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The theory and the equations governing the temperature
distribution, resistance, and heat flow in a tungsten
filament as affected by its leads are given for the low
temperature range (<600°K), both for the general case
and for several special cases. 4 low temperature vs. current
scale for tungsten is calculated from these equations using
measurements of heat conductivity given in this paper
and previously obtained data on the radiating properties
and resistance of tungsten. It is given in the form of
tables and formulas from which, knowing the current,

filament dimensions, and lead and bulb temperatures one
can find the maximum temperature, T, of the filament.
Methods are described for calculating the effect on 7 of
a spring attached to one end of the filament. The heat
conductivity of tungsten, N, was determined experimentally
for this low temperature range. X at 273°K is 1.66 watts
cm™! deg.”! and decreases with rising temperature ac-
cording to the equation log N=£0.9518=0.30 log T to 1.31
at 600°K.

I. INTRODUCTION

N a recent paper! we have described experi-
ments with an evacuated tube containing a
tungsten filament attached to leads which could
be maintained at any desired temperature (220°
to 600°K). In the experiments already considered,
the lead temperature, Ty (°K), was higher than
the bulb temperature Tz; and the current 4
through the filament was adjusted so that the
filament was also at the temperature T, as
indicated by its resistance, the resistance-
temperature curve having been previously deter-
mined. In this way the cooling effect of the leads
was eliminated and thus the power input gave
directly the difference between the power radi-
ated and that absorbed from the back-radiation
from the bulb.
The results were accurately expressible by the
equation
W=K(T<«—Tg*<T*), (1)

where w=15.332; ¢=0.87;log10 K =83.7105—100;
and W is the net radiation in watts cm™ at a
temperature 7 in a bulb at T's.

It is the object of the present paper to describe
experiments with the same tube in which the
current A is no longer held at the value which
makes the filament temperature equal to 7.
Measurements of the resistance and voltage
input enable us to calculate the heat conductivity
of the filament and the temperature distribution
along the filament.

t . Langmuir and J. Bradshaw Taylor, J. Opt. Soc. Am.
25, 321 (1935). (Referred to as Paper 1.)
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Forsythe and Worthing® have measured the
temperature distribution along incandescent
filaments near the leads and have calculated the
heat conductivity \. Their results are reproduced
(within 0.2 percent) by the equation

A=0.840(7"/1000)°* watts cm™' deg.”.. (2)

Langmuir, MacLane, and Blodgett?® used this
relation in developing equations for calculating
the change in any of the characteristics of a fila-
ment which results from the cooling effect of the
leads. The temperature distribution, determined
by an optical pyrometer, over the central part of
short filaments agreed well with that calculated
and thus confirmed the accuracy of the Forsythe-
Worthing values of the heat conductivity at
temperatures above 1500°K. The analysis of the
data, however, led to the conclusion that at
lower temperatures the heat conductivity must
be greater than is given by Eq. (2).

The heat conductivity of tungsten at 0°C is
given by Barratt* as 1.60 watts cm™! deg.~!-and
by Kannuluik® as 1.66. The experimental method
of Kannuluik appears to be very accurate, but it
should be noted that he ‘“‘annealed’’ the tungsten
only at 1300°C, a temperature which is quite
insufficient to bring drawn tungsten wires into a
steady state. He gives the specific electric re-

2 W. E. Forsythe and A. G. Worthing, Astrophys. J. 61,
146 (1925).

3 1. Langmuir, S. MacLane and K. B. Blodgett, Phys.
Rev. 35, 478 (1930). References to previous literature on
the cooling effects of leads are given.

4T. Barratt, Proc. Phys. Soc., London 26, 347 (1914).

5 W. G. Kannuluik, Proc. Roy. Soc. A131, 320 (1931);
Al41, 159 (1933).
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sistance of the wires as 6.0X 10~ after annealing
at 200°C and 5.65X10~° after annealing at
1300°C. These resistances are 20 and 13 percent,
respectively, higher than normal values for well
aged tungsten. Langmuir has shown® that a
drawn tungsten wire undergoes a 15 to 20 percent
decrease in cold resistance when first heated to
1500° for one minute and a further decrease of
2 to 4 percent upon aging for 24 hours at 2400°K.

There is therefore evidently a need to know A
more accurately in the range of temperatures
below 1500°K. In some studies of the adsorption
of caesium on thoriated tungsten filaments by
methods already described’” we have needed to
know accurately the relation between the tem-
perature at the midpoint of the filament and the
heating current even when the filament tem-
perature only slightly exceeds the bulb tem-
perature.

II. THEORY® OF THE EFFECT OF LEADS ON THE
TEMPERATURE DISTRIBUTION AND
RESISTANCE

The general equation for the temperature dis-
tribution along a filament of nonuniform tem-
perature is given by

d dT
wrﬁ—()\—) =2mrW— AR /72 3)
dx\ dx

Here 7 is the radius of the filament, X\ is the heat
conductivity, T is the absolute temperature at a
point x along the filament, W is the net radiation
from the filament at the point x in watts cm™,
A is the current through the filament in amperes,
and R is the specific resistance of the filament in
ohm cm.

It is desirable to express Eq. (3) in terms of
dimensionless quantities. For this purpose we
will replace T by 0 defined as follows:

6=(T— T())/T(); or T= (1+0)T0, (4)

where T is the temperature of the leads.

6 I. Langmuir, Phys. Rev. 7, 302 (1916), see p. 313.

7 J. Bradshaw Taylor and I. Langmuir, Phys. Rev. 44,
423 (1933).

8 The theory and equations in this part and in Part III
enabled us to develop a temperature current scale for
tungsten (Part V) in a convenient form but need not be
referred to when calculating temperatures since Part V has
been made complete in itself.
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Let 4, be the current in amperes, which must
be passed through the filament in order to
maintain the filament at the uniform tempera-
ture 7o when the bulb is at 0°K, or at any tem-
perature so low that there is no appreciable back-
radiation from the bulb. The value of 4, is
evidently given by Eq. (3) if we place dT/dx=0,
so that

A¢=273W,/R,, (5)

where W, and R, are the values of W and R
which correspond to the case that the bulb is at
0°K and the whole filament is at 7.

The current A is conveniently expressed in
terms of a dimensionless quantity 8 defined by

B=(4/40)" (6)

When the current 4 is small so that 6 is small
compared with unity, the values of 6 should
increase approximately in proportion to 42, or
in other words 6 should vary approximately
linearly with 8.

