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The relations are investigated between three types of
theory for explaining absorption of light by ionic crystals:
absorption by independent atoms or ions, absorption
according to Frenkel's excitation waves, and absorption
according to energy bands and lattice functions, as used
in the theory of metals. It is shown that each method leads
to a set of unperturbed wave functions, which are related
to each other by linear combinations, and that no one set
is correct at the actual distance of separation in the crystal.
Instead, combinations must be used, leading both to con-
tinuous absorption as in the energy bands, and to one or

two discrete lines in connection with each continuum, as
in absorption by independent atoms or in excitation
waves. These conclusions are compared with experiment,
explaining in a general way the sharp structure observed
both in the near and far ultraviolet absorption spectra of
these crystals. The discussion deals throughout with the
undistorted crystal, leaving out of account the new ab-
sorption bands which are known to appear in these
crystals after considerable illumination, resulting from the
deposition of free alkali in the crystal.

HE electronic energy levels in the alkali

halides have been the subject of much
study in recent years. Experimentally, Hilsch
and Pohl' and students of Pohl have made
elaborate studies of the ultraviolet absorptions of
these crystals, and also of the photochemical
processes resulting from the absorption of light,
including blackening of the crystal by deposit of
free alkali, and subsequent photoconductivity
when the crystal is illuminated with visible light.
More recently, Smith? and O’'Bryan?® have studied
the absorption of a few of the crystals further in
the ultraviolet. On the theoretical side, Hilsch
and Pohl! have proposed a simple theory giving
the position of the first ultraviolet absorption
edge in terms of the lattice spacing, the ionization
potential of the alkali, and the electron affinity of
the halogen, following an earlier and less satis-
factory theory of Wolf and Herzfeld.* Frenkel®
has discussed the general problem of the absorp-
tion of light by crystals, though without detailed
application to these particular crystals. von
Hippel,® in a paper which is now in proof, has
carried further the type of argument used by
Wolf and Herzfeld, Hilsch and Pohl, coming in
some particulars to results in agreement with the
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present paper. Very recently Ewing and Seitz’
have applied to LiF, and Shockley® to NaCl, the
general type of theoretical analysis which has
been used with success for the energy bands in
metals. A number of other workers have con-
tributed to the field, additional references being
given in the paper of von Hippel.

Three different points of view are found among
the references just mentioned. The first might be
called the atomic method, in which excitation is
supposed to be an act confined to a single atom
or ion. This method makes close connections with
the well-known electrostatic theory of ionic
crystals, and is the simplest mathematically and
the easiest to understand. It has been used by
Hilsch and Pohl, Wolf and Herzfeld, and von
Hippel. The second method is that of excitation
waves, in which the excited electron is no longer
localized on a particular atom or ion, but is

‘allowed to wander through the crystal. This has

been employed by Frenkel. Third is the method
of lattice functions, in which each electron of the
crystal is supposed to be in a modulated wave
traveling through the crystal, as in the theory of
metals. The method has been applied to insula-
tors by Wilson® and others, and is that used by
Ewing and Seitz and Shockley. It is the purpose
of the present paper to investigate the relation-
ships of these three methods, and to see which is
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most applicable to the actual problem. If the
atomic method or the method of excitation waves
is supplemented by admitting polar, or ionized,
states as well as states of pure atomic excitation,
it is found that the three methods represent three
different sets of unperturbed wave functions, of
which the correct wave functions are linear com-
binations. The relations between the functions
are exhibited, approximations to the solution of
the perturbation problem are set up, and it is
shown that no one of the methods correctly repre-
sents the real state of affairs, but that two types
of energy level are simultaneously present, dis-
crete levels like those of the atomic method and
a continuum as with lattice functions, agreeing
with the observation of continuous absorption
with sharp structure.

One feature will be entirely neglected in the
present discussion, the motion of the nuclei,
which we shall assume to be held in their equi-
librium positions. It has been pointed out by
several of the writers just quoted that excitation
or ionization within the crystal will change the
interatomic forces, setting the nuclei into oscilla-
tion, and that after this oscillation dies down, the
excited energy level will be stabilized in such a
way that the electron will not return to its
normal position. In the resulting distorted posi-
tion of the nuclei and electrons, the absorption
frequencies will be different from those for a
normal crystal. These questions are closely tied
up with the mobility of the excited electrons, the
blackening of the crystal by exposure to light, and
the electrical conductivity of crystals illuminated
by the proper wave-lengths. We shall avoid all
these questions of the distorted state of the
excited crystal, discussing only absorption by the
normal, unblackened crystal.

LatTicE ENERGY LEVELS

We begin with the method of lattice functions
and energy levels, the method of Bloch. Consider
a periodic lattice containing two types of ions, as
an alkali halide. There are three types of energy
level for an electron moving in such a potential
field : for low energy, one type of wave function is
concentrated around ions of one type, and has
energy levels roughly like the energy levels of that
ion; a second type is concentrated around ions of
the second type; the third type of wave function,
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found at high energy, is shared between ions of
both types. In general, the electrons normally
present in an alkali halide crystal are of the first
two types, while the third type is met in the ex-
cited states. We consider first the normal state
and the energy levels normally occupied. For
example, in NaCl, which we may consider as
built up of Na* and Cl~ ions, each sodium ion
contains two 1s, two'2s, and six 2p electrons,
while each chlorine contains two 1s, two 2s, six
2p, two 3s and six 3p. Corresponding for instance
to each level of a single sodium ion, there will be a
band of levels in the crystal, containing as many
discrete levels as there are sodium ions in the
crystal. This band will be of zero width in energy
as long as the ions are far apart, but as they are
pushed together the band will broaden. Even at
the actual distance of separation, however, the
sodium ions are far enough apart in proportion to
the size of the ions so that the broadening is com-
paratively small. Except for one fact, which we
shall mention immediately, we could then derive
the energy levels in such a lattice, as a function
of lattice spacing, by taking the energy levels in
the various ions at infinite separation, and assum-
ing those to broaden somewhat as the ions be-
came squeezed as they are in the crystal.

The fact which we have just mentioned, one
which makes ionic crystals essentially different
from metals, is that the ions are charged. In a
metallic crystal, where each atom is electrically
neutral, it is convenient to adjust the arbitrary
zero of potential, at each lattice spacing, so that
the tightly bound x-ray energy levels are inde-
pendent of lattice spacing.!® This demands that
the potential in the immediate neighborhood of
each nucleus (which we can adjust at will) be
independent of lattice spacing. Such an adjust-
ment is impossible in ionic crystals, for there is a
difference of potential between the positive and
negative ions which is a function of the distance,
so that if the potential of one type of ion is made
constant, that of the other type will change with
lattice spacing. The most symmetrical assump-
tion to make in this case is that the potential in
the neighborhood of a positive ion, which will be
negative on account of the predominantly nega-
tive charge of its neighbors, decreases as much

10 ], C. Slater, Rev. Mod. Phys. 6, 209 (1934); J. C.
Slater and H. M. Krutter, Phys. Rev. 47, 559 (1935).
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F1G. 1. One-electron energy bands in NaCl crystal.

with decreasing lattice spacing as the potential in
the neighborhood of a negative ion increases. By
the Coulomb law, both these variations will be
inversely proportional to the lattice spacing, and
we can easily get the constant of proportionality
from the Madelung constant for the crystal. Thus
the energy levels of an electron in this potential
field will increase (on account of the negative
charge of the electron) inversely proportional to
the lattice spacing for those energy levels con-
nected with positive ions, and will decrease at the
same rate for negative ions, then broadening out
as the ions begin to overlap, as described in the
preceding paragraph.

