2+P3+P4 =R,

where n is the number of variables g. There is a
simple connection between the diagonal quantum
numbers and the Z component of the spin
momentum S. One obtains it by considering a
rotation of the spin coordinates around Z by p,
the matrix of which is of the form (7) with
y~ ——

q 2
———p3 ———

q 4
————', q. Under the infiuence

of the corresponding R„,the wave function will
be multiplied by e'8~& which gives

S,= —',ps, 2= —,'(@4+@2—p2 —yl). (10a)
I2:

The —', before the s,q enters because the usual
definition of the Pauli-matrices is 1/2 of that
given in (4).

Similarly, we have

~r = 2+rr2= 2(124»+»»)

and we define also a

Fr = 2 Zs,2rrl; = 2 (p4 —p2 @2+pl). (—10c)

The quantum numbers S„T~,Y~ can be called
magnetic quantum numbers. They determine,
together with n, the p uniquely. Their im-
portance for spectroscopic considerations is the
same as that of the single ordinary magnetic
quantum number in atomic spectroscopy; they
can be easily found simultaneously for all states
of a multiplet.

Several states with different magnetic quantum
numbers form sets "multiplets" which always
have common energy. These sets contain in
atomic spectroscopy one state with every mag-
netic quantum number from a maximum, S,
to —S. We must find the corresponding sets for
four-valued spin.

The multiplet will be denoted by the highest
set A4A3A2A~ of p which occurs in it. The set
A4A3ARA] is called higher than the set p4p3p2p],
if either A4&p4, or if A4=p4 but A3&p3 or

finally, if A4 ——p4, A3.=@3 but A»p2. The reason
for several states with different diagonal quantum
numbers being united into the same multiplet, is
that they are transformed into each other by R„,
the u of which have not the form (7). Instead of
the A, we can use for the characterization of a
multiplet also

S= ', (A4+-A, —A, —A,),
T=-2'(A4 —A2+A2 —Al),

I'=-;(A, —A, —A, +A,),

(»a)
(11b)

(11c)

(A4A3A~A i)
0 P4+2P2Pl ) (12)

The calculation of the quantities (12) is .im-

which together with A4+A3+A2+A$ —s com-
pletely determine the A.

The character of the multiplets is for the four-
fold spin not as simple as for the twofold spin.
While the latter ones can be represented by the
points on a line from —S to S, the former ones
must be represented at least in a three-dimen-
sional space, giving the possible S„T~,Y~
values and their mgltip/icities. This is necessary
because it is not true any more that every com-
bination of S,T~Y~ occurs only once. The multi-
plicity of every S,T~ Y~ is the same as that of any
permutation of these numbers and also that of
—S,—T~Y~', —S,T~ —Y~,'S,—Tt —Yt-. The figure
of the multiplet has, therefore, tetrahedral sym-
metry in the S,T~ Y~ space. Using .S,T~ Y~ has
the advantage over using the A that the multi-
plets for n= 1, 5, 9, 13, are represented by the
same figures. The quantum numbers are all
half-integers, the occurring S,T~ Yt combinations
form a face centered lattice for which S.+Tr+ Fr
is of the form 2k —1/2. These figures, reflected
in any of the planes T~Y~, Yt-S„S,T~, give the
multiplets existing for n=3, 7, 11, ~ . , the
face centered lattice being characterized by
S,+Tr+ Yr having the form 2k+1/2. The
quantum numbers S„T~,Y~ are integers for
even n. Their sum is even or n=4, 8, 12,
odd for n=2, 6, 10,

In order to find the figures for the multiplets,
one must know how many states with a certain
p4p3+2pg combination are present in the multiplet
(A4A3A2Al). We shall denote this number by
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portant for the following section also. The
simplest interpretation of (12) is obtained by
considering the subgroup of the unitary group
formed by the matrices (7). The symbol (12)
denotes how often the (one-dimensional) repre-
sentation e'&» &&+»&2+» &&+&4&4) occurs in the repre-
sentation of the total unitary group which is
designated by (A4A3A2A&).

