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On Nuclear Forces
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The various types of exchange forces that are being used in current discussions of nuclear
structure may all be simply expressed in terms of a formalism which attributes five coordinates
to each "heavy" particle and applies the Pauli exclusion principle to all the particles in the
system. The simplest assumption for the interaction law is that which implies equality of
proton-proton and neutron-neutron forces and also equality with the proton-neutron forces of
corresponding symmetry. This is in accord with the empirical knowledge of these interactions at
present.

N this paper we show how the use of a co-
- - ordinate having two proper values which tells
whether a particle is a proton or a neutron, to-
gether with the assumption of the Pauli exclusion
principle for all the particles, gives a unified de-
scription of the various types of exchange forces
used in nuclear structure theories. Such a co-
ordinate was first introduced by Heisenberg' and
also plays a role in the Fermi-Konopinski-
Uhlenbeck' theory of beta disintegration.

We suppose that each heavy particle (proton
or neutron) is described by Ave coordinates.
These are three for its position in space, a spin
coordinate o- giving the component of its angular
momentum along some direction in space, and a
fifth coordinate, v, which can have the values

If v has the value +1 the particle is a
proton, while the value —1 indicates that it is a
neutron.

The spin angular momentum is a vector equal
to -,'5 times the vector, c, which is represented by

i —~j

(r+ij —ir ) '

where 1, m and n behave algebraically like the
three unit vectors i, j and k. The third component
of z may be called the character coordinate and
the whole expression ~ the character vector.

We postulate that in an assembly of heavy par-
ticles the wave function has to be antisymmetric
in all particles with regard to exchange of all five
of their coordinates. We want to show that this
gives a convenient formalism for working with
nuclear problems.

Let us first consider any attribute of a single
heavy particle such as its mass, its charge or its
magnetic moment. If 2 is the arithmetic mean
of the two values for proton and neutron and 8 is
half the di6'erence, proton value minus neutron
value, then that attribute will appear in the equa-
tions as a term involving,

(A+l3r).

For example, the electrostatic charge will appear
as -', e(1+r) where e is the electronic charge.

Next, let us consider the scalar product ~1 ~ ~2

of the character vectors associated with two par-
ticles. We have

the rows and columns referring to states which
(&&+&2) =&i &2 +2&&'&2~

are labeled by precise values of the s component
of a. This nonrelativistic description of the spin since the operators for two different particles
was introduced by Pauli and by Darwin. commute. Now as defined z is formally like twice

In the same way 7. can be considered purely an angular momentum vector of magnitude -,'.
formally like the s component of a vector. The Therefore, the possible values of the vector sum
analogy is purely formal in that the three are twice 1 and zero. Letting 2T stand for the
"components" of ~ do not refer to directions in magnitude of the resultant we have
space. Formally we may write 4T(T+1.) =3+3+2~g. ~g,

n l —urn&
so the allowed values of ~1 ~2 are +l and —3.

&1+jm —n ) The value +1 corresponds to the case of parallel
'Heisenberg, Zeits. f. Physik '1'7, 1 (1932). character vectors and so to a wave function tha

Fermi, Zeits. f. Physik 88, 161 (1934); Konopinski and
Uhlenbeck, Phys. Rev. 48, 7 (1935). is symmetric in ~1 and v~ while the value —3
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corresponds to resultant zero of the two character
vectors and hence to an antisymmetric depend-
ence of the wave function on v~ and v2.

Therefore, the expression

k(1+~~ ~b)

has the allowed values +1 and —1, the positive
value going with wave functions symmetric in ~I

and v.2, while the negative value has for its proper
function a wave function antisymmetric in these
two character coordinates.

These results are, of course, exactly analogous
to the well-known results for the vector sum of
two spin angular momenta and their connection
with the symmetry properties of the wave func-
tion with regard to exchange of cr~ and 0.~.

The applicability of the Pauli exclusion prin-

.ciple to a dynamical system requires that the
Hamiltonian function for the system be a sym-
metric function of the coordinates of the par-
ticles. In looking for possible interaction laws we
therefore have to confine ourselves to symmetric
functions.

So far, four types of exchange forces have been
proposed for description of the interaction be-

- tween heavy particles. These are:

1. Ordinary (Wigner) potential. This is the
familiar kind and is simply a function of the
distance between the two particles.

