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A self-consistent solution of the Hartree-Fock system of
equations for the ionic crystals LiF and LiH is attempted
using approximation methods previously employed in
metals. In part A the boundary equations which the
periodic functions must satisfy in the case of a face-
centered cubic lattice are examined from the group theo-
retical standpoint. In part 8 the Hartree system of equa-
tions is solved using ion core fields which include the
(1s)' electrons in both Li and F, so that eight electrons are
given periodic functions in LiF and two in LiH. These

solutions, which are regarded as preliminary ones, involve
the use of the "s sphere approximation. " The final results
in both cases show that the Hartree approximation allows
considerable charge to be in the vicinity of the metal ion
so that the classical ion model is appreciably incorrect in
that the valence electrons are not localized in a definite
region about the electronegative atoms. The extent to
which this affects the Born-Madelung lattice energy
computations is discussed from the viewpoint of a complete
solution.

T is the intention of this paper* to extend the
- - schemes that are available at present for
determining solid state electronic wave functions
of the Bloch type, and to investigate the elec-
tronic structure of the ionic solids LiF and LiH.
These extensions to the general procedure lie
partly in the introduction of formal group
theoretical methods into the schemes available
for specifying the one-electron states, and partly
in the use of particular simplifying steps in car-
rying through an approximate solution of Har-
tree's equations for solids. These developments
are applied to the cases of the crystals men-
tioned above in order to obtain a better under-
standing of their constitution and to attempt to
throw more light upon some of their charac-
teristic optical and electronic properties.

Ionic crystals have been made the subject of a
considerable amount of investigation from the
classical atomic standpoint by Madelung, Born
and others using semi-empirical methods, and
this work has been successful in tying together
various properties of these crystals such as com-
pressibility, density and binding energy. On the
other hand, there is convincing evidence to
indicate that the simple ion model which forms
a starting point for this development greatly
oversimplifies the actual condition, and for this
reason an investigation of such substances from
the purely theoretical standpoint seems par-
ticularly appropriate. This topic will be dis-

cussed in later paragraphs, and we shall proceed
with the discussion of the construction of wave
functions after outlining the formal background.

PART A. GROUP THEORETICAL FOUNDATION

1. Reduction of space groups

The symmetry properties of crystals' are
primarily characterized by the presence of a
translation group (i.e. , lattice structure). That
is, the crystal is sent into itself by a set of trans-
lations of the type

f =01&1++272+'S

where 11 'T2, 13 are the primitive translations,
which define the fundamental cell of the crystal,
and the n's are integers. In addition, however,
the crystal may have other symmetry operations
which instead of being of the simple translational
form

xg' ——xg+t), x~' x,+t2, x,'=x——,+t3, (2)

corresponding to (1), where x&', x2', x3' are the
coordinates of the points xf, x2, x3 after trans-
lation by means of t= (t|, t2, t&), are of the type

x1 sllx1++12x2+s13x8+uli
+2 2 1+1+~22+2+ ~23+3++2y

&3 =+31&1+~32&2++g3&3++3.

In this the crystal is to be regarded as rotated
as well as translated, the rotation being de-

* We wish to thank Dr. W. Shockley for valuable
discussions in connection with his work on NaC1, which
accompanies this paper, and ours.

' R. W. G. Wycko8', Structure of Crystals (1931); F.
Seitz, Zeits. f. Krist. 88, 433 (1934), et seq.

760



ELECTRONIC CONSTITUTION OV CRYS'i AI. S; I. il" AND I. iH

scribed by means of the matrix

+ca

C22 Gpa

+3&

and the translation by means of the vector

6— G2

where yI is invariant under the translation
group, and, using periodic boundary conditions,

nl 72 Tdk=—
X ('TIT2T3)

(7)

where ni, n2, n3 are integers, X is the number of
cells along an edge of the crystal block for which
the periodic conditions are satisfied, and (T'T2T„.)
is the volume of the unit cell ~ Actually, the re-
duction of the translation group is never neces-
sary since the complete group is always larger.

2 E. P. Wigner, Gruppentheorie, Vieweg (1931);H. Weyl,
Group Theory and Quantum Mechanics.

~ F. Seitz, Phys. Rev. 47, 400 (1935).
F. Bloch, Zeits. f. Physik 52, 555 (1928).

The complete symmetry of the crystal will be
described-by a group of transformations of type
(3), and since the Hamiltonian operator will

have this symmetry, it follows that all its eigen-
functions will belong to irreducible representa-
tions of this group in accordance with the
fundamental theorem of Schur. ' Since the total
wave function of the normal state will belong
to the unit representation, practically speaking
(i.e. , have the same symmetry as the crystal),
we may conclude that the one-electron functions
of the Hartree-Fock approximation will belong
to particular representations of the space group. '
This means, essentially, that the Hartree-Fock
field acting on a given electron will have the
symmetry of the lattice which is a self-consistent
assertion.

Bloch4 has shown that the translation group
will be reduced if the coordinate system in the
Hilbert space is defined by means of the set of
functions

(6)

This is true even in the triclinic case because of
the time reversal symmetry of the Schrodinger
equation. ' Nevertheless it is convenient to use
(6) because of its inherent simplicity. In this
connection we may introduce the concept of a
three-dimensional k space in the usual way. This
is defined by the practically continuous set of
points (7).

Regarding the problem of reducing the space
groups, this has been formally carried through
by one of us for all types of crystals. ' In the
present paper, however, we shall consider only
those results of this investigation that refer to
the simple type of space group in which all
elements are of such a type that that a in (3) is a
member of the group of translations (1). The
simple face centered lattice of the NaC1 type
belongs to this set. Under these conditions the
irreducible representations may be found as
follows.