If we insert these values from Egs. (4), (5),
and (6) into Eq. (3), we obtain

d /Ndo W R
H—(— —) =——f—, (7)
dx )\0 dx Wo Ro
where H, a quantity having the dimensions of
the square of a length, is given by

H= 7’)\0T0/2 W(). (8)

Here )\ is the value of X which corresponds to T'.
By Eq. (1) we see that

Wo=KTy 9)
and
W/Wo=(1+0)°—(1+0)"<(1+6)*

where 0p is the value of 6 corresponding to the
bulb temperature 75 We have seen that to
maintain the filament at 7o when Tz =0 requires
that B=1. Let B¢ be the value of 8 which cor-
responds to the current required to maintain the
filament at T when the bulb is at any tempera-
ture Tp. In this case we may put in Eq. (7)
d0/dx=0 and R=R, and so obtain

Bo=W/Wy when 6=0
and then by Eq. (10) we find
6021—(1-1"93)“’“‘.

(10)

(11)
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By using this relation, Eq. (10) may be written
W/Wo=(140)—(1—po)(1+06)~  (12)

Over very wide ranges of temperature the
specific resistance R of tungsten increases in
proportion to 7% where p is a constant. There-
fore, we have ’

R/Ro=(1+0)r. (13)

We shall see that N does not have a large tem-
perature coefficient. - Within a reasonably large
range of temperatures we may assume that A\
varies in proportion to a power of the tempera-
ture, so that

A=No(140)F, (14)

where k is a constant.

Instead of expressing our equations in terms of
x, the absolute length along the filament, let us
now use a new variable ¢ defined by

Qo= (Wo/f)\oT()) :xe(ZI{)_; (15)

With these substitutions into Eq. (7) we have

1.d% k ( a6

2
.__+ ____) =(1+0)w»—k
2de 21+6)\do/

— (1= B (1+0)~* = (1 +0).

By replacing (d6/d¢)* and log (1+46) by new
variables, this equation can be brought to the
linear form and one integration can be per-
formed. In this way we obtain

(16)

(14-6)%(d6/d¢) =2(F— F1)?, (17)
where
F=[(146)«t*1—1]/(0+k+1)
—(1=Bo)[(1+0) 1 —17]/(e+k+1)
—BL(1+0)rH 1 —17/(p+k+1). (18)

The quantity F; may be regarded as an integra-
tion constant.

In general we shall measure x and ¢ from the
point where the filament temperature is a
maximum, but if the two leads which cool the
filament are at the same temperature T, then
the maximum is also the midpoint. For this con-
dition then, at the center of the filament the
temperature gradient is zero and therefore
d8/de=0. Let the value of 8 at the maximum
(center in this case) be 6;. Then the value of F;
is given by Eq. (18) if we replace 0 by 6;.
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Let x9 and ¢ be the values which correspond
to the ends of the filament where T'=T\. These
quantities then represent the half-length of the
filament. By integration of Eq. (17) we obtain

01

e=(1/2) | (A+0)*(F—F))~de.
[

(19)

We can thus express 6 as a function of ¢ and
so obtain the temperature distribution along the
filament.

We are also interested in knowing the resist-
ance of the filament. Let Q be the resistance of
the half-length x, of the filament when the
current 4 is passing and let Qo be the value of Q
when the filament is at the temperature T.
Then by Eq. (13) we have

z

SZ/Q():f 0(1+0)P(dx/x0). (20)

By Eq. (15) ¢ is proportional to x, and therefore

dx/xo=de/po=(d0/po)(d¢/df).  (21)

Substituting this into Eq. (20) and combining
with Egs. (17) and (19) gives
61
(AQ)/Q=(1/2¢0) | [(1+6)—1]

0

X (14 0)*(F— F)~¥d6. (22)

In this equation AQ has been used to denote the
increase in resistance (Q—Qp) caused by in-
creasing the current from 4, to 4.

Relation between ¢, and the voltage V,

Let us consider again the filament maintained
at the lead temperature T, by the current 4,
while the bulb is at 0°K. Then according to the
definitions already given, the radiation in watts
per cm? is W, and the specific resistance is R,.
Let V, be the voltage drop along the half-length,
%o, of the filament. Then we have

W0=A 0 Vo/27rfxo
R0= Tr? Vo/A 0X0.

(23)

and (24)

Multiply these equations and solve for ¥, and
obtain

Vo= (2 W()R()/T)"}xn. (25)
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Eq. (15) furnishes us with another relation
involving" Wy/r. If we eliminate this factor
between Egs. (15) and (25) we get

V0= ho‘;’o,
h0= (2R0T0)\0)%

(26)
27)

where

and % is the value, at T'="T,, of a quantity &
defined by

h=(2RTX\)% (27a)

This parameter % is a specific property of
tungsten as it depends on the temperature but
not on the dimensions of the filament. We see
from Eq. (26) that it has the dimensions of a
voltage.

According to the Wiedemann-Franz law, AR,
ata given temperature, is nearly the same for all
metals and according to Lorenz AR increases in
proportion to 7. If these laws are applicable, &
should increase in proportion to 7" but should be
the same for all metals.

Flow of heat a long the filament

Let Q be the heat flux along a filament in
watts; then

Q=mr"\dT /dx. (28)
By Egs. (4), (14), and (27) this becomes
Q = (77°he? /2R) (14 6)*d0 /dx. (29)

In Eq. (15) we can eliminate X7y by using
Eq. (27) and by Eq. (5) we obtain

xX= (‘Irfzho/A 0R0)<p (30)
By combining Eqgs. (17), (30), and (29) we find
Q =Aoho(F+0c)t, (31)

where we have used ¢ to represent the integration
constant.

Eq. (31) is applicable to the flow of heat
through a spring or lead to which a filament is
attached. In such a case the heat flowing into the
hot end may be such that there is no value of 8
which makes d0/d¢==0. A similar case arises if
a filament is attached to two leads, one of which
is at a temperature above 7'y while the other is
below 7'a, where Ty is the temperature to which
the current 4 would heat the central part of the
filament if it were infinitely long. The value of Q
is then not zero even when 6=0,. In such cases

CONDUCTIVITY OF

TUNGSTEN 71

the integration constant ¢ is to be determined by
the boundary conditions.