The symbols (12) are defined only if A&+A2

+AB+A4 P4+P3+P2+Pl& A4 —A3 —A2 —Al —0
and since a permutation of the p does not change
the value of (12), we can assume also @4~@3~@A

~pg~0. The value of (12) is 0, unless A4~p4
since A4 was the greatest p of the multiplet.
In addition to this, (12) vanishes unless"

A4 —p4 ', A4+A3 —@4+p3',
(13)

A4+A3+A2 —@4+@31p2.

The last of these can be written also as
A& —p&. There are several ways of evaluating (12).
One of them is to consider the matrices p which
correspond to a three-dimensional unitary trans-
formation of the q values 1, 2, 3 only. The
representation (A4A3ARAq) contains all those
representations (A3'A2'A~') of the three dimen-
sional unitary group exactly once for which

A4 A3™A3 A2' A—2 Ag' A—g. —(14—)—
Thus the quartets of diagonal quantum numbers
of (A4AqA&A&) are those of all (A8'A2'A&') satisfying
(14), together with the last diagonal quantum
number A4+A3+A2+A~ —A3' —A2' —A~'. After
this, we can reduce the representation of the
three-dimensional unitary group to a two-dimen-
sional: in (A~'A2'A&') those (An"A~") will occur
for which

A3 —A2 —A2 —Al —Al

Finally (A2"A&") contains the pairs of diagonal

Ag" —2, Ag" +2) ~ ~, Ag", A2".
For instance, in order to find the multiplet

(3 1 1 0) we can calculate (3 1 10)=(3 1 1)0
+ (2 1 1)1+(111)2+(31 0)1+(2 1 0)2+(1 1 0)3.
It suffices to obtain those quadruplets of p which
are in a descending order. The others can be

"Similar formulas hold also for symbols of the kind
(12) with more than four A.'s. They can be proved by an
argument similar to that of the next section.

obtained then by permutation. We can omit
hence the underlined ones. To reduce further

(3 1 1) = (3 1)1+(21)2+(1 1)3
(2 1 1) = (2 1)1+(1 1)2,

(3 1 0) = (3 1)0+(2 1)1+(11)2+(3 0)1
+(2 0)2+(1 0)3.

This gives the p, systems 3 1 1 0, 2 2 1 0, 2 1 1 1,
2 1 1 1, 2 1 1 1 and their permutations. In the
language of the magnetic quantum number
expressed, the multiplet (S, 1, F) = (3/2, 3/2, 1/2)
contains S,= 3/2, Tr 3/2, ——I'r = 1/2 once,
S,= 3/2, Tr = 1/2, Fr ———1/2 once, S,= Tr
= Fr=1/2 three times. In addition to these, all
permutations of these and those triplets in which
any two of the S,T~ Y~ are replaced by their
negative values. The multiplet is shown, along
with some other ones, in Fig. 1, it is the third one.

According to the general theory' the wave
functions of the multiplet A4ASA~Al belong with
respect to interchange of the q to the representa-
tion of the symmetric group which is charac-
terized by the partition A4+A3+A2+A& =n.

It has been shown by Slater" for atomic
spectra that the knowledge of the structure of
multiplets enables one to determine the numbers
and characters of the terms whch arise from
any configuration. The same is true in principle
for nuclear spectra. The difference is that instead
of the two-dimensional plot of occurring L,S,
values, one should prepare a four-dimensional
plot of L,S,T~Y~ values. Or perhaps for every
L, and S, a two-dimensional plot of the occurring
T~Y~ values. For every L, these plots must be
decomposed into S,T~ Y~ combinations which
form multiplets. After this, the L, values for
every multiplet must be grouped together into
sets ranging from —L to L thus obtaining the
azimuthal quantum member.