In Fig. 1 some of these energy levels, the 2s and
2p levels of the sodium ion, the 3s and 3p of the
chlorine ion, are sketched for NaCl, as a function
of lattice spacing. This figure was constructed in
the following manner. In the first place, the
asymptotic energies were found at infinite sepa-
ration from the empirical spectral terms; for the
energy in a one-electron problem is an approxima-
tion to the ionization potential connected with
removing the electron in question from an atom
or ion. Thus the asymptotic value of Cl~ 3p is
taken to be the negative of the energy necessary
to remove a 3p electron from the chlorine ion, or
of the electron affinity, about 30,400 cm~.1 The
value of Cl— 3s differs from this by the energy

1 Mayer and Helmbholz, Zeits. {. Physik 75, 29 (1932).
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necessary to raise a 3s to a 3p state in neutral
chlorine. (This, as a matter of fact, has not been
observed; but the corresponding energy in CI+
is about 94,000 cm™!, in Cl** about 99,000, and in
Cl*+++ about 103,000, from which we may assume
that in Cl it is about 89,000 cm™, with a probable
error of perhaps 8000 cm™, or about a volt.) The
asymptotic value of Na* 2p is minus the energy
required to remove a 2p electron from the
sodium ion, and similarly for 2s, the values being
381,000 and 644,000 cm™, respectively. Knowing
the asymptotic energies at infinite separations,
we can then add or subtract, as the case may be,
the energy 3.495 €?/d, where 3.495 is the ap-
propriate Madelung number to give the electro-
static energy, d is the distance between like
atoms along the axis. Expressing energies in
cm™, lattice spacing in Angstroms, this becomes
approximately (405,000 cm™)/d. The resulting
lines represent the energy bands of zero width in
the lattice. At small distances, we then allow
these bands to be broadened in a plausible way.
For the Cl~ 3p band, Shockley® has found the
breadth at the lattice spacing of 5.63 angstroms
to be approximately 35,000 cm™!, the spreading
being largely above rather than below the line
derived from Madelung’s constant. For Cl— 3s,
the overlapping of orbits is less, so that the
spreading will not start until somewhat smaller
lattice spacings. The sodium bands will broaden
for much the same reason as in a sodium crystal,
on account of the interaction of neighboring
sodiums; we have accordingly assumed the same
amount of broadening of these bands that there
would be in the sodium crystal with the same
sodium-sodium distance. Aside from these pieces
of information, the pattern of the broadened
bands at small distances is merely sketched in a
suggestive way, not the result of calculation.
Next, we consider the excited levels. We must
first notice that, though these levels can be in-
dicated on the same diagram as the occupied
ones, a different potential field must be used to
determine them. Thus for an occupied level,
using an argument based on the Hartree or Fock
method of approximation, the ion on which the
electron is found must be assumed to lack an
electron by way of compensation, though the
other sodium and chlorine ions have their usual
single charges. For an unoccupied state, however,
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it cannot be assumed that the ion on which the
electron in question happens to be found lacks an
electron. If we take an atomic view of the process
of excitation, an electron after excitation soon
travels to another ion, eventually going to quite a
different part of the crystal, finding itself on ions
which have their normal charges. At large dis-
tances, then, the excited sodium-like levels will
approximate those of an electron in the field of a
singly charged sodium ion; that is, they will be
the levels of neutral sodium. The first excited
state will be the 3s of sodium, whose energy is
given by the negative of the ionization potential,
about 41,400 cm~. As the distance decreases, this
energy level will rise on account of a Madelung
term, broadening as atoms overlap, much as the
3s levels in a lattice of sodium atoms, so that at
the normal distance of separation the band will
be very broad, much broader than the occupied
bands in the crystal.

Another feature complicates this situation,
however. We have considered only excited states
of sodium, not of chlorine. This is correct at large
distance, for the chlorine problem in question is
an electron in the field of a negative chlorine ion,
which has no discrete stationary states. Of course,
however, it has continuous energy levels, be-
ginning at the energy zero at infinite separation.
We consider how the bottom of this continuum
changes with lattice spacing. At first sight, we
might think the energy would decrease with a
Madelung term, as with electrons bound to
chlorine. This will not be the case, since the wave
function connected with the continuum is dis-
tributed over space, and part of the charge is
near chlorines, part near sodiums. As the dis-
tance decreases, the potential energy of the
electron will decrease when it happens to be near
a chlorine ion, increase when it is near sodium,
compared to the value at infinite separation. The
result will be to a first approximation no change
in energy with distance, the opposing tendencies
canceling. To a higher approximation, the de-
crease of potential energy near the chlorines will
tend to concentrate the charge there, making its
wave function resemble a discrete chlorine func-
tion more than at infinite separation, so that
there will be some decrease of energy with dis-
tance, though not as much as for a pure chlorine
level. Now it is evident from Fig. 1 that the re-
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sulting level will cross the first excited sodium
level, at about the distance of separation where
the sodium level begins to split up (roughly
d=15A). There will then be an interaction of the
two types of level, the resulting lower level
having a wave function with appreciable charge
on both chlorine and sodium ions, behaving
around a chlorine like the lowest member of the
continuum, around the sodium like a 3s electron.
The level will broaden, but will neither rise -as
much as a sodium level would, nor fall as much as
a chlorine level. A hypothetical form for the
broadened level is indicated in Fig. 1.

OPTICAL ABSORPTION FREQUENCIES

The energy levels of Fig. 1 may be used to
investigate the optical absorption frequencies of
the crystal. As always with one-electron energy
levels, we may interpret an absorption as a
transition of an electron from one of the lower,
occupied levels to one of the higher, unoccupied
ones, the energy difference in the diagram giving
the absorption frequency. Thus we may expect
an absorption in the near ultraviolet when a
chlorine 3p electron is raised to the excited states;
a shorter wave-length for chlorine 3s; still
shorter for sodium 2¢; and one in the very far
ultraviolet for sodium 2s. The near ultraviolet
absorption should start at a frequency equal to
the smallest interval between 3p and excited
bands (roughly 60,000 cm~!), with a continuum
on the short wave-length side. The band is
observed to start at about 1750A (57,000 cm™),
and to come to a sharp peak at something less
than 1600A (62,500 cm™). The chlorine 3s ab-
sorption should be expected at about 170,000
cm™ (590A), the sodium 2p at 290,000 cm™!
(345A), and sodium 2s at 550,000 cm™! (181A).
The observed absorptions resemble those pre-
dicted by the theory, but are different in detail.
Thus though the near ultraviolet absorption
comes at about the right place, sharp lines as well
as continuous absorption are found by Hilsch
and Pohl.! Smith finds absorption all through
the region around 600A, but with pronounced
peaks about 550A, 650A, and a smaller one at
900A. O’Bryan observes a fairly sharp band at
372A, rather than a broader continuum, and
Smith finds a similar sharp absorption peak at
about the same place. In general, more structure
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and sharp lines are found in the absorption than
the theory would suggest. We shall examine the
discrepancies in the next section, showing that
the method of lattice functions is only partly
applicable to the problem, and that a correct
solution must be obtained by considering the
energy levels of the crystal as a whole. The
picture of Fig. 1 remains, however, correct
enough to be very suggestive. In regard to the
near ultraviolet absorption, we may note an
interesting approximation which we may make
for the frequency of the limit. The bottom of the
continuum of excited levels has risen, at the
actual lattice space, about as far above the so-
dium 3s level as the top of the chlorine 3p is above
the Madelung energy. Thus approximately the
excitation energy is equal to the chlorine electron
affinity, plus the Madelung energy, minus the
sodium ionization potential, or numerically
30,4004 72,000 — 41,400 =61,000 cm™. This sim-
ple approximation, already suggested on some-
what different grounds by Hilsch and Pohl, gives
surprisingly good results for the absorption limits
of all the alkali halides.

