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Statistical Analysis of Counter Data

L. I. ScHlr I, Massachusetts In''tlte of Technology

(l&eceived February 24, 1936)

A general relation is derived for the number of counts
registered by a Geiger-Miiller tube counter or similar
electrical counting device exposed to a radioactive source
whose strength varies arbitrarily with the time when the
counter has a finite, constant resolving time. This is
applied specifically to the case of an exponentially decaying
source superposed on a uniform background, the solution
of the resulting formula being represented nomographically.
The number of spurious coincidences observed in a set of
P counters used coincidentally is calculated when the re-

solving times of the individual counters are neglected in

comparison with the resolving time of the combining
electrical circuit for coincidences. This general expression
is applied to the cosmic-ray "telescope" and the double
coincidence magnetic spectrometer such as that of Hender-
son and Alichanow. The constancy of the resolving time
of a single counter and the justification for neglecting
individual resolving times in comparison with the co-
incidence resolving time are discussed.

1. INTRODUCTION

"T is well known that Geiger-Muller tube
- ~ counters and similar electrical counting de-
vices fail, because of their finite resolving time,
to register a certain fraction of the ionizing
particles that pass through them. Moreover,
when several such counters are arranged to
respond only to particles that traverse all of
them, a certain number of spurious coincidences
will be recorded due to the finite resolving
time of the combining electrical circuit. The
purpose of the following investigation is to show

how these effects can be corrected for in some
cases of interest.

2. THE DISTRIBUTION LAW

To begin with we require a knowledge of the
distribution in time of the arriving particles.
Because of the finite solid angle subtended by
the counter at the source, not all of the particles
emitted by the source pass through the counter.
Now it is convenient in the present discussion to
consider only those atoms of the source which
when they disintegrate will each give off a
particle that goes through the counter. The
number of these atoms is always proportional
to the total number of atoms in the source and
will be used throughout as the definition of
number of atoms present at a particular time.
In this paper we shall exclude chain disintegra-
tions from consideration, since the time and
space relations between successively emitted
particles of a chain will complicate the following
theory; however, we believe that the theory can
be modified to deal with this case.

For any one of the 3II atoms present at (=0,
let the chance that it disintegrate between
times t and t+s be f(t, s). Then the chance that
N' of the original M disintegrate between I and
t+s and that M —N' do not is given by the
binomial law:

[M!/N'! (cV N')!jf"'(1 —f)~—
This expression reduces exactly to Fry's formula'
when we give f(I, s) the form corresponding to
exponential decay. Now we can never know the
number of atoms present at the beginning of
any particular trial, but only (under ideal con-
ditions) the average number for several trials.
Suppose that the source is an artificially radio-
active material, prepared by exposure to a
substance of very long mean life or to an arti-
ficially accelerated beam of particles. In either
case the number of bombarding particles appear-
ing in any interval is governed by Poisson's
law. ' ' Hence the numbers of new radioactive
atoms produced during the time of bombardment
in different trials under identical conditions are
distributed according to Poisson's law. This
argument is readily extended to the case in which
the bombarding material has a relatively short
mean life (for if we trace back far enough, we
will eventually find an original or parent source
of effectively infinite mean life, and starting

~ T. C. Fry, Probability and Its Engineering Uses (1928),
p. 237, Eq. (114). See also A. E. Ruark and L. Devol,
Phys. Rev. 48, 772 (1935).

2 See D. J, Struik, M. I.T. Jour. Math. and Phys. 9, 151
(1930) for an excellent discussion of Poisson's distribu-
tion law.' Reference 1, Fry, p. 214 et seq.
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from this we can use Eq. (1) repeatedly to obtain
the desired result). Then the chance that the
initial number of atoms is 3II when the average
number present initially is N is: (N~/M!)e ~.
Thus the chance that N' atoms disintegrate
between times t and t+s when N atoms are
present on the average at t = 0 is:

(Nf)N's Nj—
N'!