In k space, all of the functions of type (1)
going with points k that are sent into one another
by the g-order group G of the crystal class~

acting at the origin of coordinates, k=0, will
belong to a g-dimensional irreducible represen-
tation, unless two of the equivalent k's differ by
a vector of "type E," where

T2' 73 73' Tl 7 J'T2
E=I' +l +l;

~1~2~3 ~1~2~3 ~1~2&3

(lg, 4, I3=0, 1, 2. ).

When this condition is met with, as it will be when
one of the k's lies along a symmetry axis or plane
or at a distance X/2 from a symmetry plane, etc. ,

the irreducible representations are not g dimen-
sional, but are generally lower. If we consider
the set of r =g/n equivalent k's which diRer by
vectors of type X (which belong to equivalent
representations of the tra, nslation group) and the
subgroup R of G which send these into one
another, the theory asserts that only those linear
combinations of this set which belong to an
irreducible representation of R belong to an
irreducible representation of the space group.
The full set of g equivalent k's divide themselves

'E. P. Wigner, Nach Gott. Geo. (1932).
6 F. Seitz, Annals of Math. 37, 17 (1936).

i.e., the factor group of the space group in which the
translation group corresponds to the unit element. etc.
g is 48 for crystals of type 0".
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into n sets containing r points which, like the
foregoing set, go with r P's that belong to equiva-
lent representations of the translation group and
which are sent into one another by an r-dimen-
sional subgroup of G that is equivalent to R. If
the first set of r functions is reduced with respect
to R into irreducible representations, D;, of
dimensionality l, (f runs over all irreducible
representations of R), those functions in the
other n —1 sets which belong to the equivalent
irreducible representations of the corresponding
group will join with the I; functions of the first,
going with D; to form an nl;-dimensional irre-
ducible representation of the space group.

To summarize, if the g P's equivalent to a given
one do not all belong to different representations
of the translation group, it is not sufficient that
it be of the form (1) if it is to belong to an irre-
duci. ble representation of the space group, but
it is also necessary (and sufhcient) that it belong
to an irreducible representation of the group R
which connects it into those r —1 of the g func-
tions which belong to equivalent representations
of the translation group.

It is to be emphasized that this statement is
valid only for the simple types of space group
specified above. The situation is more com-

plicated for crystals of the beryllium and
diamond type in which screw motions occur.

From this standpoint it is possible to draw
several important conclusions' concerning the
nature of the energy surface in E space, and for
the purpose of the discussion we shall employ
the reduced zone scheme in which points of k

space which differ by a vector X are regarded as
identical, so that we view the energy function as
a many-valued function in the first zone, that is
as a set consisting of many three-dimensional
surfaces. At most points in this first zone the
energy surfaces will be separated because the
functions going with the point k will belong to
different or equivalent . representations of the
space group, and the energies of these tend to
repel one another. At certain points along sym-
metry axes or at the point k =0, however, some
of the surfaces will touch one another because
several functions which belong to equivalent

L. P. Bouckaert, R. Srnoluchowski and E. Wigner,
Phys. Rev. 50, 58 (1936), have considered similar problems
from essentially the same viewpoint.

representations of the translation group belong
to the sense representations of the space group,
for reasons we have outlined above, and must
have the same energy. We shall consider prac-
tical cases of this later in connection with the
face centered cubic crystals.

If one goes to an extended zone picture, instead
of the reduced one, in which the energy surface
is taken to be single valued, the existence of
contact between some of the surfaces in the mul-

tiple surface picture of the latter scheme will

reHect itself in the absence of discontinuities of
the energy surface at certain points of some of
the zones or even at entire lines. In the zone
space of the face-centered .lattice, the eight cube
corners

(&1/2u)
I

~l/2~
I

(~l/2 )
are of this character, where 2a is the length of
the edge of the fundamental cube of the crystal
lattice.

A very interesting behavior occurs when we

get far enough from the origin so that there is an
equivalent point which differs by a X vector
that is not zero. (Such points will only occur at
the boundary of the zone if the Brillouin con-
struction has been used. ) We may regard the
g-dimensiona1 representation as breaking up into
a number of smaller dimensional ones (if a sym-
metry plane or the time reversal operator has
caused this, the number will be two) which
insures us that there will be a gap at this point
between the different surfaces. If this occurs at
all points of the surface of the first zone it may
be said to be specified by symmetry. ' This is true
of the cube of the simple cubic lattice, the
rhombic dodecahedron of the body centered

' It is to be kept in mind that we have adopted the con-
vention that the points of k space are so chosen that those
going with the same representation are equidistant from
the origin, that is, are of equal length, and are sent into
one another by the symmetry operation in such a way that
k space undergoes a rigid rotation (i.e., there are no dila-
tations or other distortions). If only this restriction is
made, the Brillouin zone scheme is not unique in the
specification of zones, but rests only upon a perturbation
scheme in which free waves are used in the starting
approximation. If another starting scheme is used, a
different set of zones will generally be met with, even when
the foregoing convention is used. A small number of
zones are uniquely specified by symmetry, however, and
all schemes of construction will lead to these.
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lattice, or the hexagonal prism of the hexag-
onal lattice I'~, in cases in which the sym-
metry class is D6". On the other hand, only the
center points of the hexagonal faces of the trun-
cated octahedron of the face-centered lattice are
specified by symmetry (the square faces are
completely specified). This means that it is not
necessary to use these plane surfaces as zone
boundaries, but any other (curved) surfaces
which join the center point and the square
faces could be employed as long as surfaces on
opposite sides of the figure are parallel and the
cubic symmetry is maintained. Actually, of
course, the Brillouin construction is the simplest
to use in this particular case, but this is not
always true, particularly in crystals of low

symmetry. (The second zone in the hexagonal
lattice in such a case. )