ENERGY LEVELS OF THE CRYSTAL AS A WHOLE:
NORMAL STATE

As a next step, instead of considering lattice
functions and one-electron energies, we shall
examine the energy levels of the crystal as a
whole as a function of lattice spacing. The energy
in the normal electronic state has been discussed
in a well-known way by Born and others.12
Starting at infinite separation from the state
composed of sodium and chlorine ions, the energy
decreases by the amount —3.495 ¢?/d per mole-
cule, until a lattice spacing near the normal value
is reached, when a repulsive term, often ap-
proximated by a formula a¢/d", where a is a con-

12 See for example Wolf and Herzfeld, reference 4.
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stant, # a high exponent, rather suddenly sets in,
resulting in a minimum of the curve. It is to be
noted that the ionic state is not the lowest energy
at infinite separation. Instead, the state of neu-
tral atoms is lower, by an amount equal to the
difference between the ionization potential of
sodium and the electron affinity of chlorine, per
molecule. This is shown in Fig. 2, in which it is
seen that the ionic and atomic states have energy
levels which cross at a large value of d, about
35A. It is closely connected with the fact that the
lattice energies of Na 3s and Cl~ 3p cross at large
distances (beyond the range of Fig. 1), so that
electrons from chlorine ions can be transferred to
sodium ions at large distance with liberation of
energy. For all our purposes, however, we may
confine ourselves to distances less than this
value, so that we may regard the normal state as
being formed of ions.

Next, we consider excited states in which .one
electron is excited, the only kind which will have
appreciable optical transition probabilities from
the normal state. On the scale of Fig. 2, these
energy levels as functions of distance will be
indistinguishable from the normal state, for the
energy of Fig. 2 is the energy of all V molecules of
the crystal, whereas the energy of only one mole-
cule changes on excitation, making a change in
energy of the order of 1/N of the value of Fig. 2.
To get a quantity which can be plotted, we must
take the energy difference between normal and
excited states, regarded as a function of lattice
spacing, giving the frequency of optical absorp-
tion by the crystal. Excitation can take place in
several ways: either a sodium or a chlorine elec-
tron can be excited, and it can find a resting place
in an excited state of the ion in which it was
originally located, or in another ion of the same or
opposite sign.

SopiuM EXCITATION

Let us take up the various sorts of excitation in
detail, now making use of an atomic point of
view, localizing the electrons on definite ions.
First, we consider the case of excitation of a
sodium electron, in particular the removal of a 2p
electron from a sodium ion, the electron going
into a 3s state either on the same or another
sodium ion. At infinite lattice spacing, the two
processes, roughly equivalent to excitation and
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ionization, are quite distinct. The excitation of a
sodium ion to the state 24°3s requires about
265,000 cm™, while the removal of a 2p electron
requires about 381,000 cm™!, of which about
41,500 cm™! is regained when the ionized electron
attaches itself to another ion to produce a neutral
atom, leaving a net energy of excitation of
339,500 cm~!. At finite separation, however, the
ionized state splits up; for if the removed electron
is attached to an ion at distance D from the ion it
has left, the necessary work is less than 339,500
cm™ by the electrostatic energy e?/D, which
would have to be expended to remove the elec-
tron the additional distance from D to infinity.
Now D can have only certain definite values, for
it is the distance from one sodium to another
in the lattice. Thus it can have the values
(@/2)(n®+mn2+mns?)%, where ni, ns, ns are three
integers giving the relative positions of the two
sodiums, and where the sum 7;+#,+#n; must be
even. We thus have a discrete set of levels, ap-
proaching the value 339,500 cm™ as a limit. In
Fig. 3 for distances greater than 15A we show
some of these levels as a function of d. At large
distances, the levels involving ionization cluster
together, far above the level involving only ex-
citation, but as we approach the actual lattice
spacing the spread of the ionized levels is con-
siderable.

As we approach the actual distance of separa-
tion, it no longer is possible to localize electrons
on the ions, so that the method of discussion we
have just used becomes inapplicable. On the
other hand, the method of lattice functions,
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discussed in the earlier sections, becomes in-
creasingly appropriate. For the removal of a
sodium 2p electron to an excited level, which we
are now considering, we should take the energy
difference, from Fig. 1, between the correspond-
ing levels. Since the sodium 2p level is not ap-

_ preciably split up at this distance, the continuum

of absorption frequencies on the method of lattice
functions will have the same form as the con-
tinuum of excited levels but with the Madelung
functon of the sodium 2p subtracted off. The
resulting continuum is shown for small distances
in Fig. 3.

We now meet the problem of correlating the
two methods of approximation to the excited
states, the method of atomic excitation or ioniza-
tion to neighboring ions for large distances, the
method of lattice functions and energy bands at
small distances. Quite without calculation, we
should expect that in regions where the total
splitting given by the lattice model was small
compared with the separations of the various
ionized or excited states, the method of atomic
excitation would give the correct levels, while
with very wide energy bands in the lattice model,
that model would give correct results. With this
in mind, the various discrete levels of the atomic
and ionic method have been merged into the
lattice energy band of Fig. 3 at small distances,
indicating a plausible construction for the excited
energy levels at intermediate distances. The rela-
tions between the two methods, however, are so
important that we examine them in more detail
in the next section, reserving the more mathe-
matical parts of the discussion for the Appendix.

CORRELATION OF LATTICE AND ATOMIC
WAVE FUNCTIONS

In a general way, the method of lattice func-
tions is analogous to the method of molecular
orbitals, and that of atomic excitation to that of
Heitler and London, in molecular problems. The
inclusion of both atomic excitation and ionization
corresponds to the inclusion of both nonpolar and
polar states in Heitler and London’s method. As
one of the authors has pointed out on several
occasions,” the two methods are then equivalent.
The wave functions formed from molecular orbi-

13 J. C. Slater, Phys. Rev. 35, 509 (1930); 41, 255 (1932).
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tals can be written as linear combinations of those
formed from nonpolar and polar Heitler and
London functions, and wice versa. A correct
treatment of the secular equation from either
point of view will then lead to the same energy
levels, though an incomplete or first order per-
turbation treatment will not. Let us consider first
the nature of the wave functions in this problem,
starting with the method of lattice functions.

The properties of single lattice functions are
well known from the theory of metals.* Each
function behaves like an atomic function near
each atom, but is multiplied by exp i(k-R)
going from one atom to another a vector distance
R away, where k is a vector analogous to the
momentum of a plane wave. Corresponding to a
single atomic wave function, there are as many
lattice functions as there are atoms in the crystal,
having different vectors k. A filled band, then,
contains one electron per atom of each spin, with
the k’s so arranged that there are as many posi-
tive as negative, and the vector sum of all k’s is
zero. This is the situation of the electrons in the
normal state of an ionic lattice, where all energy
bands are filled or entirely empty.

If one electron is excited, in our particular case,
the band of 2p electrons lacks one wave function,
the 3s band has just one occupied function. For
simplicity, we neglect orbital and spin degeneracy
in describing the situation. Then there are N2
excited states, with different energies; for the
electron could be removed from any one of the
N 2p states, going into any one of the IV 3s states.
Each excited state is characterized by a value of
the vector sum K=k,—k, where k, is the
momentum of the removed 2p electron, k, of the
3s, and of the N2 states there will be NV with each
possible value K. This quantity K has great im-
portance, on account of certain selection prin-
ciples. In the first place, by optical excitation by
light of wave-length \, the transition probability
is zero except to states of one particular K value,
equal to 27/\, and pointing in the direction of the
wave normal. On account of the long optical
wave-lengths, this K value is almost zero, so that
we need consider only the excited state of K=0.
In the second place, when we use our lattice
functions as the basis of a perturbation calcula-

“For instance, J. C. Slater, Rev. Mod. Phys. 6, 209
(1934).
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tion, we find that the matrix component of the
perturbing energy between states of different K
values is always zero. Thus in all our work we can
separate off the states of a particular X, and treat
them entirely by themselves, as if the others did
not exist.