Eq. (1) is simply what Poisson's law gives for
the chance that N' events occur in the interval t,
t+s when Xf(t, s) occur on the average. It should
be noted that the number of atoms Nf(t, s) that
disintegrate on the average between 3 and t+s
may be taken as the average number of particles
that arrive at the counter in this interval, regard-
less of origin, and includes the counter back-
ground as well as particles from the source
without affecting the mathematical argument.
We shall denote this number in the future by
F(t, s).

By defining only such quantities as possess
experimental significance and therefore assuming
in the above derivation that the number of
atoms present initially is not a definitely known
or determinable quantity, we have obtained in

Eq. (1) a distribution law that is much simpler
to work with than the binomial form' ' used by
Fry for the P-emission problem.

3. THE RESOLVING TIME

In order for a counter to register a particle,
that particle must be preceded by a certain small
interval during which no particle arrives at the
counter. The length of this blank interval is
called the resolving time of the counter. Before
proceeding further, we must consider the con-

4 Recently A. Ruark and L. Devol, Phys. Rev. 49, 355
(1936) have written a theory of fluctuations in radioactive
disintegration based on the binomial type of distribution
function. It should be noted that their Eqs. (12) and (16)
can be written down immediately (they are of the binomial
form) by using the argument at the beginning of section 2
of the present paper. Thus, putting t= T1, s= T~, M=N,
N'=n, and f(t, s) =gAfe "'—e " '+"), theexpression at the
beginning of our section 2 becomes the right-hand side of
their Eq. (16). Their Eq. (12) can be obtained similarly
with even less algebra, using f(t, s) =e "'—e "('+').

stancy of this resolving time for a particular
counter. Danforth' has found experimentally
that the time of recovery from a pulse for the
counters on which he worked depended on the
magnitude of the change in voltage across the
counter in that pulse, which in turn depended
on the time that had elapsed since the previous
pulse. This means that the resolving time of the
counter depends somewhat on its past history.
Ramsey and Lipman, ' on the other hand, found
that in the counters which they examined the
voltage peak in a pulse had always the same
magnitude, and was such that the extinction
voltage (the voltage across the counter at peak)
was equal to the threshold voltage (the minimum
voltage across the counter necessary for the
production of counts). Under these conditions,
the resolving time is constant. According to
Ramsey, ~ these characteristics vary from counter
to counter, and while the extinction voltage is
always less (sometimes by two to three hundred
volts) than the threshold voltage, the di!Ierence
may be very small for many counters operating
over certain voltage ranges. Skinner' has con-
sidered a statistical distribution of resolving
times for a source of constant strength, basing his
assumptions on Danforth's observations. How-
ever, it is readily seen that a single statement con-
cerning the resolving time that will apply to all
counters cannot be made; when there are ampli-
fying and recording circuits associated with the
counter the assumption of a constant value is
probably just as valid as that of a statistical dis-
tribution. ' This is true especially when the value
used for the constant resolving time can be
measured under the conditions of the experiment
by a method to be described in section 5 (this
procedure automatically gives the right sort of
averaging in case the resolving time is not

5 W. E. Danforth, Phys. Rev. 46, 1026 (1934).
'W. E. Ramsey and M. R. Liprnan, Rev. Sci. Inst. 0,

121 (1935).' A private communication, for which the writer is in-
debted to Mr. Ramsey.

'S. M. Skinner, Phys. Rev. 48, 438 (1935).' For a counter whose threshold and extinction voltages
are equal, Skinner's tube parameter d is equal to unity,
and his theory predicts one hundred percent counting
efficiency for all counting rates, This disagrees with the
well-known phenomena of decreasing counting efficiency
and eventual paralysis because the effect of the amplifying
and recording circuits has not been taken into account.
This effect should be considered even at small counting
rates.
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constant). In addition, the hypothesis of con-
stant resolving time has the considerable ad-
vantage of being amenable to mathematical
analysis in the case of decaying sources, while
the statistical distribution of resolving times
leads to quite complicated results even in the
relatively simple case of a source of constant
strength. ' In view of all these considerations, we
shall assume throughout that the resolving time
of a particular counter is constant and has the
value that would be determined experimentally
by the method of section 5.

