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Quartet States in Diatomic Molecules Intermediate Between Cases ¢ and b

W. H. BRANDT,* Laboratory of The Cold Metal Process Company, Youngstown, Ohio
(Received July 13, 1936)

The determinantal equation given by Hill and Van Vleck for the energies of diatomic
molecules intermediate between Hund's cases a and b has been set up for quartet states and
solved by a series method. The solutions are similar in form to those given by Budo for triplet
states and the same methods of rotational analysis apply.

HE solutions for the doublet case of Eq. (20) of Hill and Van Vleck! are simple and satisfactory
for rotational analysis. The triplet case does not yield simple closed formulas, but suitable series
solutions have recently been given by Budo? and applied successfully to two °II states of N,. The
purpose of this paper is to develop series solutions for quartet states.
The equation to be solved is
ot —{(10/HA2Y (Y —4)+(9/2) +10J (J+1) }o?+ {8A2YV (VY —1) —4— 16T (J+1) }w
+(9/16)A* VXY —4)*+ (9/2)A V(Y = 4) T (J+1) +92(J+1)*— (11/2)J (J+1)
—(13/2)A2Y —(35/8)A2Y2—(15/16)=0, (1)
where o1, 7 and X of Hill and Van Vleck are replaced by A, J and ¥ and
w=[W+BA*—B{J(J+1)+5/4}]/B. (2)
If we make y1=A2Y (Y —4)/4, 3)
Eq. (1) becomes

wt— {100y +J(T+1)1+9/2}*+ {842V (Y —1) =4~ 16T (J+ 1) }o+9[y1+ T (J+1) P
—(11/2)[1+T(JT+1)]—3A2V2—12A2Y —15/16=0.  (4)

This is a fourth-order equation of the type,

2 4-bx2+cx+d=0, (5)
which has solutions,?

x={—b/2+ 3B —4d) ) —c/2(0 —4d) '+ - - - [ —b/2— H(B*—4d)} 0/ 20— 4d) M+ - -,
—(=b/2=3(B—4d)}) /25— 4d) 4 - -, — [ —b/2+ (B —4d)}} — /2 —dd) . (6)
Now (b2—4d)i= {6431+ J(J+1) P+ 11203+ J(J+1)]+49+ 1242 V2 +48A° Y — 25} }
= 8[y1+J(J+ 1) T+ 7+ ((6A? V42442V — 25/2) /(8[y1 4+ T (T +1) T+7)},

* Now with the Research Laboratories of the Westinghouse Electric and Manufacturing Company, East Pittsburgh,
Pennsylvania.

L Hill and Van Vleck, Phys. Rev. 32, 261 (1928). See Eq. (20).

2 Budo, Zeits. f. Physik 96, 219 (1935).

3 These solutions may be derived as follows:

0
Assume that in Eq. (5) x =2x;y%, b=bo+b1y, c =co+c1y, d =do+d1y. Substitute these values in Eq. (5) and set the sum
i=0
of the coefficients of each y* equal to 0 giving the infinite set of equations,

%o*+boxo2 +-Ccoxo+do =0
{4202 +2boxo+co} X1 +b1%o2 +-c1x1+d1 =0. M

Set y=1 so that b=by+b1, c=co+c; and d =do+d;. Choose by, coand dy so that the first of Egs. (I) can be solved and use
further Egs. (I) to determine x1, x» etc. Specifically make by=50, by =0, ¢co=0, ¢;=¢, do=d and d; =0 which reduces the
first of Egs. (I) to a quadratic in xo%. The solutions given by Budo for the triplet case may be derived in a similar manner.
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neglecting higher terms in the expansion. If we set*
b= (6A2V2+24A2V —25/2} /{8[3:1+J (J+1)]+7},
(b —4d)}=8[y1+J(J+1)]+T7+5.