With a filament having two leads at the tem-
perature T, ¢ becomes — F;, and the heat that
flows into each lead is given by

Q():AOhO(_Fl)% (32)

since, by Eq. (18), F=0 when §=0.

Egs. (19), (22), and (31) represent the general
solutions of the problems of the temperature dis-
tribution, the resistance and the heat flow in
filaments. There are, however, certain special
cases in which the equations can be so simplified
as to facilitate the calculations. We shall consider
some of these.

Case 1: Low Values of 6;. When g differs only
little from By, the temperature of the whole
filament is not far above T’y so that we may take
\ as constant and then put k=0. Furthermore, in
Eq. (16) we may expand the terms involving
powers of 14-6. If we omit terms involving powers
of 6 higher than the first, the equation becomes
linear and can be integrated. Choosing the
integration constants so that df/d¢=0 when
¢=0, and at the leads where ¢= ¢y, =0, we
thus find that the temperature distribution along
the filaments is given by

2(6—{30)[ cosh Co
- - ] (33)
C? l_ cosh Coy
where C*=2[w—e+Bo(e—p)]. (34)

The temperature at the center of the filament
is found by putting ¢=0:

01=[2(8—B0)/C*](1 —sech Ceo).

By expénding the factor (146)* in Eq. (20),
combining with Eq. (21) and inserting the value
of 6§ as given by Eq. (33) we find

2p(B—Bo)f  tanh C <Po‘|
1— . 36
I_ C(po R ( )

Short Filament: When ¢, is sufficiently small,
we can expand the cosh factors in Eq. (33) and
so reduce the equation to

= (B—B0) (e — )[1—(C*/12) (S’ — ¢*) 1. (37)

Thus when ¢¢? is small compared to unity the

(35)

AQ/QO=
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temperature distribution is parabolic, and the
heat transfer by radiation is small compared to
that conducted.

A similar expansion applied to Eq. (36) gives

AQ/Qo=(2/3)(B—Bo)pei*(1—2C%¢*/5). (38)

Long Filament: When the filament is so long
that C?p¢®>6, then the relationship of Eq. (33)
may be sufficiently accurately expressed (within
1 percent) by

6= ()M[l __eC(w—«’o)],

O =2(8—Bo)/C~.

In this case the temperature is practically
uniform at 6y over the central part of the
filament.

When C?¢¢>>6 the hyperbolic tangent in Eq.
(36) becomes unity so that

2p(B—Bo)
£Q/Ro=———

(39)

where (40)

- Boo/‘/’O! (41)

B.,=2p(B—B0)/C". (42)

Thus when the filament is long, AQ/Q, varies
linearly with 1/¢.

Case 2 : Large values of 8 (or e=p). If a filament
is very long, the cooling effect of the leads
becomes inappreciable in the central part of the
filament and for this region we may put in Eq.
(16) d6/de and d?0/d¢® both equal to zero and
thus obtain

(1—=B0)+B(A40a) ¢ =(140) ¢,

where 6, is the value of § over the central part
of a very long filament corresponding to a tem-
perature 1 .

Let us now introduce into Eq. (18) a new vari-
able defined by

o=1+4+6)/14+04)=T/T . (44)

If we then eliminate 8 by Eq. (43), we find for
the value of F— F;, which is needed for Eq. (19),

F—Fi=140y)t*\(H,—H), (45)

where

(43)

where

! gothtl

H

Tkl odktl

optE+L

o,e+k+1
(o) / (
et+k+1 pt+k+1

46)

(
(1+9M)”—‘5)
1—8,
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and H, is obtained from this equation by putting
o=01=14+61)/(1+6x).

The last term in Eq. (46) becomes negligible
when e=p; 0&1; or when B8/(1—pB¢) is very
large. This occurs acccording to Eq. (11) if T

~ is small compared to T or if 8 is very large com-

pared to unity. The data previously published!
have given w=5.332; p=1.23; and ¢=0.87 for
the temperature range from 250° to 600°K.
Because of this small difference of 0.36 between
p and e the errors made by replacing € by p in
Eq. (46) are small even when g8 is compable
with unity.

The greatest errors in ¢, with small values of 8
occur with filaments so long that ¢, is nearly
unity and may approach a limiting fractional
error of (p—¢€)/2(w—p) or about 4.5 percent.
With shorter filaments for which ¢, is consider-
ably less than unity, the errors are much smaller.

Replacing € by p in Eq. (46), substiuting in
Eqgs. (45) and (19), we are led to the following
equations:

o=k DIR(Y,— V), (47)
where co=1/(1+0u), (48)
Y=(1/2) [ sGi= 6, (@)
0
gothtL gothtl
and (50)

G= .
p+k+1 wt+k+1

Similarly from Egs. (20) and (21) we obtain

Q/Q=00"(Z1—2Zy) /(Y- YY), (51)

where Z= (1/2)f otk de(G1—G)-4, (52)
0

The temperature distribution and the resist-
ance of filaments is thus given by Eqs. (47) and
(51) in terms of the functions ¥ and Z. These
calculations are most readily made by series
expansions in terms of powers of ¢ or of (1—¢).
Although general expansions can be obtained for
the coefficients of the terms of these series, they
are too complicated to justify their presentation
here. In the third part of this paper we shall give
such series for the particular values of w and p
which have been adopted.
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Case 3: A general method® for calculating oo and
Q by power series in 0. It is seen from Egs. (19)
and (22) that the expressions for ¢, and Q/Q
can be brought into the general form

2(0)= | N(O)LF(0)— F(0:)] 0,

0

(53)

where N and F represent any arbitrary functions
which for 0 <8< 6; can be expanded by Taylor’s
theorem into a series in powers of § —6; with coef-
ficients that are functions of 8;. The coefficients
themselves can be expanded in powers of 6;. In
this way by carrying out the integration we
obtain

(= F) M= AuS+AuS + A4S+ 4,5+ - -+,

where
S=(01)51

A1=N,,

As=(2/3)N1—(5/12)NoFy/ F\,

As= (4/15)N2— (3/10)N1F2/F1" (11/60)N0F3/F1

+ (43/160) No(Fa/ F1)?,

A7=(8/105)N3— (13/105) N, F>/ F1— (29/210) N, F3/ F,
+(23/112) Ni(Fo/ F1)*— (31/560) No(Fs/ Fy)
+Q27/112)No(Fo/ Fy) (Fy/ Fy) — (177/896) No(Fo/ F1)%.