4. GENERAL THEORY Ii OR A SINGLE COUNTER

From the definition of resolving time given at
the beginning of section 3 we see that a particle
arriving at the counter between times t and
t+dt is recorded only if it is preceded by an
interval v. in which no particle arrives at the
couoter. Suppose that the expectation that a
particle arrive at .the counter between t and
t+dt is A(t)dt, where A(t) depends on the nature
of the source and on the counter background.
The number of particles expected on the average
between times t —r and t is then

5. CQNsTANT SoURcE; DETERMINATIoN oF TIIE
REsoLvING TIME

For a source of constant strength, giving off
no particles that go through the counter in time
T (this includes the counter background), we
obtain immediately from Eq. (2) (setting
A(t) =np/T):

noe
—nor /T (4)

nr/T= [1n (np/n) j/(np/n),
I

which is plotted in Fig. 1. This has a maximum
at nr/T=1/e, np/n=e. Thus to determine r,
we bring a source up to the counter until it
reads at its maximum rate n, , whence:

for the number n of counts registered in the
time T. This result was obtained by Volz" in
a somewhat less general way. He went on to
show how the resolving time of any particular
counter could be determined with the aid of
Eq. (4).

We shall now give what is essentially Volz'
second method for the evaluation of 7-. If we
solve Eq. (4) for n in terms of np/n (the ratio
of number of particles to number of counts) we
obtain:

and from Eq. (1) the chance that no particles
appear in this interval is e ~&' ' '&. Then of the
particles arriving between t and t+dt, we expect
to count the fraction e "" ' '&. Hence in an
observation period T&, T2, where r is very small
compared to the time of observation T= T.—T&

(this must hold if we are to get useful data), we
expect to count

T2

n= A(t)e ~~' ' '~dt,
TI

where

0'
6 7 Q 9 l0 ttn.iThis is to be compared with the expected number

of particles that passed through the counter

T2

np= A(t)dt
T j

FK'. 1. Counting rate expressed as average number of
counts per resolving time of the counter plotted against
the ratio of number of particles to number of counts; this

(
is for a source of constant strength.

'0 H. Volz, Zeits. f. Physik 93, 539 (1935).
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r= T/e n,„F.ig. 1 permits us to find immedi-

ately the true number of particles from the
observed number of counts; however, it must be
remembered that this includes the counter back-
ground.

For an example, suppose that the maximum
counting rate of a given counter is n,„„„„/T=630
coun ts per minute = 10.5 per second; then
v =1/10.5e=0.035 second. Now with the same
counter, we count an average of 480 counts per
minute from a particular source, and an average
of 50 counts per minute with the source removed
(background). The first figure gives a value of
480 X0.035/60=0. 28 for nr/T (average number
of counts in a resolving time), and the second a
value of 50X0.035/60=0. 03. Referring to Fig. 1,
we see that the source reading is to be multiplied

by 1.5, giving 720 for the number of particles
per minute, while the background reading is so
small that the correction is negligible. Thus the
actual number of particles per minute due to
the source alone is 670. It will be observed that
the ordinate nr/T=0. 28 gives a value for no/n
of 7.1 as well as 1.5. The former figure corre-
sponds to a particle frequency of 3400 per
minute. The larger figure indicates that the
counter is almost completely paralyzed. To
distinguish between the two in case of doubt,
we simply remove the source slightly. If the
counter is nearly paralyzed this will result in
an increased counting rate, while if it is operating
normally the counting rate will fall off. For
ordinary counter usage the lower figure for the
particle frequency is the correct one. This
method is applicable to sources of constant or
slowly varying strength.

6. DETERMINATIQN ol DEcAY CoNsTANT;
PEIERLS METHOD

Peierls" has shown how the decay constant X

of a radioactive element can be determined with
the least possible error, using a counter exposed
to the source and influenced by its natural back-
ground. His method requires that the observa-
tion period be divided into intervals of equal
lengths d less than 0.3/lj„and that the number of
particles arriving in each of these intervals be

1 R. Peierls, Proc. Roy. Soc. A149, 467 (1935).See par-
ticularly p. 475.

measured. When the intervals d are of length
equal to or less than 0.2/X, we can find the num-

ber of particles from the number of counts
by using Fig. 1 (and subtracting the background
counts), with an error of less than one percent.
If it happens that the intervals d must be taken
much larger than 0.2/X the method of section 5

should not be used; rather the results of section 7
are to be applied. However, the application of
these results requires a knowledge of the decay
constant, which is just what we are trying to
determine. Therefore an approximate value for X

must be assumed; from this the number of
particles in each interval is calculated by the
method of the next section. These particle
numbers are then used to get a closer approxima-
tion to X. Usually, however, it will be feasible
(and it is always preferable) to take d~0.2/X, in

which case section 5 may be applied directly.