The most practical procedure along these lines
which I could find was one using the A and the
diagonal quantum numbers. A state with p&

protons and p2 neutrons with spin —1/2 and p3
protons and p4 neutrons with spin 1/2 is a state
with the diagonal quantum numbers pIp2p3p4.
One first makes a plot of the occurring p~p2p3

values for every L. and p4. For this purpose, one
draws an equilateral triangle with the altitude

"J.C. Slater, Phys. Rev. 34, 1293 (1929).
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(1/2 1/2 1/2) 1+0+0+0

Tt = —1/2 Tg =1/2
12 21

(3/2 1/2 —1/2) 2+2+1+0

Tg = —3/2 Tr = —1/2
21 32, 12

T0 =1/2
23, 21

Tg =3/2
12

(3/2 3/2 1/2) 3+1+1+0

TI = —3/2
23

Tg = —1/2
32, 14, 12

T0 =1/2
23, 41, 21

Tg =3/2
32

(3/2 3/2 —3/2) 3+3+3+0

TN = —3/2
41

Tt- = —1/2
32

Tt- =1/2
23

Tg =3/2
14

(5/2 1/2 1/2) 3+2+0+0

(g O~

Oi

Ty = —5/2 Tt = —3/2
12 23, 21

Tg = —1/2
34, 32, 12

Tg =1/2
43, 23, 21

(1 0 0) 1+1+0+0

Tg= —1 Tg=0 Tt =1
11 22 11

(1 1 1) 2+0+0+0

Tt =0
22

Tt =1
31
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(2 1 0) 3+2+1+0

Tt. = —1

33, 13, 31, 11
Tp =0

24, 42, 22, 22
Tg =1

33, 13, 31, 11
Tg =2

22

(3 0 0) 3+3+0+0

OI

Tt= —3 Tt= —2
ii 22

Tf = —1

33, ii
Ty =0
44, 22

Ty =1
33. 11

Tf 2
22

(o oo)

(2 0 0) 2+2+0+0

,
0',

Ty =0
33, ii

Tp =1
22

(1 1 0) 2+ I+1+0

Ty= —1

22
Tp =0
13, 31

(2 1 1) 3+1+0+0

Tg= 2
13

Tg= —1

24, 22
Tg =0

33, 13, 31
Tt. =1
42, 22

Tt' =2
31

FK'. 1. Every set of figures represents a multiplet, the STP' sign of which, together with one corresponding A4+As
+A2+A~, is given on top. Every circle represents a S,TyFy state, Tt is given below the 6gure. Fy and S, are the co-
ordinates of the circle, the origin of the coordinate system being at the center of the 6gure, the Fy axis runs to the right,
the S,axis downward. The numbers in the circles give the number of states S,Ty Yy in the multiplet. The distance between
two adjoining circles on a horizontal or vertical is 2. The multiplets with half integer STF correspond to elements with
masses 4n+ j,. The multip'Jets for masses 4n, +3 are obtained from these by reversing the direction of the Fg axis. The
sign of F must be changed also. The 2 at the center of this figure should be replaced by a 3.
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IJ~+@2+p3 ——n —p4. The point which has the
distances p~, p2, p3 from the three sides of the
triangle, respectively, will correspond to a state
with the diagonal quantum numbers p&, p2, p3

and p, 4
——n —

p&
—p2 —p, 3. Every plot forms a

representation of the three dimensional unitary
group. The irreducible representations of this

group are rather simple, their plots are shown in

Figs. 2a and 2b: the combination p~p2p3 occurs in

A 'A 'A '

(A2'A2'A2')

~

=1yMin (A. -»,
( P3P2P, g )

A2 +A.2
—P2 —g2, A2 —A2, A2 —A2) (15)

times, where Min (n, P, ) is the smallest of
the numbers o., P, ~ if they are positive and

equals —1 if any of them is negative.
One can decompose the p&p2p3 plots for every

L, into irreducible plots, characterized by
(A2'A2'A~') (the primes on the A are omitted in

the figure). Having obtained the number of
(A2'A2'A&'), one unites these for every L, sepa-
rately into total multiplets (A4A2A2A&) accord-
ing to

(A4A3A2A$) Q (A2 A2 A$ ) (16)

The limits of summation are given in (14).
Finally the L, values for every (A4A2A2A&) are
united separately to total azimuthal quantum
numbers L. On the whole, the procedure is much

more cumbersome than the analogous one for
atomic spectra. It has the disadvantage also,
that one first obtains the highest multiplicities,
which have the highest energies.