For each stationary state, we form an anti-
symmetric wave function for the electrons of the
whole crystal, one for the normal state, N2 for the
excited states, and set up the matrix components
of energy between the various approximate
wave functions. First, we consider the diagonal
matrix components for the excited states. Sub-
tracting the diagonal energy of the normal state
from that of the excited state, to get the excita-
tion energy, we find just the difference between
the one-electron energies of the 3s and 2p elec-
trons of appropriate k values, in the lattice
energy bands, as indicated by the shaded band of
Fig. 3. At infinite separation this band shrinks to
the single level corresponding to ionization of one
sodium ion, attachment of the electron to another
ion at infinite distance. For with the lattice
functions, each electron is uniformly distributed
over all the atoms. The removed 2p electron, and
the 3s, are equally and independently likely to be
found on any one of the N atoms, so that the
chance that they are on neighboring atoms,
decreasing the energy appreciably on that ac-
count, is negligible. As far as diagonal energy is
concerned, in other words, the method of lattice
functions takes no account of the possibility of
excitation, or of ionization and removal to
nearby atoms.

It must not be supposed, however, that be-
cause individual lattice states are poor approxi-
mations to the actual states at large distances,
they cannot be used as a starting point for a
perturbation calculation. Instead, we can find
the nondiagonal terms of the energy, which not
only are different from zero between states of the
same K value, but remain important at large
lattice spaces. It is easy at large distances to
solve the perturbation problem exactly, and to
find the correct linear combinations of lattice
functions, which may be easily described. In the
first place, we may take all the lattice functions,
with all their N2 combinations of values of k, and
k,, multiply each one by the simple coefficient
(1/N) exp i(k,-R,—k, R,), where R,, and R,
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are the vector positions of two particular sodium
atoms in the lattice, and add. The result is similar
to the well-known process of building up a wave
packet out of plane waves, forming a localized
disturbance. It gives a wave function in which
there is one electron on each atom except that
with position R,,, which has no electron, and that
at R,, which has an extra electron, in a 3s state.
In other words, its wave function is precisely the
atomic function which we have discussed previ-
ously. When we compute the diagonal energy of
such a wave function, we find that it is just the
value plotted in Fig. 3 at large distances. In
particular, for R,=R,, a 2p electron is merely
excited to a 3s state in the same atom. The non-
diagonal energy component between two such
atomic states at large distances is zero, so that
these states form the correct solution of the
problem.

The atomic functions, with a 2p electron miss-
ing from the atom at R,,, and present as a 3s on
that at R, are correct solutions at large distance,
but they are degenerate. The energy depends only
on the vector distance R,,— R, (whose magnitude
was previoulsy called D), not on R, and R,
separately. In other words, any atom of the
crystal may be excited or ionized, so that there
are IV states of the same energy, corresponding to
each value of R,,—R,. Any linear combinations
of these N states of the same energy would be
legitimate functions at large distances, but one
particular set of combinations has the property
of being appropriate for smaller distances as well,
that set in which each function is characterized by
a particular value of the same vector K which we
have mentioned above. Such a function repre-
sents a sort of wave of excitation or ionization,
traveling along with a wave number K. These
waves of excitation have been described by
Frenkel, though without making this connection
with the lattice functions, and without discussing
the waves of ionization (the case R, —R,>0).
For most purposes there is no great advantage in
using them, and we may use the atomic functions
instead.

If we could now solve our perturbation prob-
lem for intermediate distances, as we can for
large distances, we should find exactly how the
levels at large and small distances were con-
nected. This unfortunately cannot be done. As
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the atoms begin to overlap, nondiagonal matrix
components of energy appear between two atomic
states, or two excitation wave states, in which the
excited electrons are situated on neighboring
atoms. By a second-order perturbation calcula-
tion we can see that, as the continuum of lattice
energy levels begins to broaden out, the excita-
tion state will be somewhat depressed by the
action of neighboring states, while the ionized
states will be pushed almost equally from above
and below, and will be practically unaffected
until the lattice energy band is decidedly broad.
As we approach the observed distance, however,
this perturbation calculation becomes inaccurate.
Using an approximate model, it has been possible
to follow the behavior of the excitation state, and
to show that this gradually merges into the
bottom of the continuum, though at the actual
lattice spacing it will still be distinct. The ioniza-
tion states will also merge into the continuum,
at larger distances, though it has been impossible
to work this out in detail. At any distance, most
of the levels will form practically a continuum,
with a few discrete levels at the bottom, the
number of discrete levels decreasing as the lattice
spacing decreases. The levels in Fig. 3 have been
drawn for intermediate distances according to
these principles, the position of the lowest, exci-
tation level being given approximately by our
calculation.

Before considering the agreement with experi-
ment, we must examine not only the position of
the excited levels, but also the transition prob-
abilities to them. At large distances, we can see
without calculation that the probability of trans-
ition to an ionized state is zero, the only transi-
tions being to the excited state. For the transition
probability involves the matrix component of
electric current between the normal and excited
states, the wave functions of these states do not
overlap if they correspond to having electrons on
different atoms, and the matrix component and
transition probability are correspondingly zero.
Thus the lowest level takes all the transition
probability at large distances. At small distances
where the lattice functions are correct, on the
other hand, the matrix components are of the
same order of magnitude for all the possible
transitions in the band. By making the proper
transformation, we can calculate the matrix com-
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ponents corresponding to the excitation and
ionization waves at large distances, in' terms of
the lattice components. We find, as we should
expect, that the particular combination of lattice
functions corresponding to the excitation wave
then acquires the whole transition probability,
the other combinations losing their probabilities.
But now at the actual distance of separation,
neither the excitation and ionization waves, nor
the lattice functions, form the correct wave func-
tions, but combinations of them, so that the
transition probabilities will be intermediate
between these limiting cases. From Fig. 3, we see
that the excitation wave will still be far removed
from the continuum at the actual distance, so
that we may expect that it will still have the
larger part of the transition probability; but it
will have lost part of its intensity to the con-
tinuum, which will have a total intensity to make
up for the intensity lost by the discrete line. It is
possible that the next line, corresponding to
ionization and attachment of the electron to the
nearest neighbor, may still be slightly separated
from the continuum, and that it may have an
appreciable intensity, since at small distances the
wave function of an excited atom may appreci-
ably overlap that of the nearest neighbor. Thus
there will be one, perhaps two, discrete lines,
then a continuum, and the relative intensities
cannot be well estimated. )

From Fig. 3, we should then expect a sharp line
absorption in- NaCl corresponding to 271,000
cm™! (369A), perhaps another sharp line at about
312,000 (320A), and a continuum beginning at
just about that point, toward the ultraviolet.
O’Bryan® observes an absorption band at 372A,
but has not observed further bands, perhaps
because they have not enough intensity. For the
lithium salts, however, he observes more detail.
The corresponding sharp line transitions in
lithium should be at about 476,000 cm™— (210A).
O’Bryan observes in LiCl a sharp line at 204A
(490,000 cm™), another at 192A (520,000 cm™1),
and continuous absorption beyond that, as we
should expect. For the potassium crystals, one
should expect an absorption at about 165,000
cm™! (605A), and Smith observes absorption at
about 540A in KCIl, 510A in KI, which may be
the corresponding bands. Both the observations
and the theory thus seem to agree in demanding
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excitation waves for the lowest excited states,
merging then into something much like the
lattice states forming a continuum, though fur-
ther experimental evidence would be very de-
sirable.