7. EXPONENTIALLY DECAYING SOURCE WITFI

CONSTANT BACKGROUND

A(t) =P+NXe "'

and obtain, on performing the integrations, "
n = (e &'/e"' —1) I exp [ N2(e~' —1)]—

(6)

—exp [—N~(e"' —1)]I+(P/X)e ~'
C

X IFi[—N~(e"' —1)]—Bi[—N2(e"' —1)]I, (7)

where no ——
¹

—
¹

is the expected number of
particles due to the source alone that passed
through the counter in the time of observation

"exp (—z) =e ' Fi(—z) = —J;~e "/vdv. For tables of
the exponential integral and related functions with argu-
ment going from zero to one by intervals of 0.001, see
W. L. Miller and T. R. Rosebrugh, Trans. Roy. Soc.
Canada 9, 73 (1903); reprinted as University of Toronto
Studies, Papers from the Chemical Laboratories, no. 43.

Consider a counter exposed to a source of
decay constant ),, on which is superposed a
constant background or natural effect of strength
P particles per unit time. Let N be the average
number of atoms of the decaying material
present at t=0 (using number of atoms in the
sense defined at the beginning of section 2), and

¹
and

¹
be the numbers present on the average

at times 1& and T2, respectively, where these
are the limits of the observation time. Then in

Eq. (2) we put
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a =nX~e~' (9)

b= a 5Pr. —

The n-curves are drawn for ten values of n

ranging from 0.01 (XT=4.605) to 0 8 (XT=0.223).
An observation time greater than 4.6/X would

hardly ever be used in practice because of the
low intensity of the source towards the end of
the run and the consequent increase in im-

portance of the background. On the other hand,
for T&0.2/X the variation of the source strength
during the time of observation is so small that
Fig. 1 of section 5 may be used directly with an
error of less than one percent, and the procedure
of this section is unnecessary. It is obvious that
a choice of simple values of u rather than of ) T
simplifies enormously the computation of the
nomogram while it does not materially affect its
convenience in use, since the time of observation
will depend on ) as well as ) T and will not in

general be a simple number.
To use the nomogram we first find the resolving

time of the counter by the method of section 5,
the decay constant X of the source by Peierls'

method corrected as in section 6, and the back-
ground strength P corrected as in section 5.
These will be constant throughout a particular
experiment. By using the observed number of
counts n we then calculate two numbers a and b

defined as

The smaller value of np thus obtained corre-
sponds to normal operation of the counter and
the larger to operation close to paralysis. In
general it is safe to say that x& should be used
to determine np.

An example will perhaps clarify the use of the
nomogram of Fig. 2. Suppose that we have found

by the methods of sections 5 and 6 that 7.=0.023
second, P=1.83 seconds —', X=0.0126 second '

(half-value time=55. 0 seconds) for a particular
counter and source. Now suppose that it happens
that it is most convenient in this experiment for
us to take readings over a period of about five
minutes. This being the case, we choose n =0.01,
which gives ) T=4.60, or T=6.09 minutes. Our
reading at the end of this time is n =3070 counts.
We then calculate a and b from Eqs. (9) and (10)
and obtain: a=0.929, b=0.719. Laying off these
values on the OA and BC scales, respectively, we

see that the straight line through these points
intersects the curve for o.=0.01 at x~ ——1.60,
x2 ——14.2. We find that the counter is operating
normally by removing the source slightly and
noting that the counting rate decreases (if the
counter were nearly paralyzed a removal of the
source would at first increase the counting rate).
Therefore, we use x~ and obtain np =5460, which
is the number of particles from the source
(exclusive of background) during the 6.09
minutes of observation.