An alternative method which leads much more

rapidly to the goal is to consider, for the time

being, only the dependence of the wave function
on space coordinates. This method was worked
out for atomic spectra by the present author and
Delbriick" before the spin theory of Pauli was
known. One considers first again the possible
configurations i.e. the distributions of the par-

"E.Wigner, Zeits. f. Physik 43, 627 (1927); M. Del-
bruck, Zeits. f. Physik 51, 181 (1928). Eq. (19) of the
former and (14) of the latter give an explicit expression
for (20) in the case all ) and p, are 1 or 2. Only this case
occurs in ordinary spectroscopy. A similar expression would
be too complicated if the X and p can be 3 and 4 also.

ticles into the different states, without, however,
taking into consideration the spin. For every such
state one determines the L, (or mr, as it is often
called) as the sum of the l, of all the particles.
Next one determines how many terms with a
certain partition X,+), &+ . +X2 this con-
figuration gives. Finally, one considers the states
corresponding to every partition separately and
unites states with L, from —L to L into a total
multiplet with azimuthal quantum number L.

These steps performed, one has all one is
interested in for approximation (1): the multi-

plicities and azimuthal quantum numbers of
every term. For later work, it is still necessary
to know how to complete the wave functions
depending on coordinates alone, by functions
depending on the spins, to total wave functions.
Since the total wave function must be anti-
symmetric, the space-coordinate wave function
and the spin function used for the completion
must have adjoint characters, i.e. , belong to two
such representations the matrices of which are
equal for even, oppositely equal for odd permuta-
tions. The adjoint partition to the partition
4+4+ +1 with n4 fours, n3 threes, n2 twos
and n2 ones is the partition A4+A2+A2+A2
where

A4 S4+@3+112+0J A3 —04+S3+S2
(17)

A3 =n4+n3, Ag = n4.

Thus, e.g. , the partition 4+3+2+2+2+1 for
the spacial wave function is equivalent to the
partition 6+5+2+1 for the A, or to the STFset
(4 1 0).

The step which involves the difhculty for this
procedure is to determine how many terms with
a certain partition X,+Xp ]+ +X] a con-
figuration gives in which there are p~ particles in
the first, pg in the second, etc. , p„in the v-th

state. We consider the wave function

together with those arising from (18) by a
permutation of the x. There are n!/p2!p2! .p„!
of these. Under a permutation of the x they
naturally transform among themselves, the corre-
sponding (reducible) representation of the sym-

$1( l)X/1(X2) $1( PX1)$2(X@1+1) ' $2(Xltll+P2)

.$2(x„,+„,+,) . P„(x„)(18)
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n,

Aq&A~ )+g

zn;h;A,
A3

F1G. 2. Every circle corresponds to a triple p, 1p2p3, these
numbers being the distances of the circle from the three
sides of the equilateral triangle, surrounding the figure.
The number in the circle tells how often the corresponding
set of p.'s occurs in the representation characterized by
(ASA2A1). Fig. 2a holds for A3 —A2~A2 —A1, Fig. 2b for
A3 —A2~A2 —A1 (the first is actually the multiplet (94 2)
the second one (8 6 1)). In both cases the boundary hexa-
gon contains one' s, the next two's and so on until the
hexagon reduces to a triangle. The p, sets within the tri-
angle occur all equally often in the representation: A2 —A1
+1 times in the first, A3 —A2+1 times in the second case. .

metric group will be denoted by Lp,p„~ p~$.
Upon decomposing this into irreducible repre-
sentations