(54)

Here N, and F, are the nth derivatives of
N(6), F(8) with respect to 8 at the point 6=0.

Thus in calculating ¢, and ©/Qy we may take
F(6) as given by Eq. (18) so that

Fi=B,—8,
Fr=w—e+(Bo—B)(p+k) —Bo(p—e) etc.

In calculating ¢y by Eq. (19) we place

N(9)=(1+6)%,
Ny=1; Ni=k; No=k(k—1) etc.,

while for AQ/Q, by Eq. (22) we split the
second member into two integrals placing
N(6)=(146)7** for the first and N(8) = (146)*
for the second.

II1. GENERAL EQUATIONS FOR TUNGSTEN FiLA-
MENTS UP TO 600°K

We have shown! that the radiation and
resistance of tungsten filaments between 220°
and 600°K are accurately represented by Egs. (1)
and (13) if we place

9 We wish to thank Dr. H. Poritsky for obtaining the
expressions involved in this method and for helpful dis-
cussions of other sections of this paper.
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w=25.332; p=1.23; and ¢=0.87. (55)

In order to determine N from our experimental
data we at first assumed £=0, and were thus
able to calculate ¢y and AQ/Q in terms of 8 and
6, by the methods we shall outline. Experiments
with low values of 6; (which justify the as-
sumption 2=0) and with various values of T}
soon showed that

k=—0.30 (56)

gave the variation of N with temperature to a
satisfactory approximation.

Values of Y and Z.

When the bulb temperature 7 is low com-
pared to Ty or when f is either large or very
small, the temperature distribution is given
accurately by Eq. (47), but even for intermediate
values of B this equation gives a rather good
approximation. Let us therefore derive methods
for calculating Y.

Introducing the numerical values of w, p, and k
in Eqgs. (49) and (50), expanding and integrating,
we obtain

Y'=+41.20330°740.235552 6307
+0.149804560 724012945490 T3
—0.029440°72J 40.127975-420 J4
—0.050460%-52J240.1380410-35 75

—0.0724410-59J3, (57)

(58)

etc.,

where  J=(1.47050,19—0.47050%-932)~1,

A similar method applied to Eq. (52) gives

Z=+40.4364¢"-34-0.160403-5J
+0.11800°-79J24-0.1084¢7-2J°
—0.0249¢7-92J40.111549-65J4

—0.04125952 2 etc. (59)
For values of ¢ approaching ¢, it was possible to
develop other expansions giving ¥1— Y in terms
of powers of (¢1—0¢)/01. By adding the values of
Y and Y,—Y thus obtained in the range in
which both series were accurate, the values of ¥;
were obtained and were found for ¢,>0.6 to be
accurately given by
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+1.573y:2—1.31y,*+0.050y,*+1.5y,%,  (60)
where y1=1—o01.
Similar calculations for Z;, satisfactorily
accurate for ¢;>0.1, give
Z:=0.08782 —0.8039 log 1o y1+0.3029y,
—0.448y.24+0.06y,%.  (61)

Infinitely long filament

For the special case that o;=1, which corre-
sponds to Ty =Ty, the value of ¥, which we may
denote by Y, is given accurately by the
following equation over the range from ¢=0.3
to 1.0.

Y3 =0.7892 —0.8039 log1o y—0.3935y
—0.1475y2—0.0641y% —0.0330y*
—0.021y%- -+,  (62)

where y=1—g¢. An analogous expression for Z,
very accurate for ¢>0.2, is

Zy=—0.1542—-0.8039 logio y+0.0360y
40.0698y2-+0.0340y%+0.0108y*
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By means of the foregoing methods, using 15
terms in Eqgs. (57) and (59), tables were prepared
giving ¥ and Z as functions of ¢ and ¢, to an
accuracy of about 1 in 3000. The family of
curves in Fig. 1 represents the values of ¢ as
functions of Y;—Y for various values of o
These curves give the temperature distributions,
since the ordinates, according to Eq. (44), are
proportional to the temperatures, while the
abscissas ¥;— Y by Eq. (47) are proportional to
distances measured along the filament from its
center. These distances may also be expressed in
terms of ¢ by Eq. (47) which takes the form

(p=0'02'316( Yl'—‘ Y) (64)

To calculate oo, the value of ¢ at the leads, we
can use the following equation derived from
Egs. (43) and (48):

B=o.0—4.102_ (1 __60)0.00.36.

(65)

For the case that By=0 (that is, T=1T),), the
values of 8 as a function of ¢y are given in the
first two columns of Table I (see Part V). Values
of B8 for the case Bo=1, or Tp=0, are given in the
6th column.

The temperature distribution near the central
part of a long filament for which ¢;>0.95 is given

+0.00227y5.  (63) by
10 arno
%'\
09 009
RV
0.8 \ 008
0.7 007
o \
0.6 \ 006
0.5 005
0.4 \ 004
0.3 N
0.2
o \
) < \\
0 85 7.0 75 T B 3o

F1G. 1. o as a function of ¥;— ¥ for various values of o1.
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Yi—¥Y=0.3491 cosh ' [(1—=0)/(1—0a1)]. (66)

Calculation of 6, as a function of ¢, and S
(Tables II to 1IV)

In most cases where it is desired to take into
account the cooling effect of the leads upon the
filament, it is not necessary to know the tempera-
ture distribution over the whole length of the
filament, but a knowledge of the temperature at
the center of the filament and the resistance of
the filament suffices. Tables II to IV contain data
on the values of 6, for selected integral values of 8
‘and a set of evenly spaced values of ¢.

For low values of ¢, the most convenient
method of calculating 6; is by use of the series
expansion furnished by Egs. (53) and (54).
Taking w=15.332; p=1.23; ¢=0.87; k= —0.30,
and By=0, we obtained in this way a series
giving ¢, in terms of 6,/8. However, since we
desired to tabulate 6; for specified values of ¢,
and B, this series, by reversion, was converted
into the following:

01/8=oi®+(1.1758—3.718) po*
+(1.55282 — 17.568+13.49) o
+(2.2068%—57.3082+4144.38

—48.84) po*+---.  (67)

Beyond the range of usefulness of this series we
employed the YV function for which we had
previously constructed tables giving ¥ as a
function of ¢ for a set of 10 values of a;. For each
of these oy values we then interpolated by
Newton’s rule to find Y,— ¥, for each of the
values of oo in Table I which correspond to
integral values of 8.