Solutions (6) become,

23 51} NV(V—1)—1—27(J+1)
w4={9[3’1+](-]+1)j+z+—} -

2 291+7/4468/44+2T(J+1)
S &) AV(Y—-1)—3-2J(J+1)
w3={y1+f(]+1)—~—~} +
» 4 2] 2y+7/4+8/442T(T+1) -
5 )t AV(Y-1)-}-2J(J+1)
we= —{y1+J(f+1)———~ +
4 2] Toytr/a+8/8427(7+1)
23 81F AV(YV—1)—1—2J(J+1)
w1=—{9[y1+J(J+1):I+~—+~} -
4 2 291+7/4+6/44+27(J+1)
Neglecting the constant, —BA2+4 B5/4, in the energy and terms beyond the second in w,
I MY (Y—1)—31—-2J(J+1)
W= Fi(J) =B JU+ 1)+ 195,490 +1)+23/445/2) 1 - |
B 2y:1+7/4+6/4+2J(J+1)
i ' MY (Y=1)—3—-2J(J+1)
Fa() = B JU+ 0+ (314 T+ 1) —5/4— 8/2) 1+ |
i 2y:1+7/4+68/4+2J(J+1) ®)
[ ANV (Y—1)—3-2J(J+1)
Fo(D)=B| J(T+1) — {31+ T(T+1) —5/4—5/2} 3+ ]
! 2y1+7/4+5/4+2J(J +1)
i AY(Y—-1)—5—-2J(J+1)
F(J)=Bl J(J+1)— {9y +9TJ(J+1)+23/4+5/2} — ]
S 2y:1+7/4+68/4+2J(J+1)

When J becomes large the solutions approach the values, B(J2+4J-+10/4), B(J?+2J—2/4),
B(J?—6/4) and B(J?*—2J—2/4), i.e., if we add the term +(5/4)B which was dropped from the
energies, they approach the values, BK(K+1), where K=(J+3/2), (J+3%), (J—3%) and (J—3/2),
respectively.

The second differences are

AsF4(J) =4B(J+%)[1+9/2 {9y1+23/446/24+9T(J+1)}}

N 3A2V2—6A2Y+5/246/2 ]
(291+7/448/442(T+1)(J+2)} {29, +7/4+8/44+2(T 1) T}

’ 9
Ast(J)=4B(J+%)[1+%{y1~5/4—5/2+J(J+ D ®)

3A2Y2—6A2YV+5/2+6/2 ]
(29147/4+8/44+2(T+ 1) (T+2)} {291+ 7/4+8/4+2(T— DT} )

* This term is carried as § since it may have an appreciable value for small J. It can easily be computed from the value
of Y determined by first approximation.
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Am(f)=4B<J+%>[1—%{y1~5/4—a/z+f<f+1>}—%

3A2Y2—6A2Y+5/2+6/2 ]
{291+ 7/448/4+2(T+ 1) (J+2)} 291+ 7/4+8/4+2(T— 1) T}

MF() =4B<J+%>[1—9/2{9y1+23/4+a/2+9f<1+1>}-%

+

3A2Y2—6A2Y+5/2+46/2 ]
(2914+7/445/44+2(J+1) (J+2)} {291+ 7/4+8/a+2(T - 1) T}

when {CH+{UT+1D)(T+2)P+{C+(T—-1)J}} is set =2{C+J(T+1}: (C=9y,+23/4+6/2 or
y1—5/4—48/2). In determining the constant, B, the mean of the AyFs=4B(J+3%) should be used.
This may be seen from Egs. (9) or more rigorously from the fact that the sum of solutions for w=0
for all values of J since the coefficient of the cubic term=0 in Eq. (4). It is probably necessary to
add a term DK?(K+1)? to Egs. (8) and 8D(K+3%)3 to Egs. (9) in order to get well fitting curves.
This point and other details of analysis are ably discussed by Budo.

Thanks are due Professor F. W. Loomis and Professor G. M. Almy of the University of Illinois for
‘many helpful suggestions.