2. Heisenberg potential. 4 This is of the form
of a function of the distance multiplied by an
operator H. This operator is defined as having
the value +1 when applied to a wave function
that is symmetric with regard to exchange of
both position and spin coordinates of the two
particles whose interaction is being considered,
and the value —1 for the antisymmetric case.

3. Bartlett potential. ' This is a function of the
distance multiplied by an operator B. This
operator is defined as having the value +1 when
applied to a wave function that is symmetric in
the spin coordinates alone and —1 for the
antisymmetric case.

4. Majorana potential. This is a function of
the distance multiplied by an operator M. This
operator is defined as having the value +1 when

~ Wigner, Phys. Rev. 43, 252 (1933},
4 Heisenberg, Zeits. f. Physik '7'7, 1 (1932).' Bartlett, Phys. Rev. 49, 102 (1936).' Majorana, Zeits. f. Physik 82, 137 (1933).

applied to a wave function that is symmetric
with regard to exchange of the positional co-
ordinates only of the two particles in question,
and —1 when applied to an antisymmetric
function in the positional coordinates.

Evidently the Majorana type can be expressed
in terms of the preceding two:

Since the operator H exchanges both position and
spin, and the Bartlett operator 8 exchanges spin
only, the product will be equivalent to an ex-
change of position only, for the double exchange
of spin provided by the combined action of H
and 8 cancels out and is the same as no exchange
of spin.

We now point out that the four operators, 1,
H, 8 and M are readily expressible in terms of
the spin and character'vectors, e and ~ of the two
particles. This follows from the requirement of
over-all antisymmetry of the wave functions in
the five coordinates of each of the particles. Let
the letters u, b, c, d stand for the different
particles and consider a general wave function P
that is a function of all five of the coordinates of
each particle. More explicitly

P=f( ar r&ab Oay rbi &b& &b; rc, &cb 0cy ' ' ') ~

Whatever the functional form of rP this can be
written

4'=%[4'(ra &a 0'ai rb~ &h 0'bi ' ')
+P(rb, r„ob, r„rb, rr, ; )g
+a r 4'(ra ra +a rb rb +b ' ' ')

P(rb &a &b raqb &blab 0aq ' ' ')]y

that is, as the sum of a function symmetric in the
position and spin coordinates of particles a and b

and one antisymmetric in these same coordinates.
As we require f to be antisymmetric in all Ave

coordinates of a and b we know that the first term
here must be antisymmetric in r, and v& and the
second term must be symmetric in r and r&.

Therefore the operator H has the value —1 for
symmetry in v and ~&, and +1 for antisymmetry
in 7. and 7.b. Using the earlier calculation of
~~ ~2 we have

H.b= —-', (1+~, Cb)

which expresses the Heisenberg exchange opera-
tor in terms of the two character vectors.



B, CASSEN AND E. U. CON DON

Similarly it is easy to see that

8 g=+2(1+(r, ab)

and therefore, in view of the relation, 3I=HB,
we have

M.p= ——,'(1+a. eg)(1+~. ~g),

which completes the expression of each of the
exchange operators in terms of symmetric func-
tions of the coordinates of the two particles.

With the different types of exchange operators
written in this simple way it suggests itself that
the general law of interaction for the specifically
nuclear forces can be written in the form:

U= V+ VI,II+ Vg8+ V,„M.

Here the four V's may be quite different func-
tions of the separation distance but the simplest
assumption is that the entire dependence of the
interaction on e and c is contained in the opera-
tors 1, H, 8 and 3II.

Of course, this simple result is not required by
the formalism. It is simply the simplest form for
the exchange operators. The mere requirement of
a symmetric function would be met if any one or
all of the V's were replaced by

A +8(Tl+ r2) +C7 lr2,

where A, 8 and C are functions of the distance
of separation. In fact, this more general form is
necessary even for the description of the Coulomb
interaction between the partic1es which for two
particles is expressed as

—' (e'/r) (1+rz) (1+rq)

The expression above, involving A, 8 and C,
has the value (A+28+ C) for two protons, the
value (A —C) for a proton and a neutron, and
the value (A —28+ C) for two neutrons. If
proton-proton forces are the same as neutron-
neutron forces we may conclude that 8= 0, and
if like-particle forces are the same as proton-
neutron forces in states of corresponding sym-
metry then we can conclude that C=O. With
both 8 and C equal to zero the dependence on the
components v~ and v2 is gone and we are reduced
to the simpler original form.