We have been considering the transition from
the sodium 2p state to the first excited state,
which is largely like sodium 3s, but has some of
the properties of an excited chlorine state. The
discussion of transitions from other sodium
states, as 2s, would proceed in a very similar way,
with similar structure in the absorption band,
further in the ultraviolet, as is seen most easily
from Fig. 2. In connection with the excited states,
we have spoken only of the lowest band, but
should remember that the sodium 3p, 3d, 4s-
levels at large distances will all split into lattice
bands at smaller distances, becoming mixed up
with chlorine bands, and resulting in a continuum
of great complexity. This continuum will have
concentrations of density at some energies, de-
ficiencies at others, and the resulting continuous
absorption will show maxima and minima which
may be striking, and which may give the effect
of further sharp lines. Taken in connection with
the sharp line structure already described, we see
that the absorption spectrum can have a very
complicated appearance, one very difficult to
work out in detail.

CHLORINE EXCITATION

Next, we consider the near ultraviolet absorp-
tion, in which a chlorine 3p electron is excited to
the same lattice level as before. The excited level
at large distances would correspond to -the re-
moval of an electron from the chlorine, and its
attachment to a sodium, and would have no
probability of occurrence on account of non-
overlapping wave functions. At small distances,
however, we have seen that the excited level
acquires some of the properties of an excited
chlorine state, and has a large probability of
transition from the normal state. We can now
proceed as before to find the excited levels at
large and small distances. At large distances, the
required energy is the electron affinity of chlorine,
minus the ionization potential of sodium, plus a
Madelung term. This term is different from what
it was before, for the potential energy of an elec-
tron near a sodium ion is greater than that near
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a chlorine by 2(3.495)¢?/d, so that this term
appears in the Madelung energy. In addition,
if the sodium is only a distance D from the
a chlorine, there is the same negative contribu-
tion —e?/D as before, so that the total excitation
energy is (electron affinity)— (ionization poten-
tial)+2(3.495)e?/d —e*/D. As before, D can have
an infinite number of values, depending on how
far the electron is removed from the chlorine, but
now the set of D values will be different from be-
fore, starting with the distance from a chlorine to
its nearest sodium neighbor (d/2), and so on. The
resulting sharp levels at large distance are drawn
in Fig. 4. The levels become negative at large dis-
tances, as can also be seen from Fig. 1, and as
would be expected from Fig. 2, from the fact that
the atomic state rather than the ionic is the stable
one at large distances, and that the process now
being contemplated is one in which a chlorine and
sodium ion exchange electrons to become neu-
tralized.

At the actual lattice spacing, von Hippel® has
essentially used the discrete levels we have just
described, and has tried to correlate them with
the observed structure in the absorption band. It
is hardly possible that this is correct, for at these
smaller distances the lattice method becomes
reasonable, and entirely changes the situation.
In Fig. 4 we have drawn the absorption con-
tinuum to be expected from the lattice method,
remembering that the broadening now comes
both from the normal, chlorine 3p lattice state
and the excited state. For a given K value this
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Fi1c. 4. Optical absorption from Cl 3p level to lowest
excited level, in NaCl.

becomes a perfectly definite band, with IV excited
levels, as before. It is now easy to draw the inter-
polated levels, much as we have done in Fig. 3.
In this case, there is nothing like the excited state
in the sodium-sodium transition, simply a con-
tinuous absorption edge at large distances, lying
well above the discrete levels, and merging with
the continuum we have drawn at smaller dis-
tances. As far as agreement with experiment is
concerned, we have already seen that the absorp-
tion edge comes at about the right place, and it is
plain that it should be expected to show struc-
ture. The observations of Hilsch and Pohl on
sodium chloride do not extend far enough into the
ultraviolet to show much of this structure,
though for some of the alkali halides a great deal
is observed. It appears at any rate that the
present type of theory, involving both sharp line
and continuous absorption, is the correct sort to
explain the details, but more elaborate calcula-
tion is probably necessary to work them out in
specific cases.

APPENDIX

Consider a lattice of N atoms, each normally having one
electron, all of the same spin. Assume the wave function
of an electron about one of the nuclei, in the absence of the
other nuclei, is #(r—R) for the normal state, »(r—R) for
the only excited state we shall consider, where r is the
coordinate of the electron, R of the nucleus. These func-
tions are assumed to be normalized to unity. Then Bloch’s
approximation to a modulated one-electron function for
the normal state is (1/(N)})Z exp (¢(k-Ry))u(r—R,),

s

where k is a momentum-like vector. The factor 1/(N)}
takes care of normalization if the wave functions # of
different atoms do not overlap, but there are small cor-
rections, which we shall neglect, on account of normaliza-
tion at smaller distances. There are N values k;---ky
corresponding to the N Bloch functions in a completed
band. Similar Bloch functions can be set up for an excited
electron, using v instead of #. Next we can set up anti-

symmetric functions of the electron coordinates, to repre-
sent the state of the whole crystal. If we have the normal
state, with no excited electrons, the antisymmetric func-
tion, which we may call B(0), is the determinant

B(0) =<1/€N>%!>|<1/<N)4)§ exp (i(k; R.)u(t,—R,) |,

the elements of the determinant corresponding to all N
values of f-and g. This state is likewise approximately
normalized. For an excited state with one electron excited,
we may imagine that the one-electron function with k,
is missing, and is replaced by a one-electron function
formed from the excited function », with momentum k.
This function, which we call B(p, ¢), is the determinant
formed just like B(0), but with terms
(1/(N)HZ exp i(ky- Re)v(ry—Ry)
in place of $
(1/(N)H2Z exp i(kp*Ro)u(r,—Rs)
$§
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in the pth row. There will be N2 states B(p, q), since either
of the indices p, g can take on any one of N values.

Next, consider functions built up in the atomic way
from the #'s and ¢’s. The normal state corresponds to
having one electron in state % about each nucleus, and its
antisymmetric wave function, which we may call 4(0), is

A4(0)=(1/tN)) [u(r;—Ry) |,
which again is normalized at large lattice spacings. By
making suitable combinations of rows in the determinant,
it ‘is easily shown that 4(0)=B(0), so that the normal
state is identical in the atomic or the lattice method. The
excited states in the atomic method are set up by assuming
the electron to be removed from the mth atom, and to be
present in an excited state in the nth atom. The correspond-
ing function 4 (m, n) isa determinant like the preceding one,
but with the terms #(r;—R,) missing, and replaced by
9(r;—R,). In particular, if m =n, the state is one with the
mth atom excited, while if m %%, the mth atom is positively
ionized, the nth negatively. Again there are N? excited
states, corresponding to all N values of m and » separately.

Each term in the expansion of the function 4(m, n) is a
product of (N—1) factors %, and one factor v; one of the
nuclei, the mth, has no electron, and another, the nth, has
two, one in state # and the other v. Similarly each term in
the expansion of B(p, ¢) is a product of (N—1) factors #,
and one factor v. It is not obvious that in the expansion the
only terms are those with all nuclei but two occupied by one
electron each, one of the remaining ones with two, and the
final one with none, but this is actually the case on account
of the antisymmetry, and the resulting application of the
exclusion principle: no two functions % can be found on the
same nucleus, so that the only possible doubling up of
electrons on atoms is the single case of a function v and a
function % on the same atom. The complete set of functions
A (m, n) thus involve the same terms as the set B(p, ¢), and
since each set is normalized and orthogonal at large dis-
tances of separation, it is obvious that one set can be de-
rived from the other by a unitary transformation. Thus we
must have A(m, n)=ZC(m, n; p, ¢)B(p, ¢). To find the

p,¢
coefficients C, we may multiply by B*(¢’, ¢’) and integrate
over the electron coordinates. Then by the normalization
and orthogonality of the B’s,
C(m, n; p, @) = S A(m, n)B*(p, Qdr.