( jEp)Ep

. LPvPv 1' 'P&3=2~ — )(~v~p —&' ' '~&)v
~gvtjv z' ' 'IJ&~ — (19)

the coefficients (some of which occurred previ-
ously in (12)) tell us how many terms with the
partition Xp+ X p—]+ ' ' ' +X] the configuration
gives. We shall arrange the p, again in a descend-
ing order p, & p,, 1» p1

Only those partitions ) p+Xp ]+ +X] will

correspond to real terms in which none of the X

is greater than 4. This must hold then, because of

(13), for the p as well: no orbit can be more than
four times occupied. One can even omit for the
calculation of the coefficients all the fourfold
occupied states, i.e. , drop all the @=4, since
because of (13), the X above a 4 must be a 4
also.

In the P shell, there are only three states
I„=—1, 0, 1 and the coeScients of interest are
therefore of the form (15) (if the partition con-
tains only two addends, a 0 can be affixed for Xg)

and they are explicitly given in (15). One must
only arrange the p, in descending order.

In this case the calculation is especially simple.
For instance, for 3 particles we have the ten
configurations of Table I. The figures below the
/, values give the number of particles (p) in this
state, the figure below L, is the total L„the
last columns give the number of terms with
the partitions 3 or (3+0+0) and 2+1 (i.e. ,

(2+1+0)) which this configuration gives. This
gives F and P terms with the partition (3) and
D and P terms with the partition (2+1). Table
II, reference 4, was prepared in this way. The
adjoint partitions to (3) and (2+1) are (1+1+1)
and (2+1), respectively, the STY characteriza-
tion is (-,'-', ——',) for the former, (-,' —', -', ) for the
latter. There is in addition to these, one S term
of the multiplicity (-', —,

'
—,').

In the general case the explicit formulas for the

(')p )p1 )p 2

iPv Pv —1 Pv —2

(20)

TABLE I. The ten configurations for 3 particles.

= —10 1 Lz (3) (2+1) lz = —1 0 1 Lz (3) (2+1)

3 0 0
2 1 0
2 0 1
1 2 0
1 1 1

—3 1—2 1—1 1—1 1
0 1

1 0 2 1. 1 1
1 0 3 0 0 1
1 0 2 1 1 1 1
1 0 1 2 2 1 1
2 0 0 3 3 1

»G. Frobenius, Berl. Ber. 501 (1898). The reader will
find a straight forward proof in H. Weyl's Gruppentheorie
und Quantenmechanik (Leipzig 1928), first edition, p. 254.
The proof in the English translation by H. P. Robertson
(London, 1931), pp. 332—338, is more abstract.

are too complicated. A useful way of evaluating
(20) starts from another interpretation of (20)
than given in (19). For Frobenius' reciprocity.
theorem" one considers the subgroup which con-
tains the permutations of the first p1. elements
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among themselves, the next p, 2 elements among
themselves, etc. and all the products of these per-
mutations. Then (20) gives the number, how
often the unit representation in which every
element of the subgroup is represented by the
"matrix" (1), occurs in (X,+X, &+ +X&), if
this is considered as a representation of the
subgroup. This is, however, also the number of
times the adjoint representation (A4A3AgAg),

again considered as a representation of the sub-

group, contains the "antisymmetric" representa-
tion, in which every even permutation is repre-
sented by (1), every odd by (—1). If we denote
this by

AgA3A2Ag /'Aphid

i-pyPv —1' ' ' pl- i»v»v 1' ' ' —Pli

(21) expresses Frobenius' theorem. The A are
defined in (17).

The expressions (21) can be calculated by recursion formulas. If p„=4,we have

A4ASA2Al A4 —1 A3 —1 A2 —1 Al —1
(22a)

Pv —1' ' ' P1- -Pv —1 Pv —2' ' ' ~ ~ 0 P]

By means of this formula, one can get rid of all 4 among the p. If p„=3
A4A3A2A1 A4 —1 A3 —1 A2 —1 Al A4 —1

+
Pl- -Pv —1

A3 —1 A2 Al —1

Pv —2'

A4 —1 A3 A2 —1 Al —1 A4 A3 —1 A2 —1 Al —1 !