(Since the background strength is generally
rather small, it will facilitate computation to
note that e~' may be replaced by 1+Jr with an
error of less than one percent when Pr&0. 14.)
We then mark off the point a on the OA scale
and the point b on the BC scale of the nomogram.
From the length of observation time T we find

the number n = e ~~, and select the corresponding
curve from the set for constant n. (It is advisable
to use a value of n for which a curve is drawn;
otherwise it is necessary to interpolate. ) We then
draw a straight line through the points a and b

on the OA and BC scales, respectively; this in

general intersects the curve of constant o. that
we have chosen at two values of x which we
shall call x~. and x2, where x~ is the smaller.
From these values of x we find two values of np

from the relation:

n p ——x(1 n) /X r. —

8. GENERAL THEORY lOR MULTIPLE
COINCIDENCE COUNTERS

A true P-fold coincidence is produced in a set
of I' coincidence counters when a particle
traverses all the counters, or when the individual
members of a burst traverse all simultaneously.
A certain number of spurious coincidences will

also be produced by particles (other than those
that cause true coincidences) arriving at each of
the I' counters so that their arrival times are
grouped within a small interval of time. The
length v' of this interval is called the resolving
time of the combining electrical circuit for
coincidences and is assumed to be constant.
The spurious counts may be produced by distinct
particles in each counter, by single particles in

some of the counters and true partial coinci-
dences in the rest, or by any combination of



single particles and true partial coincidences.
A true partial coincidence is defined here as a
true coincidence produced by one particle tra-
versing more than one but not all of the counters.
In the following analysis we shall assume that
the resolving times of the individual counters
may be neglected in comparison with that of the
combining circuit for coincidences. While this is
not strictly true, as long as the counters are
operated well below their maximum counting
rate (as is usually the case in coincidence work)
the principal effect of the finite resolving times
of the separate counters is to increase somewhat
the effective coincidence resolving time; this is
automatically allowed for when ~' is measured
as indicated at the end of section 9.

Let the expectation that a particle pass
through only the ith of P coincidence counters
between times t and t+dt be A;(t)dt; likewise
let the expectation of a true partial coincidence
in only counters i, j, . . . l between times 5 and
t+dt be A;;, ... ((t)dt. We shall make the
simplifying assumptions throughout that A;(t)
»A;, (t)» ~ ~ »A;, ;, .. . ((t), etc. , in order of
increasing number of subscripts, and that
j A(t) «1/r', where &A(t) is the expectation
function for true P-fold coincidences. These
conditions generally hold; however, the theory
can be developed without them, although it
would have an even more complicated form than
that given below. It is also assumed that the
various A's are independent; this is quite valid
since a particle which causes a true partial
coincidence in any group of counters at a partic-
ular time can have no effect on any of the
counters at any other time. In general, these
A's will depend only on the geometrical arrange-
ment of sources and counters. Then according to
Eq. (1) the chance that at least one particle
appear in only the ith counter between t and
f+ 7 is & —e "'(' "' where

also, the chance that at least one true partial
coincidence appear only in counters i, j, . l
between t and t+v' is 1 —e ~'» " «' "), where

Now a spurious coincidence is caused by an
initiating particle (or true partial coincidence)
in one (or more) of the counters being followed
by particles (either single or members of a true
partial coincidence) through each of the other
counters within the time T . This is provided
that at least one of the counters other than that
(or those) which initiated the spurious coinci-
dence had no particle through it for a time ~' in
the past; this assures that the combining circuit
was clear when the initiating particle arrived.
For example, with a group of six counters, it is
seen that the expectation that a true double
coincidence occur in counters 2 and 4 between
times t and t+dE, followed by a single particle
through counter 6 and a .true triple coincidence
in counters 1, 3, and 5 within a time 7' is:

