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to a value for 0- of the order of 10—' nuclear units
for S'„=5.2, an energy outside the range of
validity of Eq. (12). The results of Breit and
Condon7 show that at this energy, the part of a
due to electric dipole transition is as large as that
due to magnetic dipole, or perhaps somewhat
larger. Utilizing this, the computed value of o.

comes out to be about 0.005 nuclear units, in fair
agreement with the experimental result.

CQNcLUsIoNs

It has often been stated that the general
characteristics of the interaction between neutron
and proton are more or less independent of the
shape of the field and of the size of the potential
hole. We have shown, in a specific case which can
be calculated by analytic means, that this is
indeed the case. Once the constants are chosen so
as to give the cor'rect binding energy and elastic
cross section for slow neutrons, the computed
values of (1/r) and o. (for low energy photons) are
insensitive to variation of the remaining param-.
eters ro and x1 within quite wide ranges of
values of these parameters. Nor are the results
particularly sensitive to the presence of a

Majorana exchange operator in the potential, or
to whether there is a stable singlet state or not.
Empirical determination of these properties will
require the experimental measurement of quan-
tities which depend more markedly on the angu-
lar momentum than do those discussed in the
present paper.

The above result is a negative one, and as such
is not particularly satisfying. However several
positive conclusions can be drawn. from our re-
sults. One is that the neutron-proton interaction
must contain a term dependent on the coupling
between the spins of proton and of neutron. Only
in this way can be explained the large elastic
cross section for slow neutrons, and the fact that
the mean life of a slow neutron in the presence of
protons is independent of its velocity, a property
of magnetic dipole capture.

It is also apparent that the results are in-

ternally consistent: i.e. , if one assumes that ro is
less than 0.8, that x& is less than unity and that
V, is not equal to U&, then a choice of parameters
to fit two of the four bits of experimental data
discussed above gives results which fit the other
two experimental values.
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The Wigner and Seitz method of cellular potentials has
been applied to the calculation of wave functions in NaC1.
A renormalized Hartree field has been used around the Cl
and the Prokofjew field around the Na. The relative
heights of the potentials are determined by use of Made-
lung's number. The problem of joining the functions at
the cell boundaries has been treated by the Slater method
of fitting P and P' at midpoints. For the outer Cl electrons
a reasonable approximation is to join at Cl —Cl midpoints
only. This gives rise to a face-centered lattice for which
solutions of the Slater conditions have been found by

Krutter. Several new solutions have been derived which
allow fairly accurate energy contours in momentum space
to be drawn for the Cl 3P band. If the joining is made at
Cl —Na midpoints alone, a large number of unsatisfactory
zero-width bands arise. When both Cl —Cl and Cl —Na
midpoints are used, the boundary conditions can be
treated only for special cases. For these they are consistent
with the Cl —Cl solutions. Several attempts to calculate
the ultraviolet absorption frequency are described and the
difficulties involved are discussed.

I. INTRoDUcTIQN

HERE has been a great advance in the cal-
culation of wave functions in solids in the

last four years. The initia1 impetus was derived

*The writer is indebted to Dr. Seitz for discussions of
this paper and that by Douglas H. Ewing and Frederick
Seitz. The viewpoints of the two papers dier in that the

from the contributions of Wigner and Seitz. '
From a consideration of the Pauli principle they
conduded that an electron in a monovalent metal

ionic picture of the lattice has been adhered to in this
paper and no attempt to obtain a self consistent field has
been made.' Wigner and Seitz, Phys. Rev. 43, 804 (1933).



is surrounded by a "Fermi hole" in the charge
distribution of the other electrons. This hole has
roughly the volume corresponding to one atom.
When the electron is on one of the atoms in the
lattice, it 6nds that the hole produces a net
positive charge on that atom, while all other
atoms are neutral and produce no 6eld. The total
potential for this electron is, thus, just that
which it would experience about the same atom
in the case of free atoms. If the 6eld for the free
atom is known, this picture gives the 6eld in the
metal. Since the held is spherically symmetrical
about any atom, the wave equation can be
separated in spherical harmonics and the radial
functions obtained by numerical integration.
The problem of utilizing the functions so obtained
to construct Bloch type functions continuous in

going fmm atom to atom was 6rst discussed by
Slater. ' On the basis of this picture, calculations
have been carried out for metallic Na, ' Li, '
Cu, ' diamond, ' LiH and LiF, '