2. The construction of solid state wave functions

The plan which we shall use in specifying solid
state wave functions will be essentially that
employed heretofore in other cases" with the
addition of the concepts discussed in Section 1.
We shall assume that the potential field within
the lattice is spherically symmetric about each
atom and use such a field within the polyhedron
surrounding each atom which is determined by
planes that cut the lines joining nearest neigh-
bors orthogonally. In the case of LiF, we may
choose these planes in a number of independent
ways because the Li and F atoms are not sym-
metrically equivalent as in most of the simple
monoatomic lattices. Nevertheless, we shall
select them so as to bisect the lines joining
neighbors, thus giving a system of space filling
cubes which are of equal size and surround each
atom. The reason for this choice lies in the fact
that closed shell electrons of the Li ion" just fit
into such a cube without extending outside
appreciably, while a smaller cell about these
atoms would not be able to contain all of this
charge distribution. On the other hand, it seems
reasonable to use as large a region for the F atom
since the fluorine field is very strong near the
nucleus, so that the use of cubes seems to be a
reasonable choice. Similar comments cover the
LiH case.

Io E. Wigner and F. Seitz, Phys. Rev. 43, 804 (1933);
40, 509 (1934);J. C. Slater, Phys. Rev. 45, 794 (1934), etc.

"Hargreaves, Proc. Camb. Phil. Soc, 25, 75 (1928).

Within these cubes, we shall assume that the
eigenfunctions may be expanded into a series of
surface harmonics 8 ' with radial-function coef-
ficients f((r) which satisfy the Schrodinger equa-
tion in which the spherically symmetric part of
the field going with the polyhedron occurs.
That 1s,

P"(0& —Q g( (0&f((r)g
L, m

within the polyhedron where the a s are con-
stants. Not all surface harmonics will necessarily
appear in this expansion, but only those which
are compatible with the representation of the
space group to which the function f" belongs.
To be more explicit, we shall discuss the LiF
lattice. Suppose that we choose the origin of coor-
dinates so that an F atom is situated there. We
may then choose the phase of the wave function
under discussion so that

4'& =4'o(o&+&Po(o& (10)

Pa('& = Pb(('&f((r)A
l

where A is a harmonic of order l going with a
particular representation of R. If the phases are
chosen in accordance with (10), the b's going
with even l will be purely real numbers, and
those going with odd / will be imaginary. We
shall determine the b('s which occur in (11) by
the conditions, (a), that this P& join on con-
tinuously with the similar function in each of
the neighboring polyhedra a,nd (b) that at points
on opposite sides of the unit cell which are

where P, (,&
is a real even and P.(.&

a real odd
function relative to an inversion in the origin, ~..
If the k vector going with P belongs to a 48
rowed representation, there will be no limitation
upon the surface harmonics which enter in (9)
and P. and f, in (10) will contain all even and
odd harmonics, respectively. If, however, the k

goes with a representation of lower order, the
harmonics which appear are restricted to the set
belonging to a particular representation R (see
Section 1) which sends the equivalent b's that
differ by X vectors into one another. At the
poip. t k =0, for example, the only functions which
appear in a given case must belong to the same
representation of 0". In other words, (9) must
be of the form
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separated by primitive translation distances
r„(i=1,2, 3), the phase of P&, differs by e""*'.

If the neighboring cell is centered about the
atom at a point r„, the corresponding function
will not be an even function plus i times an odd
one as long as (10) is taken as the basis for

.choice of phase referring to inversion f,„at the
point r„, but will be a constant times this. We
know, however, that

fo= fn 2~n

where 2r„a translation of magnitude twice the
distance z„which is always an allowed trans-
lation, so that the form must be

(13)

where P, &„i and P, &„i are even and odd real
functions relative to the inversion I. ,„.

In a similar way, using equation of type (12),
we may find the representation of the group R,
operating about r„, to which P&, must belong if
it belongs to a given representation of the group
R acting about the origin. We shall discuss prac-
tical examples of this later. Knowing this
representation, we may determine the allowable
harmonics which enter into the expansion in the
polyhedron about r„, so that we have

&m) —p&k rgb &n)fg .

where the b'", ' are purely real or purely imaginary
depending upon whether / is even or odd.

Since all F atoms are equivalent, as are all Li
atoms, the b's going with a given function will

be the same for all F cells and for all Li cells, so
that we need consider but two independent sets.
Actually, we shall not consider an infinite number
of these, but will only deal with a finite number

going with the lowest order coefficients, using
the conditions (a) and (b) discussed in a pre-
ceding paragraph of this section. This restriction
to a finite number of terms rests, of course, upon
practical limitations since we have not felt it
feasible to solve determinants of higher than the
eighth order. This procedure would be accurate
only if independent methods of determining the
coefficients led to essentially the same results.
Actually, the error involved in the case of LiF
is not negligibly small for the excited states.

In addition to using a small number of coef-

ficients, we have' introduced the "s sphere sim-

plification" into the present paper. In this the
fundamental polyhedron (a cube in our case) is
replaced by a sphere of equal volume and the
boundary conditions are satisfied at the surface
of this rather than at the surface of the actual
polyhedron. The approximation is not as good
in this case as in that of the alkali metals, where
its use could be rigorously justified, but the error
it introduces is undoubtedly smaller than others,
such as that discussed in the last paragraph, so
we shall not hesitate to use it in this semi-
quantitative investigation. In later work with
LiH, in which we intend to strive for quantitative
accuracy, we shall avoid its use and obtain a
comparison with the present results.

We shall now proceed with a discussion of the
determination of the boundary equation.