X(1—s-'«' "&)(1 sF]3g((, r—&)dt, (12)

when at least one of counters 1, 3, 5, and 6 was
not discharging for a time 7' before t. In order
to find the expected number m of spurious
coincidences observed between times T» and T2,
we must add together all possible combinations
of the A's and the F's of the form of Eq. (12)
that involve all of our P counters, and then
integrate over the time from T» to T2. It is
evident that with more than three counters the
result is very complicated indeed. Making the
assumptions above that the A's decrease rapidly
as the number of subscripts increases and that
& A«1/r', we obtain for two counters used
coincidentally:

T2

m2=

+s—r')« —~' ~'&Ay(t)(1 —(,
—r')((, ~'&) }(ft (13)

The similar expressions for three and four
counters would contain nine and thirty-six
terms, respectively, instead of two as in Eq.
(13). No matter how complicated, however, the
general expression for any number of counters
can always be written down by using the above
method, and it will be shown in the next section
that the resul ts simplify considerably in an
important special case.
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9. MULTIPLE COINCIDENCES; CONSTANT SOURCES

In the case where the average number of
particles per unit time at any counter is inde-
pendent of the time (as in the cosmic-ray
"telescope" ), we may put: A;(t) —=v, , A;, , , ... 1

—=v;, ;, ... ~. When the various v's are small
compared to 1/r', the expected spurious counting
rates for two, three, and four counter coincidence
units, respectively, become to good approxima-
tion:

subscript vanish, and it is readily seen that the
spurious counting rate is given by:

mp/T=P(r')P 'v, v2 vp. (15)

Since the counters are arranged so that all of the
observed P-fold coincidences are spurious, mp/T,
v&, v2, v& can be measured directly, and 7-' is
readily calculated. This method for the determi-
nation of v' tends to compensate for neglecting
the individual counter resolving times.

m2/T= 2r'v1v2. ,

m, /T=3r" v, v, v, +2r'(vl p23+ v2v13+ v3v12);

m4/T= 4r"v1vpvpv4+3 r"(v1vpv34+ V1v3v24

+ V2V3V14+ V1P4V23+ P2P4P13+ P3V4V12)

+2r'(v12v34+ V13V24+ V14V23)

+2r'(v1v234+ V2V 134+ V4V124+ V4V123).

(14)

Similar expressions are readily written down for
any number of counters. It must be remembered
in using Eq. (14) that the various v's represented
there are the average numbers of particles per
unit time that belong only to the classifications
indicated by the subscripts. In practise it is
impossible to measure these quantities directly.
For example, the quantity v»4 in a four counter
coincidence unit is given by:

10. THE DOUBLE COINCIDENCE MAGNETIC

SPECTROMETER

Henderson, " Alichanow, '4 and others have
employed a magnetic spectrometer in the meas-
urement of beta-ray and positron energy distri-
bution spectra. The apparatus is designed to
respond to coincidences produced by electrons
that are deflected around a semicircular path
by a magnetic field and traverse two counters
placed in their path. On the other hand, gamma-
rays from the source can. set oR either one of the
counters but never both. Because of the finite
coincidence resolving time, the gamma-rays from
the source, and the natural backgrounds of the
two counters, a certain number of spurious
coincidences will be produced. To calculate this
number for an exponentially decaying source we

put into Eq. (13):

/2 t'

P234 t4234 3 r 234V2V3P4 2 r 234(P2V34+ P V21+ v4v23),
A1(t) =A2(t) =p

—p+NXe "', (16)

where p»4 is the observed number of coincidences
per unit time between counters 2, 3, and 4 only,
v'»4 is the coincidence resolving time for these
counters, and the v's appearing on the right-
hand side above must themselves be obtained
from similar expressions. Thus the v's can be
found accurately only as the solution of a set of
simultaneous nonlinear equations. This would
be a very laborious process at best; however, a
good approximation is generally obtained by
using the observed p's for the v's, and neglecting
the correction terms.