In a later attempt to improve their values,
Kigner and Seitzv consider their method from
the viewpoint of the Fock equations. The Fock
equation for one of the one-electron wave func-
tions may be written in the form

where V(r;) is the coulomb potential of the
combined positive and negative charges and

The P'i is to be taken over all occupied states
of the same spin as P;. In the case of free elec-
trons, where the f's are plane waves, the exchange
term A; is merely a constant which depends upon
the momentum of the wave function P;.s In the
case of' metallic sodium, the wave functions are
near enough plane waves to warrant regarding
the term as a constant there. For the case of a
substance such as NaCl, the wave functions will
be as near free atom Bloch functions as plane

' J. C. Slater, Phys. Rev. 45, 794 (1934).' J. Millman, Phys. Rev. 4'7, 286 (1935).' H. M. Krutter, Phys. Rev. 48, 664 (1935).' George E. Kimball, -J. Chem. Phys. 3„560(1935).' Ewing and Seitz, Phys. Rev. (this issue).
7 signer and Seitz, Phys. Rev. 46, 509 (1934).
8 John Bardeen, Phys. Rev, 49, 653 (1936').

waves, and the effect of A should be considered
afresh; Consider Bloch functions of the form

The X atoms of the lattice are located at the
lattice points R the index I refers to the atomic
level and the allowed values of k; are determined

by periodicity requirements on the boundary of
a large box. For these functions the summation
over i in the A term can be readily worked out.
It is found that if r; is on atom n, A vanishes
unless r is on atom n also. Thus, so far as
exchange is concerned, Eq. (1) reduces to the
Fock equation for a single atom. This result
could have been seen at once by realizing that
the Bloch functions (3) are obtained from the
single atom functions P„(r R) —by a unitary
transformation which does not mix free atom
functions having different energy parameters E„.
Under these conditions the Fock equations will

be satis6ed in formally the same way by either
set of functions.

Thus, for both the free electron functions and
the atomic Bloch functions, the A ter'm is inter-
pretable as the potential due to a hole in the
electmn distribution which surmunds a given
electron. For the free electrons the shape of the
hole has no particular signi6cance, but the
potential due to it depends on the momentum
or wave vector of the solution. ' For the atomic
Bloch functions, the hole for a given P;, „

in

the P„distribution is Hartree-like about a given
atom (at least insofar as the Hartree approxi-
mation represents the Fock. equations for one
atom) and does not depend on k. Since in NaCl
the ions are not very tightly squeezed together,
we should expect the Hartree hole to be prefer-
able to the Fermi hole.

II. CALCULATION

The 6elds of the Cl ion have been computed
by Hartree. ' These were modi6ed before use by
renormalizing them so that all the 3P and 3s
electrons were contained in a sphere whose
volume was equal to the space over which these
functions were expected to be large in the lattice,
This was taken to be the volume belonging to
a NaC1 molecule less the volume of a spherical

' D. R. Hartree, Proc. Roy. Soc. A141, 282 (1933).
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Na+ ion. The fields corresponding to the renor-
malized charge distributions were then calculated,
and new s and p functions for a wide range of
energy parameters were computed from them by
Hartree's methods of numerical integration. "
There are no d and f functions in Cl, so the
Hartree field for them was taken to be the same
as for the 3P functions, that is, the spherically
averaged field of the configuration 1.s'2s'2p'3s'3P'
and the nucleus.