We must now find the integral above, which is the
integral of a product of two determinants. Consider the
integral of a typical term of the determinant 4, multiplied
by the diagonal term of B*, This is
1/ (NUNN S« -« Su(ra—Ri)u(rs—Ro)

u(r;—Rp_)o(r;— R,)u(rp— R y1)
~u(r,—Rw) {2 exp —i(ki-Ry)u(ri—Ry)}- -+
$,

1
{ 2 exp —i(kp_1-Ryp-n)u(rp—1— Ryp-1)}

Spo1
{ z exp —’l:(kq'Rsp)'U(fp_Rsp)}
Sp
{ 2 exp —i(Kps1- Ropen)u(tpi1i—Ropyn)} -+
Sp+1

{ E exp —i(kN-RN)u(rN—RN) }dn .. 'dTN,
Y
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where ab---ijk---z form a typical permutation of the

indices 1 2-- - N. The integral over the ath electron has as

an integrand #(ro—R;)2 exp —2(k.- Ro)u(ra—R,) (unless a
$

happens to equal p). If we neglect the lack of orthogonality
of u's belonging to different atoms, the only term of this
summation giving an integral different from zero is that for
s=1, which integrates to exp —i(k,-R;). With certain
exceptions, the terms all integrate in similar ways, giving
exp —7(ks-Ry), - -+ exp —i(k.-Ry). The exceptional terms
are the following: If a=p, on account of the ortho-
gonality of the #’s and ¢'s, the integral over the ath electron
gives zero, and the whole integral vanishes. The same thing
holds if b, ¢, or any of the indices except j, is equal to p.
Thus the only terms of the product which do not integrate
to zero are those with j=p. If j=p, so that the integral
does not vanish, then for the jth electron we must integrate
o(r;—R,)2 exp —i(ky-Rsp)v(rp—Rsp). The only term
s

different from zero is for s, =n, giving exp —i(kg-Ry,).
When we take all terms corresponding to all permuta-
tions a- - -z, we see that except for the exceptional terms
mentioned just above, the result could be written as a de-
terminant, (1/N!)|exp —i(ks-R,)/(N)t|, where f and g
take on all values. The same result is obtained on multiply-
ing the determinant A4 (m, n) with each of the N! terms of
the determinant B*(p, ), so that the result isjust N!timesas
great, cancelling the factor N!in the denominator. This de-
terminant is just the determinant of the coefficients of ex-
pansion from theatomic functions #(r — R,) to the Bloch one-
electron functions (1/(N)})Z exp i(ks-Ry)u(r—R;), and
s

since both sets of functions to our approximation are
normalized and orthogonal, the transformation from one
set of functions to the other is a unitary transformation, so
that the determinant of coefficients is of unit magnitude,
and may be set equal to exp 20. This shows immediately
that | /"”4(0)B*(0)dr| =1, as it should. But now on account
of our exceptional terms, the integral has a different value
in our case. It is easily seen that it is now the determinant
of terms (exp —i(ks-R,))/(N)#, in which all terms of the row
f=p, and of the column g=m, are set equal to zero, except
the term f=p, g=m, which equals (exp —i(k, R,)/(N)}).
The result is then equal to (exp —z(k,-R,))/(V)? times the
minor of the determinant |exp —i(k,-R;)/(N)*| cor-
responding to f=p, g=m. But the minor corresponding to
a certain term in the determinant of coefficients of a unitary
transformation equals the complex conjugate of the term
itself, multiplied by the value of the determinant, so that
finally the coefficient in question is given by
C(m, n; p,q)=(1/N) exp i(k, Rn—k, R,) exp 76.

The factor exp 26 is a phase factor which we shall hence-
forth neglect, since it is the same for all functions.

We now see that we can write an atomic function as

A(m, n)=1/NZ exp i(kp - Rn~ko-R,)B(p, 9).
2,9

We can rearrange the double summation, so as to sum first
over all values of p and g for which k,—k, =K is constant.
Thus

Alm m) =2 = =

exp —i(K-R,) expi(k-R)

(N)i B(k’"Kv k)r
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where we have used the relation

Kp-Ry—kq-Ry= — (ky,—k,) R,
+kij;"(Rm"Rn) = —KRn+kR1

k;=k, R,—R,=R.
Now we can form thei function

exp i(K-R,)
—WA(M, n),

setting

E(K,R)=2Z
R,
R=const.
an excitation or ionization wave of momentum vector K,
corresponding to an electron in each atom being removed
to the atom distant by the vector displacement R. This is
given by

exp i(k-R)
()}

But by the properties of the reciprocal lattice,

E expi(K—K’)-R,=0if K-K’540, =N if K—K’'=0.

" exp i(k-R)
= BE-K ),

so that, as stated in the text, this excitation function is
equal, except for the factor (exp —7(K-R,))/(N)%, to the
same summation over Bloch functions which we should
carry out to get an atomic function, with the exception that
the summation is to be carried out only for terms of a given
K value.

Now that we have exhibited the transformation co-
efficients between the Bloch functions B, the atomic func-
tions 4, and the excitation wave functions E, we shall find
matrix components of the energy. We shall do this for the
atomic functions, using the transformation theory to get
matrix components between the other types of functions.
We must make more precise assumptions than previously
about the energy. We assume that the NV electrons move in
a potential field U(r), which can be written as a sum of
potentials from each nucleus: U(r) =2 V(r—R,), in which

$

E(X,R)=2

(K—K')-R,
Ba—K, 1)y SPIE-K) R,
Kk R, N

Thus EK,R)=2
E

R, is the vector coordinate of the sth nucleus, and V(r) is
the potential of a singly charged positive ion, reducing to
—2/r in atomic units, at large values of 7, but behaving
differently for small 7, as the nucleus is no longer well
shielded by the electrons of -the core. Since our problem is
that of IV electrons moving in this field, it is plain that the
electrons will on the average cancel this nuclear charge, so
that an electron at a given point of the lattice will be acted
on only by its near neighbors. Then, in atomic units the
energy operator is

He=—3vit 2 — 2 13U+ S —2—
% patrs|Ti— 1| pairs | Re—R¢|
L) s, b
where the first term is the kinetic energy, the second the
mutual potential energy of the electrons, the third the
potential energy of the electrons in the fields of the cores of
the atoms, and the last the mutual energy of the positive
ions. Now we allow H to operate on one of the terms in the
expansion of the determinant forming an atomic function
A(m,n). We assume that the individual factors satisfy
equations
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(—=v24+V(r—Ry))u(r—R,) =Eu(r—R,),
(=v2+V(r—R,)v(r—R,) =E'»(r—R,).