+ + (22b)
-Pv —1 Pv —2' ' ' Pl- -Pv —1 Pv —2

After a sufficient number of reductions of this type, there will be only 2's and 1's among the p. If one
of the L ], occurring in the right side of (22b) contains a negative number in the upper row, or a
number which is greater than the preceding one, the whole [ ] is zero. To get rid of the 2's

A4A A A, A4

Pv —1' ' Pl- -Pv —1 Pv —2' ' '

Al —1 A4
+

Pl P»

A3 —1 A2

Pv

Al —1 A4 —1
+

P] Pv ]' Pv

A3 A2 Al —1

A4 A3 —1 A2 —1

-Pv —1 Pv —2' ' '

Al A4 —1
+

P1- i-Pv —1

A3 A2 —1

Pv —2' ' '

Al A4 —1 A3 —1 A2 Al
+ (22c)

Pl- -Pv —1 Pv —2' ' '

If all the p = 1, which will be true after some reductions of this type, one can use a formula analogous
to the previous ones. It is quicker to notice that (23) is the dimension of (A4A3AqAq) and hence

A4A3A2A$ (A4+A3+A2+Ag) (A4+3 —Ag) (A4+2 —A2) (A4+ 1 —Ag)

(A4+3)!(A3+2)!(Ay+1)!Ag!

(Aa+2 —Ag)(Ay+1 —A2)(A2+1 —Ag). (23)

One will use the formulas (22), (23) very rarely.
In most practical cases, the calculation of the
coefficients (21) is greatly facilitated by special
conditions.

We can go over, now, to approximation (2). In
this approximation the Hamiltonian will be

invariant with respect to all operations involving
7- only. Since ~ has, mathematically, the same
properties as the ordinary spin variable, we shall
have the analogs of the quantum numbers L and
5 of ordinary spectroscopy. Instead of the
azimuthal quantum number of the common
spectroscopy, we have the total quantum number
J, since the spin forces are taken into account in
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approximation 2; instead of the total spin, we
have an isotopic spin T. Of course, the interaction
of J and T in the higher approximation 4 will be
entirely different from the interaction between
azimuthal and spin quantum numbers of ordinary
spectroscopy. Above all, the resulting angular
momentum Jwill be a good quantum number in
all approximations.

The existence of a total isotopic spin means
that terms with different g components of the
isotopic spin have the same energy in approxi-
mation 2. These are, of course, terms of different
isobaric nuclei, and a total isotopic spin T will
be a term with the same binding energy for all
nuclei with isotopic numbers from —T to T.
This shows that to every term of an element with
a certain isotopic number T~, terms of all ele-
ments with smaller isotopic numbers will corre-
spond. The element with the smallest isotopic
number (nJ =n~ for even masses, np n~+——1 for
odd masses) has the greatest number of terms. In
approximation 4, the equality of these term
values will cease to hold and the Coulomb energy,
already, will introduce a splitting.

If one is interested in the number of terms of
approximation (2), arising from a certain con-
figuration, one can use the ordinary Hund-
Russell-Saunders method to determine these.
The only difference is that the "orbits" contain
the ordinary spin quantum number already and
one has, therefore, for instance, six p states, with
Z components of the angular momentum 3/2,
1/2, 1/2, —1/2, —1/2, —3/2. Everyone of these
six states can be doubly occupied, with a particle
r=1 and r= —1 (neutron or proton). The half
sum of the v- is denoted by T~ and the different
T~ from —T to T united into a multiplet. The
number of terms, arising even from a simple
configuration, is very great, however.