3. Boundary equations

No fixed rules regarding the points at which
boundary conditions were satisfied were made.
Generally speaking, points situated at prominent
symmetry positions were used, except in cases
in which these did not lead to a satisfactory
specification (i.e. , the secular equation vanished
identically or leads to too simple an equation).
Such cases indicate that the series (9) do not
converge rapidly at these points so that new

points were used. . The equations derived in the
following paragraphs cover k values in the three
prominent symmetry directions, namely the
(100), (111) and (110) directions, which will be
discussed separately. Only two or three points on
each of the energy surfaces going with these
directions were determined and enough equations
were obtained to discuss the filled and first

empty band in LiF. Owly one band is filled in

LiH, so that all of the equations are not impor-
tant for this case. We shall refer only to LiF in
the discussion, but with the understanding that
the results will be used for LiH as well.

I. k=o
For the case k =0, the basic symmetry require-

ment on the functions going with both -of the
polyhedra is that they belong to irreducible
representations of the group" 0". Since the
lowest valence electron levels are s levels (con-
sidering the (2s)' (2p)' configuration on F and

"We are here employing Bethe's notation, Ann. d.
Physik 3, 133 (1929).
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the 2s on Li and H), it is obvious that the lowest
lattice function will be determined by F&. The
next will be F4 because this is the analog of the

p representation of spherically symmetric fields.
This representation is triply degenerate, whence
we may expect three energy surfaces. to come in
contact at k =0 to give a band capable of holding
six of the eight electrons going with each unit
cell of LiF. The other two electrons in this case,
and the only two for LiH, will occupy the low
"I'i band. "-As we shall show later, the third,
unoccupied band, is also FI at k=0.

(a) I'~. The prominent spherical harmonics
which belong to I'~ are the s and g functions

1, x'y'+y's'+ s'x' —(I/3) (x'+y'+s"),

1
F(P—)+-F(f)=o

2
(16)

3 3
F(P) F(f—)-=L(P) L(f—)—

2 3

in the order mentioned above. The compati-
bility equation is

tion, the derivative in the x direction was made
continuous at the points (001) and (00—1) for
neighboring Li and F atoms in the (001) direc-
tion. The equations are

F(P)+ F(f) = L(P—) —L(f)
F'(P)+ F'(f) =L'(P)+L'(f)

respectively. The angular functions which enter
into both the Li and F expansions are the same
in this case because e'~'=1 for all 7.'s. It turns
out that the use of the s sphere approximation
excludes the appearance of the g function if
prominent points are employed. The equations s
functions must satisfy are

5 F'(P) F'(f)» L'(P) L'(f)
+5 +—— + =0. (16a)

2 F(P) F(f) 2 L(P) L(f)

F(s) =I.(s), F'(s) = —L'(s) (15)

where F(s), L(s) are the values of the radial s

functions for F and Li at the boundary of the s

sphere. The comps, tibility equation for (15) is C.
.'l.

1
—1
—1

0

J&

1

1

1
1
2

C2"
1

—1
—1

0

I'I
r,

(15a) r,
r4
r,

F'(s)

F(s)

L'(s)

L(s)

1
1

1
—2

II. Li stint, Point of (100) direction
The group R (see Section 1) going with the

point (k) = I/2a at the boundary of the zone in
the (100) direction is D4" which has five even
and five odd representations. The character
system of the classes of rotations of determinant
1 is as follows.

(b) I'4. For I'4 the most important spherical
harmonics are the P and f functions

P: x, y, s

4xl x':(y'+s')
I yl y' (s'+x')

2 ) E 2 )

t',
of which we may select x and xl x' ——(y'+s')

l

as belonging to the same row of equivalent
representations. The boundary conditions were
satisfied at the points (100) and (—100) for
neighboring Li and F atoms, and for neighboring
F atoms in the (110) direction at the points
(I/V2, 0, 1/v2) and ( —1/K2, 0, 1/W2). In addi-

where .

E, is the unit element
C2 is the twofold rotation about the x axis
C„ is the fourfold rotation about the x axis
C2'. and C2" are twofold axes at right angles to these.

It is readily seen that the representation about
the Li and F atoms will be identical by con-
sidering nearest neighbors in the x direction. The
rotation about the x axis leaves both centers
fixed, while the reflection planes pF and pz, ; and
the twofold rotations Sp and 5z.; satisfy the
relation

pF= pLi+7y ~F ~Lj+~y

where 7 is the primitive translation in the x
direction of magnitude 2a, for which

X v=2m.
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Since there is no possibility that the widely
separated lower bands of the halides will cross one
another, it seems natural to expect that the
lowest will have a point going -with the unit
representation (F&) at this limit point. Similarly,
it seems natural to expect the second band to
split into I'& and the doubly degenerate I'„.,
because F4 of 0" contains these two. We shall
consider each of these cases.

(a) I'~. The simplest functions belonging to I'&

are
s: 1, d: (yh+z' —2x')

g xhy2+yhs2+zhxh 1 (x4+y4+z4)

F(P)+ F(f)= L(P)+L(f)
F'(P) +F'(f) = L'(P-) L'(-f')

1
F(p) —F(f-) =0,

4

3 3
F(P) F(—f—) =I (P') L(—f—)

2
'

2

The secular equation is

»'(f) F'(p)»'(f) L'(p)

4F(f) (Fp) 4 F(f) L(p)

(18)

Boundary conditions were satisfied between
Li and F polyhedra neighboring in the x direction
at the points (100) and ( —100) and between
neighboring cells in the Y and s directions at
(010), (0—10) and (001), (00—1), respectively.
Only the s and d functions are needed for this
and the resulting equations are

F(s) —2 F(d) = L(s) —2L—(d),
F'(s) —2 F'(d) =L'(s) —2L'(d),

F(s)+ F(d) = L(s)+L(d),
F'(s) +F'(d) = I.'(s) L'(d)—

The secular equation reduces t-o

(17)

p: x, f: x( x' ——(y'+z') ).
2 )