Then we have
Hu(r,—Ry) - - u(tmor— Ryp_1)o(tm— Rn)u(rm+l —Rpny1)

u(ty—Ry) = {(N-1)E+E)+ 2

pxizlrsl ri— 1|

+1§ (U(r:) = V(r:—=R:)) +(U(tn) = V(rm—R,))

2
+paE|riss_Rt! }u(ri—Ry)-u(ty —Ry).
s.t

First we shall find the diagonal component of the energy
matrix. As a first step, we multiply Hu(r;—R;)- -+ by the
same combination of #'s and ¢'s already written, and inte-
grate over the electron coordinates. In doing this, the
repulsive potential terms between pairs of electrons and
pairs of nuclei in general cancel the attractive terms be-
tween nuclei and electrons, so that except for a few special
terms the result is simply (N—1)E+E’. The special terms
arise because the mth electron is on the nth nucleus instead
of the mth. The interaction terms between the mth electron
and other electrons then integrate, if the distributions of
charge are spherically symmetrical and nonoverlapping, to

2
b
s#m,n| Ra—Rs|

+JSS v*(tn—R.)o(r,—R,)
l I'm—TIn |

Xu*(rn - Rn)u(rn - Rn)d‘f"nd Tm,y

where the last term represents the interaction between the
normal and excited electrons on the #th nucleus, instead of

to 2

2
——————as we should otherwise have had. But the
s#m | Rm—R,|

interaction terms between the mth electron and the nuclei

-2
become 2

—————, where we use the value of V appro-
sen [R.—R,| ot

2
|Rn—R,|
+ the integral written above. Next, we multiply Hu(r;
—Ry):-- by any other terms which do not integrate to
zero. We shall assume that the distance of separation of
atoms is great enough so that the unexcited wave functions
u do not overlap at all (as for instance the 2p in sodium),
while the excited functions v overlap only between nearest
neighbors. Then the only other function by which we may
integrate to get a nonvanishing integral is that in which the
two electrons on the nth atom are interchanged, and this
gives an integral similar to that above, but with interchange
of electrons. The net result is then, in an obvious notation,

priateat large distances, so that the net result is —

(mn/H fmn) = (N= DE+E' 4 f f—2—

I I'm— rnl
Xv*(rm - Rn)v(rm - Rn)u*(rn - Rn)u(rn - Rn)dTndTm

+./‘./‘lr—ir—[v*(rn_Rn)v(rm_Rn)u*(rm_Rn)
—_._.2 .
lRm—Rnl

If we refer to the normal state as the zero of energy, we see
that E =0, so that the energy of excitation is E’ — E plus the
integrals and the Coulomb term. Now the integrals are just

Xu(rn - Rn)drndrm -



OPTICAL ABSORPTION BY THE ALKALI HALIDES

the Coulomb and exchange interaction between the two
electrons on the negative nth ion, so that they, taken to-
gether with E'—FE, give the best approximation we can
make with these wave functions to the energy of the nega-
tive ion, referred to the normal state of the neutral atom as
zero. If we let this be ¢, we have

2
IRm_‘Rn!'

as stated in the text. The situation is quite different, how-
ever, in the special case m =#, where the electron is only
excited, and not removed to another atom. Here all the
Coulomb terms cancel, and there is no exchange integral,
since no atom has more than one electron. We then have

(mn/H/mn)=(N—1)E+E’'=¢,,

where ¢ is the energy required to excite a single atom with-
out ionization, a decidedly smaller value than e;.

" We are now ready to find nondiagonal terms of the
energy matrix. With the assumptions we have made, the
only nonvanishing terms are those in which the excited
electron only changes from one state to the other, and
changes only from its position on the nth atom to one of
the next neighbors #’. The only contribution comes from
multiplying Hu(r;—R,)---, as before, with the identical
function except for the exchange of »(r,—R,’) in place of
9(rm—R,). We make the crude approximation that the
orthogonality integral J/v*(r,—R,)v(rn—R,)dr can be
neglected. (It is somewhat more complicated, but not diffi-
cult, to carry through the calculations without making this
assumption; no essential change in the conclusions is
brought about thereby.) Then we have

(mn/H/mn'") = S {U(tn) — V(ra—R;)
2
2 | —u*(r;j—Rj)u(r;—R,)dr;
+j;émflfm—ra’[u (x; ‘ Hu(r; idr;}

v*(rm—R)o(rn—R,)d7n.
Now U(rn) plus the summation represents the potential of
an electron in the field of the nuclei and of one electron per
atom on every atom but the mth; that is, it is the potential
in which we may assume the mth electron to be moving.

The integral is then the sort met in Bloch’s theory, and we
may let

(mn/H/mn) =€

(mn/H/mn'") =B(m, n, n').

So long as the nth atom is not very near the mth, the
quantity 8 will really not depend on m, %, or »/, but will be
a constant. The nondiagonal term B8 becomes large only
when the atoms overlap each other. Thus, at large dis-
tances the energy is diagonal with respect to the atomic
functions, so that they form a solution of the problem,
which becomes less and less accurate as the overlapping
becomes greater.

By the transformation theory we can at once find the
matrix components of the energy with respect to the other
types of wave functions. Using the excitation waves, we
find that there is no component of energy between waves
of different K value; but that with the same K value, the
diagonal energy, between states with the same value of
R=R,—R,, is the same as the energy of the atomic state
with the same # and % values; while the nondiagonal
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energy between two states having the same m, but with n
and »' in the two states, where R, and R,’ represent
neighbors, is exp (K- (R.’—R,))8(m, n, n’). Using Bloch
waves, the diagonal energy is

f 1-1 1/N 1 NE———Z——-
{a-Ma+/Ma-1/NEm=o)

+ > exp —i(kq'(Rn_Rnl))E'

nearest
neighbors

Here the first bracket represents the center of gravity of the
band of lattice energy levels, and the second term gives the
spreading, according to the usual Bloch formula. The
center of gravity arises because there is one chance out of N
that an electron may be just excited (energy ), and N—1
chances out of N that it is ionized (energy e), with an
average electrostatic term between ions given by the
summation. In the term giving the spreading, the quantity
Bis the average of 8 over all values of #, for a fixed # and #’.
The nondiagonal energy with the Bloch functions is

1/N(eo—e1) +1/NZ exp i(k,—k,') - (Rm—Ry)
m

{IRM—?—RE+5 exp ik, - (Ro—R,")B(m, 0, n’)}
if ko—k,=k,—k,’,=0 otherwise. Here the first term is
independent of distance, so that it becomes very important
at large distances, where the energy band becomes narrow.
It is the nondiagonal term responsible for splitting off the
excited from the ionized states at large distances, and the
summations, which fall off inversely with the lattice
spacing, are responsible for the splitting up of the various
ionized states.

Since there are nondiagonal components of the energy in
each system of functions we have examined, no one of
these sets forms a solution of Schrédinger’s equation. We
must instead form linear combinations, which will reduce
to atomic or excitation functions at large lattice spacing,
and will approach the lattice functions at small distances,
without however quite reaching them until the energy band
becomes of infinite width. The perturbation problem is too
difficult to solve exactly, and we shall adopt approximate
and schematic methods. For considerable distances of
separation we can use second order perturbation theory,
starting with atomic or excitation functions. Each level will
be repelled by those levels obtained from it by letting its
excited atom be displaced to one of its nearest neighbors, a
small number of levels. The repulsion from one of these
levels will be 82 divided by the energy difference between
the original level and that resulting from the displaced
atom. In the first place, the whole effect is proportional to
the square of B3, or the square of the breadth of the lattice
energy band, so that it is small. Further, for the ionized as
opposed to the excited bands, opposite displacements of the
electron will make opposite changes in the unperturbed
energy, so that the various terms in the second order change
in the energy will tend to cancel. Ionized bands, then, will
have the values given by the atomic functions even when
the energy bands are appreciably split up. The excited
level, however, will be depressed, since all other states with
which it interacts lie higher than it does.



718 J. C.

Actually, however, we are interested in distances of
separation too small for this second order perturbation to
be satisfactory. It is not practicable to apply conventional
perturbation theory to the Bloch functions, for they form a
continuum, and the nondiagonal energy is larger than the
energy differences between unperturbed functions. We
shall try to investigate the behavior of the excited atomic
level in this region, however, by adopting a simplified
model. We take a one-dimensional lattice, so that each
atom has only two nearest neighbors. Furthermore, we
neglect the electrostatic interaction terms, so that we
cannot expect to get correct information regarding the
ionized levels. Starting with atomic functions, then, we
assume the diagonal energy to be e for ionized states, €o
for the excited state, and we assume the nondiagonal energy
to be B (a constant) between two states differing by a dis-
placement of the excited electron to one of its two nearest
neighbors. With this simplified model, we can solve the
perturbation problem exactly, in the following manner.