For each value of 8 we thus had a set of values
of o; for a number of definite values of ¥;— Y.
Taking then the selected values of ¢, used in
Tables IT to IV and the values of ¢y corresponding
to B in Table I we calculated ¥;— ¥, by Eq. (64),
and used these to obtain by interpolation the
corresponding values of ¢; from which 6; could be
obtained by Eq. (44) and Eq. (48). This inter-
polation was carried out graphically. We found
it was often advantageous for each value of 8 to
plot ¥;— ¥, against colog (1 —ay), since for larger
values of ¢, a néarly straight line was obtained,
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F16. 2. Corrections Af; applied in the calculation of 8; for
the tables.

which by Eq. (60) approached a limiting slope of
0.8039.

Since the tables are to be used mainly for the
case that Tp=T,, (8y=0), there is a slight error
involved in the calculations of 8, by the foregoing
method due to the replacement of ¢ by p in
deriving Eq. (47). By using the series expansion
of Eq. (54) again using ¢=1.23 instead of 0.87
and comparing this with Eq. (67), it was possible
to calculate the small correction, A6y, to apply to
61. As can be seen from Fig. 2, the correction was
negligible for very large and very small values of
both B and 6, and only rarely exceeded one
percent. Many checks were made of the accuracy
of these corrections by direct calculations of ¢ by
Eq. (19), using numerical integration by Simp-
son's rule.

It is believed that with these corrections that
were applied in calculating the data for Tables 11
to IV that the values of 6 are accurate to within a
couple of units in the last figure.

Calculations of AQ/Q, in Tables V to VII

For sufficiently low values of 6, we obtain
from Eq. (54) the following expansion :

AQ/Qe=0.82000,+ (0.0172040.1220/8) 6,2

+(0.0088+-0.2510/8+0.4148/8%6,%.  (68)

The lower values of 6, from Tables II to IV
were used in this way to calculate AQ/Q, for
given values of ¢, and B. For values of 6; too
large for rapid convergence of this series, AQ/Q
was calculated from ¥ and Z by Eq. (51). The
necessary interpolations were facilitated by using
the following relationships.

When 6, is small a very good approximation is
given by
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AQ/Q=(1+01)[1—(p/3)0:/(1+061)]. (69)

By using the tables of ¥ and Z, values of
AQ/Q, were calculated and compared with those
given by Eq. (69) placing p=1.23; the differences
thus obtained were then plotted as a family of
curves for various values of 8 and 6,. These
curves together with tables of the function
involved in Eq. (69) were used for interpolation.
This method was useful for values of 6; much
larger than those for which Eq. (68) could be
applied.

For still larger values of ; we may calculate

AQ/Q():O'()_”—l—B/(p(). (70)

This equation, which is a generalization of
Eq. (41), may be looked upon merely as a
definition of B. It follows then from Egs. (51) and
(47) that

BZO'()I'O%[(Yl—Yo)—(Z1—Zo)]. (71)

As 6, approaches 6y, so that ¢;—1, B ap-
proaches a limiting value B, which may be
obtained by combining Egs. (71), (60), (61), (62),
and (63):

B, =00"9%(0.4294y,+0.2173y:2+0.09815y4

+0.04375y44+0.02327y+- - ). (72)

This is sufficiently accurate for op>0.5.

By calculating B by Eq. (71) for various
values of 8 and ¢, a family of curves was obtained
giving B—B,_, as a function of ¢; which was very
convenient for accurate interpolation. Em-
pirically it was found for large values of o and
for values of 8 from 1 to 200 that

B—B.,=0.14587021(1 — g;)1.17, (73)

By these various methods the values of
AQ/Qy were obtained which are given in Tables
V, VI, and VII.

Let V be the voltage drop across the half
filament. Then

V'—_ﬁi V()(Q/Qo)

If the leads did not cool the ends of the
filament, the current.4 would heat the whole
filament to Ty. Let Vi be the voltage drop that
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would then be required for the half-filament. We
find readily that

VM=,8% Voo’oiﬁ. (74)

The effect of each lead in cooling the filament
is thus to lower the voltage by an amount
AV=Vy—V. By Egs. (70) and (26) we get

AV =B,B, (75)

where B is given by Eq. (73).

Effects due to the heating of the leads or springs

The tables in this paper are adapted primarily
for calculations involving filaments whose ends
are at the bulb temperature or some other
definitely known temperature. The heat that is
conducted from the filament into the leads must
heat the junction, but if the diameter of the leads
is 10 times that of the filament, the temperature
drop in the leads is about that in a length of
filament only one-hundredth of the lead length
and so produces negligible effects.

In experimental work with tungsten filaments
it is often desired to mount a filament in a
definite position in a tube, such as at the axis of
a cylindrical anode. To maintain the filament in
this position even when it elongates upon heating,
it is necessary to use a spring to hold the filament
taut. The proper design'® of springs for this
purpose often requires that the spring shall
contain a considerable length of wire of diameter
ranging from 3 to 6 times the filament diameter.
The heat conducted into the spring may then
heat the spring to a degree that cannot be
neglected in calculations of the temperature
distribution and resistance of the filament.

Let T, be the temperature at the junction
between the filament and spring. It is evident
that with a given current 4 passing through the
wire the temperature distribution over the whole
filament will remain unchanged if we replace the
spring by an additional section of filament whose
length Ax is so chosen that the temperature drop
in it is the same as that which occurs in the
spring (Ty—T).

Thus, if we can calculate Ax for each lead and
add these increments to the length of the filament
before calculating ¢y by Eq. (15), we can proceed

0 K, B. Blodgett and I. Langmuir, Rev. Sci, Inst. 5,
321 (1934).
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to determine 6; by the equations and tables
already given on the assumption that the lead
temperature is T,. Let us then find methods of
calculating Ax.