The experimental measurement of the coinci-
dence resolving time 7-' may be effected by
arranging the I' counters in space so that true
coincidences are very unlikely between any
combination of two or more counters. In this
case all of the v's that possess more than one

m2 ——2(n, —-', n2). (17)

In Eq. (17), m2 is the expected number of
spurious coincidences observed in the double

I' W. J. Henderson, Proc. Roy. Soc. A14V, 572 (1934).
' A. I. Alichanow et al. , Zeits. f. Physik 90, 249 (1934);

93, 350 (1935).
"Eq. (17) is readily modified if this is not the case,

although the result is somewhat more complicated.

where Pp is the constant counter background,
N the average number of atoms for each counter
at zero time (defined as at the beginning of
section 2), and X the decay constant of the
source. Since the counters are generally similar
in construction and placed symmetrically with
respect to the source, Po and N will be the same
for both. " Putting Eq. (16) into Eq. (13) and
carrying out the integrations, we find that the
result is most easily expressed in the notation of
section 7:



coincidence unit in the time T; if n' is the
number of counts due to the source alone
observed in this time in each counter separately
(these should be about the same for the two
counters), then n& is given by Eq. (8) when we
set T = 7 P =Pp and np ——n', and n2 is given by
Eq. (8) with P=2PO and no=2no. e', T, and Po
are directly observable. To calculate n& and n2

rapidly from Eq. (8) without having to look up
exponentials and exponential integrals, the
nomogram of Fig. 2 may be used as follows. We
select the curve of constant 0. corresponding to
our value of XT (again it is advisable to choose
T so that the resulting value of a is one for which
a curve is drawn in Fig. 2; this removes the
necessity for interpolation). We find the value
of x corresponding to eo(=no) from the second
of Eq. (8) (with r= r'), and mark this point on
the correct 0;-curve. Then the ordinate of this
point is the value of [e *—e *], the first bracket
expression in Eq. (8), and the abscissa is the value
of [Ei(—x) Bi( nx—)g, t—he second bracket
expression in Eq. (8). This facilitates the calcu-
lation of n~. The bracket expressions for n2 are
found in exactly the same manner, except that
2n is used for np.

To illustrate, suppose that we are examining
a source of decay constant ) = 2.87 X 10 4

seconds ' (half-value time=40. 2 minutes) with
a double coincidence arrangement of resolving
time 7.'=0.078 second, and that a convenient
length of observation time is about an hour. We
then choose n=0.4, which gives AT=0.916, or
T=53.1 minutes. The constant background for
each counter is found to be Pp=0.37 count per
second. We observe for 53.1 minutes, and find
an average total (=n'+POT) of 3430 single
counts in each of the counters; subtracting the
number of background coun ts gives n' = 2250.
We now proceed to find n~. From the second of
Eq. (8) (with r = 7

' = 0.078) we obtain x = 0.084;
this point on the curve of Fig. 2 for o. =0.4 has
an ordinate of 0.045 and an abscissa of 0.87.
Substituting these values for the bracket ex-
pressions into Eq. (8) we obtain m& ——3040.
Similarly for n&, we have np = 2n' =4500, x =0.168
with an ordinate of 0.085 and an abscissa of

0.80, giving n2=5510 when we use P=2Pp ——0.74
second '. Substitution into Eq. (17) gives im-
mediately m2 ——570 for the number of spurious
coincidences expected under these conditions.

11. CONCLUDING REMARKS

The aim of the writer in this treatment of the
statistics of electrical counting devices has been
to develop the theory necessary for the correction
of single and multiple coincidence counter read-
ings for finite resolving time in as general a way
as possible; and then to apply the general theory
to specific cases of interest, the results being
represented in such a manrjer as to be readily
available for experimental application. Two main
assumptions have been made: (1) The resolving
time of a single counter is constant; (2) the
resolving times of the individual counters in a
multiple coincidence arrangement can be neg-
lected in comparison with the resolving time of
the combining electrical circuit for coincidences.
There is no doubt that neither of these assump-
tions is always strictly true. On the other hand,
it seems very probable that the results obtained
with the aid of these assumptions when the
procedures outlined are followed differ from the
truth only by an amount that is of smaller order
than the corrections to the actual readings
introduced by the above theory. Also, assump-
tion (1) in particular seems to be as accurate
over a wide range of operating conditions as any
moderately simple one that can be made. In
any case, the simplifications in the mathematical
theory and the resulting ease of application to
any given experimental situation more than
compensate for the second order errors that
appear as a consequence.
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State University for illuminating conversations
on certain points of the theory, particularly
section 2.