It is more important, perhaps, to consider the
terms mto which a term of approximation (1)
splits if we introduce the spin forces and thus go
over to (2). The transition from approximation
(1) to (2) can be performed in two steps: first
disregarding Yt, every multiplet goes over into
several multiplets which still have an S and T.
One obtains these by simply projecting every
point of Fig. 1 into the S,Tt- plane. This is done
in Fig. 3 for the multiplet (3/2, 3/2, 1/2) as an
example. We see that it gives one term with

S=3/2, T=3/2, one with S=3/2, T=1/2, one
with S= 1/2, T= 3/2, and one with S= 1/2,
T= l./2. The second step, then, is to combine the
S's with the azimuthal quantum number L to
J's, according to the vector addition model.

It would be very important to know experi-
mentally the relative separation of the terms
which arise from the same approximation 1

term, since this would allow us to tell which of
the 6 possible interactions, given in Section 2,
describes the spin forces.

Fig. 4 shows what can be expected in approxi-
mation (2). Every figure corresponds to a set of
isobars. The abscissa is the isotopic number, the
ordinate the total energy. Every line corresponds
to a term of approximation (2) all lines arising
from the same term of approximation (1) are
grouped close together. The STY symbol of this
term is given on the right, it is, of course, the
same for all the group. The T of the term is
represented by the length of its line, so that the
term exists for elements with those isotopic
numbers T~, over which the line extends. The
number on the left of the line is the S, charac-
terizing its spin after the first step in the transi-
tion from approximation (1) to (2) is performed.
This S will be the total angular momentum J of
the nucleus, if the azimuthal quantum number
was zero, which will be very frequently the case.
The energy of the approximation (1) term is esti-
mated on the basis of Eq. (8), reference 4. This
estimate gives the same value for all terms of
the same configuration with the same multiplicity
STY which is, of course, only approximately
true. We are interested, of course, only in the
lowest term of every multiplicity. The distances
between the lines of the same group have no
significance.

We see that in several cases the approximation
(2) terms extend over several isobars and the
question of the most stable isobar will be decided,
hence, only in the next approximation. We may
assume that the most important term in the next
approximation is the Coulomb energy. "This will

'4 The most stable isobar has the smallest mass, not the
greatest binding energy. For the consideration of the
stability, therefore, Ty times the mass difference between
neutron and H' should be added to the total energy. This
will cause the lines of Fig. 3 to slope upward to the right.
This slope is soon overcompensated, however, by the oppo-
site effect of the Coulomb energy.
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FrG. 3. Determination of the spin angular momentum S

and isotopic spin T of the terms arising from the multiplet
(3/2, 3/2, 1/2) if the spin forces are introduced. The spin
angular momenta S must be added, subsequently, to the
orbital angular momentum I, according to the vector
addition principle, in order to obtain the total angular
momentum J.

Masses 4n+1 and 4n+3
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(Sou)
decrease the binding energy of the nuclei with
negative T~, compared with the binding energy
of nuclei with positive Tt- and cause the hori-
zontal lines of Fig. 4 to slope downward to the
right. The slope will be very roughly proportional
to the 2/3 power of the charge.

This slope will have the most noticeable
eGect for isobars with masses 4n+2. While for
small charge, the point a is most stable, beginning
at, O", the point b will become stable.

We can proceed even to higher elements, by
successively increasing the slope of the lines more
and more. For elements 4n, if the slope becomes
3/2, in the arbitrary units of the figure, the point
b will become most stable. This happens to be at
A". The point c never will become most stable,
since b reaches a before c does. This seems to be
the explanation why no nuclei of mass 4n with
odd number of protons and neutrons exist. There
are, however, radioactive nuclei of this type.

The situation is very similar for nuclei with
masses 4n+2. Here the critical slope is 2, when
the point c reaches a. Again, point d is not the
most stable for any slope, and there are (apart
from 0) no stable nuclei with odd neutron and
proton number, for elements 4n+2 either. The
slope 2 seems to be reached at Ti", later, of
course, than slope 3/2.