The assumption that 8 and C are zero seems
to be in accord with the facts about nuclear inter-

actions as far as these are known. * The assump-
tion makes the unification that there are only
four different force laws, corresponding to the
four possible types of symmetry in a and v.
These four types are describable in terms of more .

usual notation by giving the symmetry in posi-
tion and spin, since this determines the symmetry
in character. A state that is symmetric in spin is
called a triplet, one antisymmetric a singlet.
Symmetry for exchange of position will be de-
noted by 5 and antisymmetry by P, since these
are the standard notations for states of least
orbital angular momentum in the two-body
problem which have these positional symmetry
properties. Here, however, we use 5 and P in a
more general sense.

The distinct laws of interaction are given in
Table I. Using the values of the operators 1, H,
8 and M we can write for the four interaction
laws:

~('&) = V+ Ua+ Va+ V,
U('5) = U —Vy, —Vg —'

V„,
U('P) = V—Ug+ Vg —U„,
&('&) = V+ Va —U~ —U .

These are readily solved for explicit expressions
for each V in terms of the four empirically occur-
ring combinations.

We shall only make a few brief remarks about
the empirical facts as they are known as these
have been recently reviewed by Bethe and
Bacher. v Ideally one would like to learn all eight
force laws (there are eight if we do not make the
simple formal assumption of the previous section)
from studies based wholly on the two-body prob-
lem. So far this is not possible.

The situation with regard to the two-body
problems is this:

PROTON-NEUTRON

U('S): Normal state of deuteron. Observed
binding energy gives a relation between depth
and width of a potential well.

Scattering of neutrons by protons: This in-
volves all four laws in principle, but in fact. owing

*The consequences of assuming equality of the various
specifically nuclear forces for like and unlike particles are
considered in detail in a paper by Feenberg and Breit in
this issue which we had the pleasure of seeing in manu-
script after this paper was sent in.

~ Bethe and Bacher, Rev. Mod. Phys. 8, 82 (i936).
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to short range of the forces only the two 5 laws

enter in an important way for neutron energies
less than some tens of millions of volts. Slow
neutron scattering cross section indicates a '5
level of deuteron near to zero binding energy,
according to Wigner.

Photodissociation of the deuteron: Electric
dipole effect involves transitions from bound '5
normal state to continuum of 'P, hence these two
lav s. In addition to Bethe and Bacher, the prob-
lem is discussed by Breit and Condon. Magnetic
dipole effect produces transitions from '5 normal
state to '5 continuum. This is important near the
photoelectric threshold.

Radiative capture of neutrons by protons:
Here the important effect is for slow neutrons
principally by action of magnetic dipole radia-
tion from '5 continuum to '5 normal state, ac-
cording to Fermi. '

None of these involve the 'P law in an essen-
tial way. Apparently this can only be studied by
scattering very high energy neutrons with
protons.

PRoToN-PRQTQN

law and gives strong indication that this is the
same as. the '5 law in the deuteron.

NEUTRON-NEUTRON

No positive evidence from two-body interac-
tions. Absence of a double neutron is in accord
with assumption of the same '5 law as in proton-
neutron since the '5 level is now supposed to be
virtual (see reference 10 for details).

All other knowledge of the force laws comes
from approximate calculations of binding ener-
gies of many-body nuclei as fully reviewed by
Bethe and Bacher. These are in accord with as-
sumption of equality of the interaction laws for
various kinds of particles so far as specifically
nuclear forces are concerned.

This paper grew out of association at the 1936
summer symposium on theoretical physics of the
University of Michigan. We wish to express here
to Professor H. M. Randall our deep appreciation
of the opportunity of working in the stimulating
atmosphere of the Michigan laboratory.

TABLE I.

Symmetry in

Here a little evidence comes from the probable
nonexistence of He'. But mainly the knowledge
comes from the recent work of Tuve, Heyden-
burg and Hafstad as analyzed by Breit, Condon
and Present. "The analysis indicates that up to 1

Mev the departures from coulomb scattering may
be described entirely in terms of effects of the 'S

' Breit and Condon, Phys. Rev. 49, 904 (1936).See also
Morse, Fisk and SchiS, Phys. Rev. 50, 748 ('1936).

'Fermi, Phys. Rev. 48, 570 (1935).
"Breit, Condon and Present, Phys. Rev. this issue.

Char-
Position Spin aeter

Nota-
tion Occurrence

proton-neutron

proton-neutron
proton-proton
neutron-neutron

proton-neutron
proton-proton
neutron-neutron

proton-neutron