Since the valence electrons of Cl were ex-
pected to have small amplitude about the Na+
ion, the hole about the Na was considered neg-
ligible and the field and wave functions there
were taken to be the same as those in metallic
sodium "

Since the ions in NaC1 are not neutral, the
field due to the neighbors of any one ion must
be considered. If this field is expanded in spher-
ical harmonics, it will contain a constant term
and terms in /=4, 6, 8, etc. , which are neglected
because they are much smaller than the constant
term and average to zero in the spherical
approximation. The value of the constant term
can be obtained from Madelung's number which
gives the electrostatic energy per cell (4 mole-
cules) and consequently the potential at a lattice
point of an ionic lattice in terms of the lattice
constant and the charge on the lattice points.
For the NaC1 lattice this gives

q ci = (13.94e'/a) —:4 (4)

D. R. Hartree, Proc. Camb. Phil. Soc. 24, 89 (1928).
"The writer is indebted to Professor J. C, Slater for

the use of his wave functions calculated in connection
with reference 2."See the article by Born and Goppert-Mayer, Handbuch
der Physik, XXIV/2, for a discussion of lattice potentials.

for the potential at a Cl ion due to the other
ions. " In atomic units this value is 0.66 for
NaC1. Hence, if a wave function were obtained
in the Hartree field of a Cl ion less one 3P
electron (net charge zero) for a positive energy
parameter et. , then the total energy in the lattice
for the same wave function would be
—0.66. Similarly for Na+ wave functions it
would be el, =&~+0.66.

Thus the charge distribution which produces
the field in which the electron moves is that of
the entire ionic lattice when the electron is on
a Na ion, or else the same charge less that of

FIG. 1. Scale model of NaC1.

one electron on the Cl ion where the electron is.
Physically it does not seem very plausible that
the defect of one electron in the neighborhood
of a given electron should vanish entirely when
the electron moves from a Cl ion to a Na ion.
To investigate this the exchange potential due to
a two atom type Bloch function (see Eq. (6))
was calculated. This exchange potential has
decidedly nonphysical properties. It is in general
complex and, when averaged spherically, gives
zero fields for the wave function with k =0. This
peculiar behavior probably indicates a deficiency
of the Fock-Bloch method of dealing with this
case. A more sensible behavior of the hole when
the electron moves onto a sodium would be for
it to distribute itself onto the six surrounding Cl
ions. This results in a lowering of the sodium
potential by 0.38 At. U. , so that ~l. =&~+0.66
—0.38=a&+0.28. It was convenient to carry
out calculations for eL,

——&~+0.58 at the same
time, and the results for both are given in the
next section.

III. JQINING METHQDs

On the basis of the ionic radii, it is seen that
in NaC1 the Na+ and Cl ions touch and the Cl
ions almost touch (Fig. 1). We are interested
principally in the Cl 3p band. For this the wave
functions will be much larger around the Cl
than around the Na. Hence, the requirements of
continuity will probably be as important in

going from Cl to Cl as Na to Cl. Three different
sets of continuity requirements were considered
in all. These are classified according to the
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Fros. 2 AND 3. Energy bands for the three joining conditions. (k space is body-centered and the scale has been
chosen so the lattice points are 111, 200, etc.)

A. Cl —Cl
a. Cl —Cl —Na
C.

'
Cl —Cl —Na

D. Na —Cl
Z. Na —Cl

points at which the Slater conditions (continuity
at the midpoint of an interatomic line of P and
the compone'nt of VP along the line) are fulfilled.

0

i. Cl-Cl
Neglecting the wave functions of the Na+ ions

entirely, we are led to consider a face-centered
lattice of Cl— ions. The Slater conditions are
required to be fulfilled at the Cl —Cl midpoints.
For this lattice a suitable set of 12 wave functions
(one s function, three p's, five d's, and 3 f's of
the form x(y2 —s2) /r') have been found by
Krutter. 4 He gives solutions for the particular
directions 100, 110, 111 for k. The relationship
between energy and k for the 100 and 111 lines
are shown in Figs. 2 and 3. A sufficient set of
further solutions have been obtained to allow

rough interpolations to be made to general
points in fi space" (Fig. 4).