The temperature distribution along a filament
near a lead whose temperature is 7, may be
calculated by Eq. (19). The value of F can be
obtained by expanding Eq. (18) in a power series
in 6. Placing Bo=0 and using the data of Eq. (55)
we get

= —B0+(2.231 —0.4658) 62

+(3.42+0.0118)6%.  (76)

Numerical calculations for springs of practical
sizes have shown that 6, is so small that only the
first term of this expansion is needed. By Eq.
(19), by integrating between 0 and 6., we obtain

BAp=(—F1)}—(— Fi—pb2)*. (77)

Introducing the value of F into Eq. (17) and
letting b denote the value of d6/d¢ at the point
62 we have

b=(d8/dp)ss,=2(— F1—B6:)*. (78)

By eliminating F; between Eqs. (77) and (78),
we find

Ap=(02/0)(1 —B2/0+- - -). (79)

In Fig. 2 let the curve ABC represent the
temperature distribution along a filament. Eq.
(79) enables us to calculate Ay (the distance AD)
from 6, (the distance BD) and the temperature
gradient at B. The heat flow Q at B, by Egs.
(29), (30) and (78), is found to be

Q=2A0ho(1+62)*. (80)

Now if we replace the section AB of the
filament by a spring along which the temperature
distribution is EFB, the curve BC is unchanged.
If the spring is of very great length, it will be
heated, except near its ends, to a uniform
temperature Ts by the current 4 that flows
through it. We may calculate this temperature
from the data of Table II. Let 4 s be the current
that would be needed to maintain the spring at
Ty if its ends are at T, while the bulb is at 0°K.
Since the current to heat a long filament to any
temperature varies with d? where d is the
diameter, we have

As=s'4,, (81)
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where s is the ratio of the diameter of spring
wire to that of the filament. The value of 8 for
the spring wire, by Eq. (6), is

Bs=(A/As)*=(4/A0)/s*=8/s*  (82)

Since s3 is large, 85 is small, and therefore in
Table II we take 3=0, ¢y= «, and so find

05=0.2248/s%. (83)

In general, the temperature distribution along
a spring of finite length will be of the type
illustrated by the curve EFB in Fig. 3. We may
assume that one end is welded to a lead of such
large diameter that §=0, while the other end,
which joins the filament, is heated to 6, which is
greater than 6s. Thus to calculate the tempera-
ture distribution, we cannot use Eq. (17) for
this was based on the assumption that d6/de=0
at 6;, but must go back to Eq. (16). By a method
like that used in the derivation of Eq. (33) we
thus find that the temperature distribution along
the spring is given by

Cos=sinh™ (Chs/a)+sinh~1 [C(6;,—05)/a], (84)

where C is defined by Eq. (34) and @ is an
integration constant which is equal to the value
of da/dtp at fs.

By analogy with Eq. (78), we let bg be the
value of df/des, for the spring at its junction
with the filament ().

Applying Eq. (80) to both the spring and
filament and considering Eq. (81) we find

bs=b/8%. (85)

By obtaining df/de at 6s and at 6 from
Eq. (84) and equating these derivatives to a and
bs, we obtain the relation

a2=bs2—C2(62—05)2. (86)

In Eqgs. (78), (79), (83), (84), (85), and (86)
we have six equations involving six unknowns,
62, 05, a, b, bs, and Ag and so may solve for Ag
in terms of the known parameters s, ¢s, 8, and
Fi (or 6,). A few numerical calculations involving
springs of practicable design have shown that
65 is negligible in its effect and that Fi, according
to Eq. (76), can be replaced without appreciable
loss of accuracy by —fg6;. The problem is thus
greatly simplified so that the calculation of Ag
can be reduced to the following procedure.
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Calculate a quantity P (which is equal to
62/b) by the equation

P=(1/Cs? tanh Cos. (87)
If Cps>>1 this reduces to

P=(1/Cs?)(1—2¢2C¢s. . .). (88)

If CpsK1 it becomes
P=(¢s/s)[1-(2/3)C?¢s"]. (89)

Then A is given by
Ap=P—PB/b, (90)
where b/B=2(6:/8)t—2P. (91)

This may be used to calculate Q by Eq. (80).
The value of 6;, when desired, may be found
from

8:=2PB(6:/8)—P]. (92)

According to Egs. (34) and (55), the numerical
value of C is 2.99. The value of ¢gs used in these
calculations can be obtained from the length xg
of the spring wire by Eq. (15) using a value of
Hg which by Eq. (8) is sII where H is the value
for the filament.

From Egs. (90) and (15)

Ax=(2H)}P(1—PB/b), (93)

while for short spring wires or leads this becomes,

Ax=1xg/s% (94)

If for short leads a material is used which has
a heat conductivity Ag, the value of Ax given by
the above equation should be multiplied by
No/As)- ’

The heating of the leads has also an effect on

%7
X9) QO
[ 4
o
2 4%
d
E_F f4 . 8
Alag| O G-077,
@ = 2 °%

Fic. 3. The temperature distribution along a filament
supported at one end by a spring.
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the change in resistance. As seen in Fig. 3 the
observed resistance when a spring is attached is
the sum of the resistance Qg of the spring and
the resistance Qr of the filament, so that

Q=05+ Qr=05+ %+
=Qs—Qup+2Q
since Q2= Qo— QAD.

(95)

On passing a current, the resulting changes in
resistance are given by

AQs= (bpQs/Csips)(1—1/cosh Ces), (96)
(neglecting 85 compared to 6;) and
AQup=31p0:Qp, 97)

where Qg and Q4p are the cold resistances. The
increase in €, v1z., AQ, may be calculated from
B and ¢ by the tables.

IV. EXPERIMENTAL DETERMINATION OF THE
Hear CoNpucTIvVITY N

The relations given in Part II show that the
heat conductivity X may be calculated from a
determination of the value of T or of Q resulting
from passage of a current through the filament.
For filaments below 600°K it is more convenient
to use the resistance Q. The experimental
procedure was as follows.

Three tubes were used. One (Tube No. 1) was
the tube described in Paper I which by use of
hollow copper leads allowed control of T inde-
pendently of T's. Two other tubes (Nos. 2 and 3)
had heavy leads of 120-mil molybdenum, arc-
welded in hydrogen to the filament to insure
good thermal contact. The filaments were of
thoriated tungsten 0.00499 cm in diameter, and
had total lengths in Tubes 1, 2, and 3 of 25.82 cm,
12.86 cm and 5.87 cm, respectively. The use of
three filament lengths provided a check on the
method of calculation and increased the range
of values of 8, for which @ could be accurately
measured. For the shortest filament, low values
of B gave changes in resistance too low to be
measured accurately, while for long filaments the
higher values of # gave filament temperatures
outside the range for which radiating properties
had been determined.

The tubes were baked at 450°C and pumped
during the experiments through liquid-air traps.
The filaments were heated initially at 2000°K



HEAT CONDUCTIVITY OF TUNGSTEN 79

to produce a fine grained structure and then at
2400° and 2800°, as described in Paper I, to a
condition where further aging caused no change
in resistance or emissivity.!!