It should be mentioned that the whole Fig. 4
will be compressed in energy scale as we proceed
to higher elements, because the exchange integrals
decrease. It has been shown by Bethe and

00
I )

a~I AiO)

00
I

4
I

«2

Masses 4n

'0
&ago)

(ooo)

FIG. 4. The different kinds of multiplets are shown for
elements with mass numbers of the form 4n, 4n&1,
4n+2. The ordinate is the energy in arbitrary units. Only
one term for every multiplet system is given, with a posi-
tion on the energy scale corresponding to long range forces.
The abscissa is the diff'erence between the number of
neutrons and protons, divided by 2. The circles correspond
to stable nuclei, the squares to unstable nuclei.
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Bacher" that this happens in discontinuous
steps, corresponding to the completion of shells.
There is, therefore, an increased probability for
the slope to pass a certain amount in the regions
where shells are completed.

In case of elements with mass numbers 4n+1
and 4n+3 we obtain the same picture. First, the
point a is most stable, at a slope 3/2 the point b

reaches c. This seems to happen at Cl'~ and
Ca4', respectively, quite in the neighborhood of
A". For the slope 2, the point c passes b and
Ti" and V" become the stable isobars. These are
near indeed to Ti". This explanation of the
places where the isotopic number of stable isobars
shifts to higher values works rather better than
could be expected and the agreement is beyond
doubt, partly accidental.

As a last point, I should like to establish the
connection between approximations 1 and 3, i.e. ,

determine the terms into which an STY term of
approximation (1) splits if one introduces, as a
perturbation, the difference between proton-
proton, proton-neutron, neutron-neutron inter-
actions, neglecting, however, spin forces.

The operator

—,'(sag(1+ rr g) +s*2(1+rr, ) +
+s, (1+rr )) =-', (S.+ F~) =S,~ (24)

gives theZ component of the neutron spin angular
momentum, since 1+Tt. gives 0, if applied to a
proton state. Similarly

4 (Sgl(1 Trl) +Sg2(1 rr2)+ ' ' '

+s, (1—rr„))=-,'(S,—Vr) =S,~ (24a)

gives the Z component of the proton spin angular

",.H. A. Bethe and R. F. Bacher, Rev. Mod. Phys. 8,
82 (1936), Section VI.

momentum. If we go through all the points of
Fig. 1 for a certain T~ and insert their S,~ and
S,I values into a table, one can unite the points
of the table in the normal way to a S&SI. mul-

tiplet. "The azimuthal quantum number is, of
course, unchanged by the transition from ap-
proximation (1) to (3).

If the proton-proton forces are assumed to be
equal to the neutron-neutron forces, the S~S&
term will coincide in case of equal number of
protons and neutrons with the S~SN term, if
S~/Sp. In the work of reference 4, these terms
were given as one term. The values of the
multiplicities 25~+1, 2S~+1 are given in Fig. 1
below every T~.

We may consider, as an example, the
(3/2 3/2 1/2) multiplet, given in Fig. 1. Below
Tr 1/2 we ——have the three pairs 23, 41, 21. This
means that for an element of the mass 4n+1
with Tr=1/2 (e.g. , C"), certain states in wh&ch

the neutrons are in the doublet, the protons in
the triplet state, exactly coincides in approxima-
tion (1) with a state in which the neutrons are
in the quartet, the protons in the singlet state,
and with another state in which the neutrons
are in doublet, the protons in the singlet state.
It may be added that the binding energy of these
states is equal in approximation (1), to the
binding energy of a hypothetical B" nucleus

(Tr 3/2) in which ——the neutrons are in the
triplet, the protons in the doublet state. In
reality, all these states will be unstable for isobars
with the mass 13, because of the comparatively
high position of the (3/2 3/2 1/2) multiplet in

Fig. 4a. The example is thus, perhaps, not a
very fortunate one but it illustrates the kind of
regularities to be expected more clearly than
a simpler case.

"Instead of this, one can simply turn the corresponding
level in the diagrams of Fig. 1 by 45'.