2. Na —Cl

For one type of atom in a lattice with centers
of symmetry it can be proved that the wave
function should be of the type

'3 These new solutions are to be submitted to the
Physica/ Review in the near future.

where u, is an even real function of its vector
argument and I„is odd and real. Such functions
materially simplify the setting up of the Slater
conditions. If there are two types of atoms at
centers of symmetry, as in NaCl, then the
proper function is of the form of (5) summed
over one set of atoms plus a precisely similar
sum over the other set.

if»(r) =Pe'~'" ~~[u, (r R'„)+iu„(r—R,)]—
+Pe' " e v (r Re)+iv (r —R—e)$ (6)

P

If we consider a Cl ion as being at r=0, then
it is surrounded by 6 Na ions at a(&-', 0 0),
a(0 &-,' 0) and a(00 &-', ). The continuity re-
quirements at the Na —CI midpoint a(» 0 0) are

u, +iu„=e '"*'[v —in ]
ug +1u„=e' + L

—vg +tv~ 3.

Here the functions are taken to be sums of
surface harmonics times their corresponding
radial functions. They are all evaluated for an
argument of a(-', 0 0) and ' indicates 8/Br.
Separating real and imaginary parts, we see
that each interface gives 4 conditions and the
six interfaces would give 24 conditions in all.
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FIG. 4. Energy contours in k space for Cl —Cl. a, shows two lattice points in k space, and the
elementary segment of the first Brillouin zone; b, op= —0.41; c, eL, = —0.46; d, ep =-0.51;
e, e~ ———0.56; f, ~I. ———0.61; g, e~,

———0.66; h, ~L, ———0.71.

However, for functions of type (6), t.he a(~ 0 0)
and a( —

4 0 0) interfaces are equivalent and
onlv 12 conditions are independent. Hence, if we
expand the n's and v's in terms of 12 solutions
of the spherical equations for the Na+ and Cl
ions, the 12 homogeneous equations (for the
expansion coefficients) will be soluble if, and
only if, the determinant of the equations
vanishes. This determinant is a function of k,
&„,0, and the various radial functions and their
derivatives. Since the latter are functions of the

~~elegy, the vanishing of the determinant gives
a relationship between energy and momentum. '4

The natural set of twelve functions to choose
is an s function, three p's, and two d's of the
form (x' —y')/r' for each type of atom. Even
for these simple functions, the determinant
derived from the Eq. (7) proves to be more
dificult to handle than the corresponding 12th
order determinant of the face-centered lattice.
Some results for calculations in the special
directions 100 and 111are shown in Figs. 2 and 3.
In Fig. 3 the upper band is double; in Fig. 2 the
"zero width" band is double and there is also a
third band corresponding to the single band of
Fig. 3, which is not shown. The dotted curves
correspond to a total defect of one electron on
the Cl's which surround the electron when it is

on a Na, and the dashed curve to a lesser defect
(see Section II).

14 See reference 2 for a discussion of this method.

The reason the change of 0.3 in the Na poten-
tial produces only the small change 0.05 in the
results is that the values lie within the Cl 3P
band (the energy range for which p'/p(0).
Within this band p'/p is a relatively sensitive
function of the energy, .while the corresponding
quantities are much less sensitive for the Na+

wave functions. Hence, a change in the energy
parameter of the latter can be compensated by a
much smaller change in the former.

3. CI —C1—Na

The set of conditions derived by considering
both Cl —Cl and Na —Cl midpoints simul-

taneously leads to twenty-four conditions, twelve
of each type. Due to the complexity of this case,
no attempt was made to choose a suitable set of
functions. Instead, certain directions or points
were chosen in k space and sets of functions were
chosen in accordance with the symmetry groups
for these points. Since the point k =0 corresponds
to full octahedral symmetry, only functions of
the representation I'4 (that of the Cl 3P func-

tions) were used. " Similar considerations in

connection with the other end points of Figs. 2

and 3 gave the results shown there. The dotted
and dashed curves have the same significance as
for the Na —Cl case.