The function and derivatives were taken to be
continuous at the (100) and ( —100) points for
unlike neighbors in the x direction, and neigh-
boring F functions were made continuous at
(1/v2 0 1/K2) and ( —1/v2 0 —1/V2). In addi-
tion, the tangential gradients at (010) and
(0 —10) for unlike neighbors in the (010) direc-
tion were made equal. The resulting equations
are

(F'(s) F'(d) L'(s) L'(d) )+
E F(s) F(d) L(s) L, (d) &

(F'(s) L'(s) F'(d) L'(d)q
+8] — +

KF(s) L(s) F(d) L(d) i
(F'(s) L'(d) F'(d) I.'(s) i—

(
=0. (17a)

E F(s) L(d) F(d) L(s) l

(b) ph. I"h is represented by

F'(P) L'(f)
+— ——= 0. (18a)

F(P) L(f)

(c) I';, . For the doubly degenerate state I'.;,
we took

(p:., f:.
(

~ —(x+y) (
2 )

F(P)+F(f) =L(P)+L(f),
F'(P)+ F'(f) =L'(p)+L'(f),

(19)3 3
F(P) F(f) =L(P) ——L(f), —-

2 2

3 3
F(P)—F(f) = L(p)+ L(f-)-

2 2

3 F'(P) F'(f) (3 L'(P) L'(f) )
or — + = — — +

~
. (19a)

2 F(p) F(f) E2 L(p) L(f) )

III MidPoint of (10.0) dhrecthon

The group R associated with the point

ii4a

midway from the origin to the boundary of the

and joined these, with continuous slope and
derivative, to unlike neighbors in the s direction
at the center of the square faces. In addition, the
tangential gradient at the centers of the other
fares were made continuous with those of the
other unlike neighbors. These equations are
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zone in the (100) direction is amply C4" which is

generated by a fourfold axis in the x direction
and a plane passing through this. There are five
representations for which the character system is

r,
r2
r3
r,
r,

1
1

2

1

1

C2

1

1
—2

1

1

C4

1
—1

0
1

—1

R„
1

—1

0
—1

1

Rp
1

1
0

—1

R, and R„' stand for the two classes of reflecting
planes which pass through the x axis. The repre-
sentation will be the same for both atoms in a
given case since the line joining nearest neighbors
is either parallel to the symmetry axis or per-
pendicular to it.

Just as in the preceding. case, we may conclude
safely that the function associated with the
lowest energy surface goes with I'~. The repre-
sentation I'4 of 0" contains both this and I'3,

which is doubly degenerate, so that it may be
expected that the former will go with the same
surface as I'~ of D4" and the latter will go with
the same two surfaces corresponding to I'& of
this group. In other words, two of the three
energy surfaces of the second band remain in

contact along the entire (100) axis.
(a) I'~. Functions which belong to 1'~ are

s: 1, p: x, d: 2x' —(y'+s')

F(s) —F(d) =L(s) L, (d), —

F'(s) —F'(d) = L'(s) +L'(d )—(20a)

The secular equation associated with these
equations may be reduced to

—(y+") I

2 )
and all of these were used for either one state or
the other. The boundary conditions employed
were:
(A) Lowest band, using s, p, d functions

(1) Continuity of functions and derivative at
the center of the square face joining neighboring
unlike atoms in the x direction. The equations
obtained from this are

F(s)+2 F(d) i F(p)—
= —i[L (s) +2I.(d) +iL(p) ],

(20)
F'(~)+ 2F'(d) iF'(p)-

= i[L'(s) +2I.'(d) +iL'(p) ]
(2) Continuity of function and derivative at

center of square face between nearest neighbors
in the y. (and s) directions

F'(s) L'(p)
+

F(s) L(p)

L'(s) F'(p)
+

L(~) F(p)

F'(s) L'(s)
+

F(s) L(s)

(F (d) L (p)l
2 +

E F(d) L(p))

(L'(d) F'(p) &

2 +
«(d) F(p)/

(F'(d) L'(d) q+
4 F(d) L(d)&

(F'(P) L'(s) 2L'(d) p
3( + + )=0

& F(p) L(s)

L'(~) L'(d)

L(~) L(d)

(B) Second Band, using s, p and f functions

(1) Continuity at same point as in (1) of A:

F( ) —i[F(p)+ F(f)1= i I L(~)+i[L(p—)+L(f)]l

F'(s) i [F'(p) +F'—(f)]=i (L'(s) +i[L'(p) +L'(f)]I .

(2) Continuity of the tangential gradient at the point mentioned in (2) of A:

3 3
F(p) F(f) =L(p) L(f—)— —-

2 2

(21)

(21a)

(3) Continuity of the function at the point (0 1/v2 1/v2) and (0 —1/v2 —1/v2) for nearest like
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neighbors in the (011) direction.

F'(s) L'(p)
+-

F(s) L(p)

F'(p) L'(s)
+

F(p) I.(s)

3 (F'(s) L'(p)i 5 F'(s) 3 L'(p) L'(f)—-(' ——+ f

— +- +——
2 t F(s) L(p) ) 2 F(s) 2 L(p) L(f)
F'(f) L'(s)

+
F(f) L(s)

=0 (21b)

1
1 ———

ir2

1 3

4v2

5

2

(b) 1'3. Three functions belongin& to I'3 are

(p: y d: x&' f: &I y.
'—("+x')

I

2 )
The conditions a linear coinbination of these was made to satisfy were

(1) Continuity, with unlike neighbors in x direction at the point (1/'v'2 1/v20):

i 1 i (i 1
— I'(p)+ I' (d) -'I-(f-)—= I

'—L(p) --L(«) ——-L(f)
~

it2 2 4v'2 (v'2 2 4v2 )
(2) Continuity of the gradient in the x and y directions at the same points