In most of the experiments 7, was made
equal to T'p by immersing the tube and its leads
in a constant temperature bath. The filament
current A and resistance @ were found from
voltage measurements with a precision potenti-
ometer.

An example is given below of the steps and
quantities involved in the calculation of the heat
conductivity from experimental data.

Tuse L To=Tg A
)

No. (cm) (°K (amp.) B AoX10® VoX108 RoX106 [
2 12.86 244.1 0.01949 20 4.358 6.3871 4.4567 1.4665
3 5.87 244.1 0.01949 20 4.358 2.9154 4.4567 0.6675
TuBe Q2—Q0 AQ A T
No. =AQ Q0 @0 ho X (Eq.104) 6 Ti—To (°K)
2 03335 0.2274 0.1050 0.06083 1.701 1.720 0.2765 67.5 311.6
3 0.02545 0.03813 0.0473 0.06177 1.745 1.720 0.0473 11.6 255.7

Qo, the resistance of the filament when entirely
at the temperature 7, was first determined as in
Paper I, and then the change in resistance,
Q—Qy=AQ, caused by passage of the current 4.
This current A was chosen by calculation from
(Eq. (6) Part II)

B=(4/40

to correspond exactly to integral values of 8. In
the examples shown, 8 is 20. 4o, and the quan-
tities V, and R, were obtained from Paper I,

(98)

11 Tt should be noted that brief aging (few minutes) at
temperatures even as high as 2600°K will not produce a
tungsten filament which is unchanged by further heating.
For example, in the case of filaments used in these experi-
ments, after the initial aging at 2000° for about 2 minutes,
aging at 2400°K caused a decrease in cold (264°K) re-
sistance of 2 percent after 1 minute, 5 percent after 40
minutes, and after 4 hours at 2400° and 30 seconds at
2800° the total decrease was about 7 percent. At the same
time, in spite of this decrease in cold resistance, the voltage
for a constant current giving a maximum filament tem-
perature of about 600°K increased. Thus the emissivity
had decreased, which indicates either a cleaning or a
smoothing of the filament surface. (See also reference 6.)
It is possible that filaments when only slightly aged are
clean, but unless special tests are made, it is clear that the
filament temperature is uncertain. Experiments, involving
adsorbed films on tungsten for example, can be interpreted
most easily when the tungsten by proper aging has been
brought into a condition where its surface and tempera-
ture are reproducible.

Table II, using the equations

1/(): ]/,xo/(l':, (9())
Ag=A'd}, (100)
Ro=R'r/4. (101)

From the value of 8 and AQ/Q, given by the

experiments, the corresponding value of ¢, was

found from Tables V, VI, or VII of Part V.
Now from Eq. (26) of Part II,

ho=Vs/ @0,

and so the heat conductivity, Mo, at the tempera-
ture, Ty, of the leads could be calculated from
Eq. (27).

(102)

)\0 = h»oQ/ZR()T(). (103)

The values of 8, =(T1—1v)/To, and of T}
were found as described later in Part V.
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By experiments at values of To(=715) from
244° to 473°K, the dependence of \g on T} was
determined. For each value of 7 a series of
values of 8 (i.e. of A) was used giving tempera-
tures, 71, at the middle of the filament up to
1100°K. However, in each case, the calculation
as described above gave N\, i.e., A at T'=T,.

Preliminary experiments (described below)
under simplifying conditions had indicated that
the variation of N with T was given by

log A=0.9518+F log 7, (104)

where k= —0.30. This value of 2 was used in
the construction (see Part III) of the tables in
Part V. That the present much more extensive
experiments confirm this choice of k is shown by
examination of the collected data in Fig. 4.

Mo is plotted as a function of T4, for the five
values of T, from 244 to 473°K. Considering
only values of T below 600°K,™2 it is seen that
N, at each T, is independent of T, and shows
no significant change in the three different tubes,
i.e., no change with filament length. This fact
that A is independent of 77 indicates that the
value of k equal to —0.30 used in Eq. (104) is
correct. Otherwise there would have been a
progressive change in \g as 7 was varied.

The values of N at the five values of 7T=1T,,
calculated from Eq. (104) are given as solid
horizontal lines in Fig. 4. The evident agreement

12 In experiments where 7' exceeded 600°K, )\ increased
with 7. This behavior, observed in all tubes, was not
caused by changes in emissivity due to an attack of the
filament surface by residual gases, since on returning to
temperatures below 600° the normal values of \, were
obtained. Also the effect was independent of bulb tempera-
ture. It was most marked in Tube No. 1, which had the
longest filament and least in Tube No. 3 with the shortest
filament. It is believed that the explanation lies in the fact
that the relations of Paper I between energy radiated and
filament temperature are not applicable much above the
maximum filament temperature (580°K) for which they
were determined. Between 225.,and 580°K, the energy
radiated is given by Wgr=KT%32 However, as pointed
out on p. 325 of Paper I, the exponent of 7" must increase
above 600°K in order to reach the values of Jones and
Langmuir and Forsythe and Watson which are accepted
as accurate above 1000°K. Calculations show that this can
account for both the magnitude and direction of the ob-
served deviations of No. The effect should be greatest for
the longest filament, since a greater proportion of its length
is at temperatures near T\.

Incidentally, it was observed that very slight traces of
water vapor from bulbs insufficiently baked cause appre-
ciable changes in emissivity which increase with bulb tem-
perature, and are immediately recognized by the lag effects
produced when the filament temperature is raised or
lowered.
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(below T7=600°K) of the experimentally de-
termined points with these calculated values of
N is an independent confirmation of the correct-
ness of k.

Since we at first had no knowledge of %, i.e., of
the variation of N with 7, the preliminary
experiments mentioned above were carried out.
Using Tube No. 1, the bulb was immersed in
liquid nitrogen and the leads were held at
temperatures, Ty, between 240 and 450°K. At
each value of T the resistance, Q, was measured
for several values of current, 4, chosen to cause
only small deviations of the filament temperature
from TY. Since for each value of T the maximum
temperature rise was small (~10°), X\ could be
taken as independent of temperature (k=0), and
Eq. (36) of Part II, Case I (low values of 6,),
could be applied. With the bulb in liquid nitrogen
T's is effectively equal to zero and this equation
takes the form,

tanh 2.864 ¢,
AQ/Qy=0.300(8— 1)[1 ______]’ (105)

2.864<p0

where 8 and €, are found as already described.