Consider a linear crystal having N atoms, and repeated
periodically, so that wave functions must satisfy periodic
boundary conditions. Then there are N2 excited states. It is
most convenient to take these as the E(X, R) functions for
these form N noncombining sets according to the value of
K. For convenience we shall take the zero of energy as the
excitation energy e;. Then the diagonal matrix elements are
e=¢o—e; for R=0, and zero otherwise. The nondiagonal
elements may be made real by using the function F(R)
= exp2(K-R)E(K, R). These elements are then g for
states with R differing by one lattice constant, zero other-
wise. It is most convenient to number the states by the
number of atoms the excited electron is separated from the
ion, thus getting F(0), F(1), -+ F(N—1). If X is an eigen-
value of the perturbation problem, and ¢=aFo+aiF;
+--can_1F(N—1) is the eigenfunction, the equation
H¢=2\¢ gives

(\—e)ao=B(ay_1+ai)
ey =ﬂ(ao+02)

Nan_1=B(an_2+ao)

From the symmetry of the equations, it is seen that the
solutions will be of two types: Odd, a,=—ay_,; even,
ar=an—r. The odd type leads to solutions of the form
ar=sin « 7, where the range of distinct values of « is
from 0 to w. The allowed values of « are thus 27l/N
where /=1, 2, ---, the largest integer <N/2. The values
of X are 28 cos @. The even type solutions are of the form
ar=cos a(r— N/2) with eigenvalues A\=28cos a. These
values of a, satisfy all equations save the first which gives
the condition

(\—¢) cos Na/2=28 cos (1—N/2)a.

Hence, we get the equation for «, ¢/28 = —sin a tan (Nea/2).
For E =0, this gives the same allowed « values and energy
spectrum as the odd type. However, for €0 one of the
roots in the range 0=a=r is lost and it is necessary to use
complex values of « of the form 044y or w4y to find it.
Since the number of atoms is very large the values of
— sin (4y) tan (¢yN/2) and —sin (r+27) tan ((r+iv)N/2)
may be simplified to sinh v and —sinh y. The form of the
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F1G. 5. Diagram for illustrating one-dimensional model.
Abscissae of intersections of a horizontal line at ordinate
e/28 (where e is energy difference between excitation and
ionization energy at infinity, and 28 is width of Bloch
band) and the curve —sin «tan Na/2 give values of a
for the even states. The dotted curve gives energy A\,
divided by 28, as function of «. Lower diagrams give
optical strength as function of «, the right-hand one for
one of the states of the continuum, the left-hand one for
the excitation state.

curve for this function for the various values of « is shown
in Fig. 5. The allowed values of « are given by its inter-
sections with a horizontal line whose ordinate is ¢/28. The
corresponding energies are 2B cos . The values of cos
a=X\/2p are also plotted. It is seen that the allowed values
of « form a continuum with one separated state whose
energy is given by 28 cosh v =28(1+sinh? y)?=((2B8)2+¢2)?.
It is clearly this state which becomes the excitation wave
for large distances, 3>28, while the continuum is composed
of the ionization waves. The energy spectrum of the con-
tinuum itself is almost independent of ¢, the maximum shift
in any level due to changes in ¢ being equal to the energy
spacing in the continuum.

We can use the solution given above to estimate the
relative strengths of light absorption from the normal state
to the various excited states. As was shown in the text,
there is no matrix component for electric current between
the normal state and the ionization waves, the entire
optical strength being concentrated in the excitation wave.
If the optical strength of the excitation wave is taken as
unity, then the optical strength of one of the new eigen-
functions ¢ =acFo+a1Fi+--- is given by |ao|?/Z]a:|2
From the unitary property of the transformation to prin-
cipal axes, it follows that the sum of these is always unity.
The optical strength is seen to be zero for the odd states.

N

For the even states with « real it is cos? (aN/2)/2 cos? «
r=0

(r—N/2)=2 cos? (aN/2)/N. For the separated state, for
N

which « is complex, the strength is cosh? (yN/2)/Z cosh?

=0
Xvy(r—N/2) = tanh v. For the case of large separation,
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eo—e; =€, we see that v is large and tanh y=1. Hence
the separated state is almost pure excitation wave and
contains almost all the optical strength. For the states in
the continuum tanh (aN/2) must be large compared with
unity so that cos (aN/2)<<1 and the strengths of these
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states are small. The figure shows how the strengths depend
upon the values of a. It is seen that even for the case where
separation of the single state from the continuum is only
5 percent of the width of the continuum, it still possesses
40 percent of the optical strength.
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The Infrared Absorption of Hydrogen Chloride in Nonionizing Solvents
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The infrared absorption of hydrogen chloride in four non-
ionizing solvents has been measured. In every solution
studied the HCI fundamental vibrational frequency was
found to be lower than for the gas. The variation in fre-
quency was found to increase regularly with dipole moment
of solvent when the solvents employed were of the same

HE infrared absorption spectrum of hydro-
gen chloride has been studied by a number
of investigators, and the fundamental vibrational-
rotational band has been observed at 3.46u while
the first harmonic has been found to appear at
1.76p.! The rotational structure of both bands
has been carefully studied. It has been of interest
to determine the effects exerted upon the HCl
molecules by neighboring units. Shearin? has
studied the spectrum of solid HCl and reports
the appearance of the fundamental at 3.74u in
this crystal with a series of broad rotational lines
equally spaced about a zero line. In the case of
solutions, Plyler and Williams® have found the
fundamental HCl frequency in benzene to be
only slightly lower than in the gas but have
reported their inability to detect any absorption
arising from HCI molecules in aqueous solution,
attributing the latter result to the high degree of
dissociation of HCl in this solvent. Working
with the Raman spectra of solutions of HCI in
silicon tetrachloride, chloroform, sulphur dioxide,
ethyl bromide, and acetyl chloride, West and
Arthur* found that the vibrational frequency of
the solute decreased with increasing dipole

* Now at the University of Florida.
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chemical nature. Solvents of the benzene type were used,
and it was found that the displacement of the 3.4x band
approached no limiting value even when a solvent of dipole
moment 4.20 X101 e.s.u. was used. The results obtained
were attributed to the combined effects of dipole inter-
action and the formation of complexes.

moment of solvent. These authors report that
with solvents of low dipole moment the decrease
in frequency is proportional to the dipole moment
of the solvent. However, it appears that in the
case of the solvents used by these authors there
is a limiting variation in vibrational frequency of
about 89 cm™ produced by a solvent of moment
1.63 X108 e.s.u., beyond which further increase
in dipole moment is without effect. The solvent of
highest dipole moment used in this study was
acetyl chloride of moment 2.70X107!% e.s.u.
Subsequent infrared studies by West and
Edwards® on the effects of the same solvents on
the harmonic near 1.76u yielded results in
agreement with the Raman work.

It was the purpose of the present investigation
to determine the effects of another type of
organic solvent on the HCl vibrational frequency
in order to test the generality of the results
obtained with the solvents mentioned above. It
was desirable to use as solvents a series of
compounds having similar chemical structures
and having a wide range of dipole moments.
Benzene, chlorobenzene, nitrobenzene, and m-
nitrotoluene have dipole moments varying from
zero in benzene to 4.20X 10718 e.s.u. in m-nitro-
toluene and do not react chemically with HCL
The effects of these solvents on the HCI vibra-
tional frequency was studied.

A Hilger infrared spectrometer with a fluorite

§ W. West and R. T. Edwards, Phys. Rev. 49, 405 (1936).