1 ( F'(p) F'(d) F'(f)) F(p) 9
+ -' —

~

— -'-F(f)
v24 V2 2 4v2) 2 8

i ( L'(P) L'(d) L'(f)) ( L(P) L(d) 3

v2 E W2 2 4%2 ) E 2 v2 8 )
1 ( F'(P) F (d) F'(f) i .F(P)

+ —i
) +i +i I'(f)-—

V2E V2 2 4&2 ) 2 8

i ( L'(P) L'(d) I.'(f)l ( I.(P) L(d) 3L(f))
i —/+i( i

v2 & v2 2 4v2 ) t. 2 v2 8 )
IV. Endpoint of (111) direction

The group R going with

(22)

(22a)

27r
k=—1

4a

at the endpoint of the (111)axis is D, , and the irreducible representations have the character system

C3

1

1
—1

C2

1
—1

0

Q, and Cq correspond to the classes of threefold rotations about the (111)axis and twofold rotations
at right angles to this respectively. Since the inversion is present, it is implied that the three classes
of operators of determinant —1 have either an even or an odd character system.
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If we consider two neighboring unlike atoms in the x direction, say an F at the origin and a Li
at —a, the phase of the latter, relative to the former, is —i. A simple computation shows the fol-
lowing correction between the representations of the classes Z, C2, C2 and I (inversion) for the two
atoms.

EL ——Ep, C3z. = CSF, C2L = —Cgp, IL = —IF

F: I'2 odd, Li: I'» even,

F: I'3 odd, Li: F3 even.

(a) F: I'l even, Li: I'2 odd.
The F» even functions used were

s: 1 ) d: xg+Qs+Gx

g
. x2y2+y2z2+s2x2 1(x4+y4+s4)

while the F2 odd were

P: x+y+s,
( 3 ) ( 3 i ( 3

f x( x2 (y2+s2)
) +y] y2 (x2+s2)

) +s( s2 (x2 y2)
2 . 2 ( 2 ) E 2 )

f2 . xys.

(1) The continuity condition at the point (100) an'd (—100) between neighbors in the x direction
give

F(s) l F(g) =L(P)—+L(f ), F'(s) —lF'(g) = —L'(0) —L'(fl).

(2) Continuity of the y (and s) gradient for the point considered in (1) yields

(23)

where the subscript indicates the atom involved. In other words, if the representation going with
the F polyhedron is F», even, that about Li will be I'& odd; if that about F is I'3 even, that about Li
will be Fq odd; etc.

It seems reasonable to expect the lowest state to be I'l even for F and I'2 odd for Li (and similarly
for H and Li in LiH) since the F plays the most important role in the states of the lowest band.
I'4 of 0"breaks into F2 and I'3, the latter being doubly degenerate, and we have drawn the conclusion
that the two (111)endpoints in the second band are:

3
F(d) =L(P) I (fl).

2
(23a)

(3) Continuity between the same neighbors at the points (—1/Q3 1/Q3 1/Q3) and
(I/v'3 1/V'3 I/V'3):

2 1 ( 2 1
F(s)+F(d)+ F(g) = —

i
L(-p) ——L(fl) —-L(f2) i.

9 Q3&

(4) Continuity of the x and y gradient at the same point.

(23b)

1(2y 1 (1 21' 4
] F'(s)+F'(d)+ F'(g) ~=

(
—L'(p) — L'(fl) — L'(f2)

~

— L(p) — I.(fl) ~,g3 ( 9 l g3 4+3 3+3 3+3 ) 3+3 3+3 )
(23c)

1 ( 2 ) . 1 (1 2 1 q ( 2 2

] F'()+F'(d)+-F'(g)
(
=

I
L'(P) L'(f ) L—'(f ) )

——
] L(P) L(f ) ). —

g3 E 9 ) Q3 &Q3 3/3 3+3 J (3+3 3/3 )
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1 F'(g) I-'(f)
+

3-F(a) 1.(f)—

F'(s) I-'(f)
+

F(s) L(f)
2L'(f) - 1

I-(f)
2F'(s) 3F'(d)

+

3 L'(f)
+—

18 I-(f)

F'(d)

F(d)

4 F'(a)—2 +2—
9 F(t, )F(s) F(d)

The resulting determinant may be reduced to

I'(f) I'(p)

1(f) I-(p)

5 I-'(f) 2 1 I-'(P) I'(f)
2 I-(f) 3 v'3 1.(P) I-(f)

SF'(d)

F(d)

(23d)

(b) F: I'2 odd; Li: I'( even.
The equations corresponding to this case may be derived from (a) by interchanging F and Li.
(c) F: I', odd; Li: I', even.
In this case the odd functions selected were

p: x+p —2G,

f,:.( "—(&+") ~+&( &
—("+"))-2.

~

"—("+,),~

E 2 ) ( 2 ) E 2 )
and the only even function was

x +p —28.

(1) Continuity at (100) and (—100) for nearest neighbors in x direction

F(P) + F(f) =I -(d) F'(P) +F'(f) =L'(d)

(2) Continuity of s gradient at same point

2F(P)+—3F(f)=0.
The secular equation yields

V. (IIO) endpoint
The group R going with

F'(P) 5 ~'(d) 2 F'(f)
+ +

F(P) 3 L(d) 3 F(f)
(24b)

is C2' which has the character system

F2
I'g

I'4

C2

1

1
—1
—1

C.
1

—1

1

where Q„and C, ' represent the two reHecting planes which pass through the (110) axis.
If we consider two neighbors in the x direction, the relative phases of Li and F, assuming the latter
be at the origin and the former at —a, is e '" "&. The representatives of the group are the same

for both polyhedra. .

We may expect I'q to go with the lowest surface again, while I'(, I'3, and I'4 go with the next band
which Is not degenerate at this point.
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(a) I'&. The functions of type I"& that were used are

3
s: 1, P: x+y; f: x'+y' ——(x+y)(xy+s').