I'For a classification of spherical harmonics according
to the representations of Oh, , see H. Bethe. Ann. d. Physik
3, 133 (1929).
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IV. CQMPARIsoN oF REsULTs

We see that for all the cases considered, the
width and location of the energy band is approx-
imately the same. The Cl —Cl and Cl —Cl —Na
are very similar and are both quite different from
the Na —Cl. In the absence of any criterion for
testing the validity of the various methods, it
appears that the width arid location of the energy
band is probably nearly right and that the
detailed structure is more like that of the Cl —Cl
and Cl —Cl —Na than the Na —Cl.

V. CQNcERNING THE BINDING ENERGY

It does not appear practical to carry out this
method far enough to calculate binding energies
as is done in the case of metals. The reason for
this is the presence of six valence electrons
rather than one. This means that when the wave
functions are calculated in the crystalline field,
any change in the wave function gives a fivefold
reaction on the field for which the wave function
is calculated. Also, there is no adequate zero for
the energy of the lattice. The energy values
obtained by Hartree for the Cl ion may be in
error (due to neglect of exchange effects and
polarization of the other electrons by any one)
by an amount comparable with the binding
energy of NaCl. If these errors are not inde-
pendent of the lattice spacing, their variation
may obscure the variation which gives the
binding energy.

VI. CQNcERNING ExcITATIQN

One quantity which is generally supposed to be
intimately connected with electronic bands in an
insulator is the energy of excitation and the
ultraviolet absorption. Under the inHuence of
light, there will be a probability of excitation of
an electron from a state in an occupied band to
one in an unoccupied band. For ultraviolet light,
the change in momentum of the electron will be
negligible and the possible transition energies
will be those for excitation without change of
momentum. Absorption will become large when
the energy of the light is equal to the least
energy difference between states of the same
momentum in an occupied and an unoccupied
band.

There are rather serious difficulties in applying

the Fock method discussed in Section I to the
calculation of excited states. The excitation of
one electron will, of course, make an entirely
negligible change in the field for an unexcited
electron, so that the changes in the occupied
states are inappreciable. However, the field
acting on the excited electron is very different
from that acting on one in a filled band. This is
due to the orthogonality of the excited state
wave functions to the filled state wave functions.
Due to this orthogonality, the exchange potential
for the excited electron will be very small, and
the Fermi hole for it will be nearly negligible.
From this we suspect that the Fock approx-
imation is not as good for excited states as for
the ground state and should be modified by a
correlation between electrons of parallel spin,
which would restore some of the lost hole.

An attempt to calculate the excitation energy
on the basis of the three joining conditions used
in III gave unsatisfactory results. The energy
difference between the bands varied from about
3 times the experimental value (0.54 At.U.),
when the hole was omitted for the excited state
wave functions, to about —„when the hole was
retained.

Also, the width (0.35 At. U. ) of the lower band
alone is roughly five times the width expected for
the first absorption band for NaC1 from the data
of Hilsch and Pohl" and O'Bryan. "Since it is
rather unlikely that the upper band should be
such as to decrease the total spread for band to
band transition, it does not appear possible that
the electronic energy band picture can give the
right behavior for absorption. There is a possi-
bility that the detailed structure of the bands,
causing a concentration large number of transi-
tion probabilities in certain energy ranges, could
be responsible for the absorption peaks. '8 How-
ever, until more accurate work is done on the
bands, this cannot be determined.

The writer wishes to acknowledge his indebted-
ness to Professor J. C. Slater for directing this
research and to Professor P. M. Morse for the
theory and practice of drawing space contours.

' R. Hilsch and R. W. Pohl, Zeits. f. Physik 59, 812
(1930).

j~ H. M. O'Bryan, Phys. Rev. 49, 944 (1936).
"Such peaks have been computed for the energy levels

of Cu. E. Rudberg and J. C. Slater, Phys. Rev. 50, 150
(1936).