2

(1) Continuity at (100) between nearest: x neighbors

F(s) +i(F(P) +F(f)) =e"" "'[L(s)—i(L (P) +L(f))],
F'(s)+i(F'(P)+F'(f)) = —e'(' ~'&[L'(s) i(L—'(P)+L'(f))].

(2) Continuity of y gradient at same point.

(
F(P) F—(f-) e'=" "'I L(P) —-L(f) I.

2 & 2 )
These will furnish a point in both the first and the second band.
(b) I'q. The functions used in treating Pq are

(25)

(25a)

P: s, d: s(x+y), f: sI s' ——(x'+y')
I)

(1) Continuity at (001) and (00—1) for neighbors in s direction

F(P)+F(f&) = —(L(P)+L(f)) F'(P)+F'(f) =L'(P)+L'(f)

(2) Continuity of s gradient at (100) and ( —100) for neighbors in x direction

3 ~
—

1
-

p 3
iI F(P) F(f) I

———F(d) = ——(I+&) iI L(P) L(f) I—+-L(d)
2 ) K2 ( 2 )

(3) Continuity of neighbors in x direction at (1/v2 0 1/v2) and ( —1/v2 0 1/V2).

(26)

(26a)

1 1 1 1 i
F(P) Fu) —F(d) =———(1+') —

I
L(P)—

V2 4 2 V2 v2 E

(c) I'4. Functions employed:

L(f) i
I+ L(d)

4 )
(26b)

3
P: (x-y), d: s(x-y), f. : (x' —y') —(xy(x-y)+s'(x-y), f~: x(y'-s') —y(x'-s')

2

(1) Continuity at (1/v2 0 1/&2) and ( —I/v2 0 1/v2) for neighbors in x direction:

pF(P) 1 1 ) 1 ( 1 1 1 ) 1

F(f) — F(f) I+ F() = —e"-'" iI —L(P) ——I(f)=—(f2) I+- (d)
E K2 4v2 2v2 ) 2 (v2 4v&2 2v2 ) 2

(2) Continuity of x, y and s gradients at same point

1 p F'(P) 1 1 ) F'(d) 1 p F'(P) 9 1—i& — F'(f&) — F'(fg) I+ +—iI + F(f&)+ F(f2) I

v2 ( W2 4v2 2&2 ) 2 2 ( v2 4v2 2v2 )
1 ( L'(P) 1 1 i I '(d)

+ L'(f )+ L'(f ) I-
v2 0 v2 4v2 2&2 ) 2

(L(P) 9+- iI + L(f&)+ L(f~) I
(»a)

2 E v2 4v2 2V2 )
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p.L.(P) L(d) ~
(27b)~(~),

'() .) (P)—-zi
v2 E v2 4v2 2v

L (p) L (f&)

2

L(f2) i-
+ L(f )++ i~ +

2
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/c- z.d 2.4/2

FINA/
Li

I I

/8

~ ~ ~'
l charge is r''
l c d' tributions6 . ''

a
e plotted on a~ P Bh. t

t' the r'd'usf 2.4 corresponds to
e These results are v

not the fina, app

I II

&0 Z./6

~ ~ ~to the field within a given

K2 E. 2

APPLICATION TO IPART B. APPLI

t nt Geld

nctions going

The self-consols e

3 11ld b of Sectlo
In or

i the charge is r
ming ~Pq ove

sl assume o

y

F6-
' h' h

'
llto 1 with of these

i all symmetric p

re
used. is

ur oses since
oinghf

for t e

ives a g

novalent meta s
ood represen a

'

ma e 2-d tll

/

but1011 allteeh charge distri

e inedase-ine lf-
/-

FliVA/

h' cheme, we

I

nbutio
is sc

I I4 .8in that of
1 ' fi1 for the s

by one o u,I + develoore field for i

field for H. e
ion core

he Coulomb fie

e fun tions au ont ea

I I I

h olhd
11r e. The sphenca y

. Hartree, Proc. oy, oc A
'4 F. Seitz, Phys. Rev.



ELECTRONIC CONSTITUTION OF CRYSTALS; LiF AND LiH 773

.8.

.6.

4.

.2.

/2 /6 2.0 2.4 V

Actually the self-consistent solution is much
nearer the starting one, and were the normaliza-
tion carried through in such a way that &he total
charge on the F sphere were —0.05e and that
on the Li +0.05e, the field would be self-
consistent. We have used the starting field going
with this case in the following because the
neglect of exchange in the computations is
greater than the error made in not using the
exact Hartree self-consistent field. The case of
LiH is much easier to handle because the situ-
ation is inherently simpler, and in this case the
initial and final distributions form a self-con-
sistent solution in which the H has an excess of
0.35 electron and the Li a deficit of the same

//NA/ o

—/N/7/A/ 0

4 .(5 /2 /. 6 Z.O 2.4
Fio. 2. Same as Fig. 2 for LiH.

starting field was made on the basis of the
agreement.

The procedure is actually rather a tedious one
to carry through, mainly because one may not
use some simple mean between the initial and
final charge distribution of one trial in order to
obtain a good starting distribution for the next.
This lack of stability arises from the fact that
wave functions in neighboring cells do not
affect one another only because of their potential
interaction, but also because of the continuity
conditions which they must satisy.

The charge distributions, from the "s sphere
approximation" standpoint, which lead to a prac-
tically self-consistent solution are shown in Figs.
1 and 2 for LiF and LiH, respectively. In the
first case, the initial distribution was taken to
be of such a type that the Li and F spheres were
electrostatically neutral, and the final distri-
bution was such as to give the F sphere a charge
of —0.2e and the Li sphere the negative of this.

amount.
The total potential in each of the spheres is

shown in Fig. 3 for LiF. The way in which these
have been joined at r =2.4a& is a consequence of
the s sphere approximation and has no sig-
nificance other than that it shows, roughly, how

the potential varies in going from one ion to its
nearest unlike neighbor.

The neglect of the Fock terms in the self-

consistent equations is, without question, not
quantitatively justifiable. Nevertheless, it may
be made clear that these will not lead to a jus-
tification of the classical concepts by use of the
following arguments.

In the first place, the classical picture would

be valid only if there were a self-consistent
solution of the Heitler-London type in which the

/2-

/6-

20-

24-

28-

32-

I. I I I I I I I I I I I I I I I I I I I I I

/ 4 .8 /2 /6 20 2A 20 /6 /2, 8 4 0 L/

Fio. 3. The Hartree potential in LiF is schematically
represented. The ordinates are in Rydberg units and the
abscissas in Bohr radii. The junction at 2.4 is connected
with the use of the spherical approximation so that the
illustrated internuclear distance is not the observed one.
Actually the (100) distance is less than this by a factor
of 2 /2. 4.
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Flu. 5. B(k) plots for three prominent crystallographic directions. The ordi nates are
Rydberg units. It is to be emphasized that these results are only approximate.

k=o
(100) Limit
(100) Midpoint
(111)Limit
(110) Limit

—0.77—0.73—0.75—0.76—0.68

+0.18 0.18
0.10 0.10
0.15 0.15
0.12 0.12
0.01 0.05

0.18 0.7—0.11 0.82
0.12
0.03
0.07

F. H. Melvin, Phys. Rev. 37, 1230 (1931); E. G.
Schneider, Phys. Rev. 49, 341 (1936).

radial functions are shown in Fig. 4. This choice
of the radius of the s sphere is valid in both LiF
and LiH. It is to be emphasized that only the
relative positions of the bands in a given solid
have significance because of the neglection of
exchange and correlation effects.

The energies going with the various wave
functions are tabulated in Table I for LiF, and
the probable positions of the bands are shown in

Fig. 5. The wave functions for k=0 going with
the first three bands are shown in Fig. 6. These
have been joined at r, instead of the actual
midway point, in accordance with the s sphere
approximation, but the general form is repre-
sentative. The difference in energy between
center points of the second (filled band) and the
upper band correspond to the long wave-length
limit of the absorption band of LiF and is found
here to be about 1500A; as compared" with the
observed value of about 1200. We would natu-
rally expect to get too low a value for the energy

TABLE I. B(k) for particular points in Li F.

Band I II I I I IV V

difference since exchange effects are more im-

portant for electrons of the same type as those

giving rise to the field than for others, as
Bardeen" has shown, so that the lowest band
will be pushed down more than the upper, unfilled

band.
It is to be observed that the wave function

going with the unfilled band is much more like

that for a free electron than are the other
functions.

B. IiII
The P'/P ratios for LiH are shown in Fig. 7 and

the positions of the bands for the (100) direction
of propagation is shown in Fig. 8. Only the
lowest band is filled in this case, and the wave
function going with k=0 is illustrated in Fig. 9.
The energy difference of the end points of the
first and second bands corresponds to an ab-
sorption wave-length of 1900A which is in

agreement with the value of 1900A found by
Bach and Bonhoeffer. "The accuracy of agree-
ment is, of course, not particularly significant
and, as a matter of fact, these workers observe

~ J. Bardeen, Phys. Rev. 49, 653 (1936).
20 F. Bach and K. F. Bonhoeffer, Zeits. f. physik.

Chemic 23, 256 (1933). In connection with the remarks
made in the text, it is worth emphasizing the fact that a
stoichemical excess of one substance in a compound (or
an impurity) will give rise to localized electronic, states
which lie between the bands. These will undoubtedly
possess sharper absorption peaks than the band to band
transitions do.
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justifiable as long as it is implied that there are
correlational modifications. 2'

One now approaches the question of whether
one should use Heitler-London or Bloch eigen-
functions in the description of a situation in
which one electron is in an excited state and the
filled Band is left with a dearth of one electron (as
usual we shall refer to this as an anti-electron).
In the case of both LiF and LiH it seems unques-
tionable that one should use the Bloch functions
for the excited electron since these functions are
essentially those of free electrons and differ
markedly from the states of the filled band. Even
in the case of the anti-electron, however, we
believe that it is more appropriate to consider a
Bloch rather than a Heitler-London eigenfunc-
tion to be absent, simply because the energy of
these electrons is such that the electron may
jump from one atom to the next with ease. That
is, there is no question of a very small probability

2' In a recent paper (Physik. Zeits. Sowjetunion 9, j.58
(1936}}Frenkel attempts a criticism of the use of the Bloch
picture in such cases as the present one. %'e believe that
this criticism is not justifiable to the extent this author
presses it for the reasons mentioned here.

of leakage through a barrier as in the case of
x-ray electrons, simply because the wave function

has an appreciable amplitude at all points. It is

probably true, however, that the anti-electron
is conducted through the lattice at a much slower

rate than the electron in the excited state.
On the other hand, there are unquestionably

states in which the electron is strictly localized

to a definite position such as those corresponding
to the U centers in ionic crystals or to surface
states. When an electron makes a transition
from such a state to a free state, the anti-electron
created may very well be localized in certain
cases. For example, if' the U center arises from an

electron bound to an excess Li ion which is an

open space in the lattice, the locality of this ion

may remain positively charged when the electron
is removed by light absorption, simply because
the other electron present which will be in the

upper filled band will not be able to extend over
the open space suAiciently well to completely
neutralize it. That is, one may regard the situ-
ation as if a Li ion were attached to the "surface"
of a hole. We do not feel justified in entering into
more speculations of this type in the present

paper, though it is felt that the viewpoint
emphasized here is capable of explaining most
of the conduction properties of halide crystals,
and intend to return to this on another occasion.