Since the resistance changes, AQ, are small, the
measurements tend to be less accurate than in
the experiments where 71— T, was large. How-
ever, it is seen from Eq. (105) that for the small
resistance changes involved AQ is a linear func-
tion of 8 (or of 42). So by plotting AQ vs. A2, the
slope of a line through the individual points
allowed a satisfactorily accurate calculation of
@. From Egs. (102) and (103), A, was then
calculated. '

Thus at several temperatures T'(=T,), A(=\o)
was determined and found to depend on temper-
ature as given by Eq. (104).

The values of N determined in the present
work may be extrapolated to join the data of
Forsythe and Worthing,? giving a curve of Nvs. T°
which has a minimum at about 1300°K and
joins F—W at 1500°K. Values of N from this
curve are as follows. '

T T
(°K) A (°K) A
600 1.313 1200 1.00
800 1.18 1300 0.98
1000 1.08 1500 0.99

These values justify the corrections to the F— W
equation found necessary by Langmuir, Mac-
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Lane and Blodgett® for temperatures below
1500°K (see Introduction).

Since the variation of N with T is established
by the experiments, an equation for % as a
function of T can be derived. From Eqgs. (27a),
(101), and Eq. (6) of Paper I,

log ©=96.4826—10040.965 log 7.  (106)

Likewise (2H)! for use in Eq. (93) can be
expressed as a function of 7. Since H depends
not only on T but also on the filament radius 7,
it is convenient to use the quantity (r/2H)%.
From Egs. (15) and (104) and Egs. (6) and (7)
of Paper I,

log (r/2H)}=91.3793—100+2.316 log T.  (107)

Table VIII in Part V gives k, X\, and (r/2H)?}
for a series of values of T, as calculated from the
above equations.

V. CALCULATION OF FILAMENT TEMPERATURE
AND RESISTANCE FROM THE TABLES

Tables I to VIII, prepared as described in
Part III, are given to facilitate calculations of
filament temperature or resistance from a knowl-
edge of the filament dimensions, the filament
current, and the lead and bulb temperature.
Directions and examples are given for the
several usual cases. The theory and equations
in Parts II and III need not be referred to.

In general there will be known :

r=radius of filament (cm),
xo=half length of filament (cm),
Ty=lead temperature (°K),
Tg=bulb temperature (°K),
A =filament current (amp.).

Case 1. (Tp=T,)

This is the experimental condition existing, for
example, when the bulb and the filament leads
are immersed in a bath at constant temperature.
The filament leads are to be chosen of such a
diameter (at least 10 times filament diameter)
and as short as possible so that they are not
appreciably heated by the filament currents to
be used, or by conduction of heat from the
filament.

It is ordinarily convenient to construct a table
or curve giving filament temperature as a func-
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tion of current, from which temperatures can be
found for any value of current used in experi-
ments. This is done in the following way.

From Table VIII or Eq. (107) find the value
of (r/2H)* corresponding to Ty. Then using the
known value of 7, calculate ¢, from

po=2xo/(2H)*.

Now for integral values of 8 as given in the
Tables (II, III, IV) find the values of 6, corre-
sponding to this value of ¢,. T, the temperature
at the middle of the filament, is given by

Ty=(1+46,)To.

(108)

(109)

The currents, A, required to produce each
temperature 73, are found from the values of g
using the equation

B=(A4/4.)",

where 4, for the filament in question is calculated
from

(110)

Ay=A'd}, (111)

where d is the filament diameter and A’ is taken
from Table II in Paper I, or calculated from
the equation

log A’=96.1952—10042.051 log Top. (112)
AQ/Q is found in a similar way by using ¢y,

TABLE 1. Limiting values of various funciions.

1 2 3 4 5 6 7
B (Bo=1)

(Bo=0) oo [}.74 B, (AQ/Q)y  (o074102) 03
0 1.0000 0.0000 0.00000 0.0000 1.000 1.000
1 0.8504 .1759  .0577 .2205 1.943 0.943
2 .7708 .2974  .0839 3775 2910 .910
3 .7182 .3923  .0983 .5024 3.888  .888
4 6798 .4709 .1075 .6074 4.87 .870
6 .6257 .5981 .1186 .7801 6.84 .845
8 .5881 .7004 .1248 9212 8.83 .826
10 .5594 7877  .1287 1.043 10.81 811
15 .5104 .9594 .1336 1.287 15.79 .785
20 4774 1.095 1355 1.483 20.77 766
25  .4529 1.208 1361 1.649 25.75 752
30 .4338 1.305 1361 1.793 30.74 .740
40  .4051 1.468 .1354  2.038 40.72 722
50 .3840 1.604 1343 2.245 50.71 .709
60 .3676 1.720 1330 2.425 60.70 .697
80 .3429 1.916 1305 2.730 80.68 .680
100 .3249 2.078 1281 2986 100.7 .667
120 .3109 2.217 1260 3.209  120.7 .657
140  .2994 2.340 1241 3.407 140.6 .648
160 .2899 2.450 1223 3.586 160.6 .640
180  .2817 2.550 .1207  3.750 180.6 .634
200 .2746 2.641 1192 3,902  200.6 .628
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B, and Tables V, VI, and VIL.!® This value of
AQ/Q is usually not required, but if compared
with a measured value of AQ/Q, serves as a
check on the calculation of 7i. Also if the
filament length and hence ¢, are unknown, then
a determination of Q, and of AQ caused by the
current A enables one to find ¢, and then 6,
(and T3) from the tables.

Case 2. (Tz<Ty)

In some types of experiments the bulb may be
at a lower temperature than the leads. The
tables have been prepared primarily for use
when Tp=T, However, when T3 <T,, a current

13 It should be noted that for convenience in tabulation,
6,/8 and AQ/BS are given in Tables II and V instead of
6, and AQ/Q as in the remainder of the tables.
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temperature scale may be obtained by the
following procedure :

Calculate ¢ for the lead temperature 7 which
is to be used and find 6, and T} for the various
values of B in the tables exactly as in Case 1.
These values of 8, however, must not be used to
calculate the currents 4. Instead, a new value
of 8 must be calculated using Eq. (65) of Part III,

B=ag 1192 — (1 — Bg) g3, (113)
where from Eq. (11), Part II,
Bo=1—(Ts/To)**%, (114)

and oy is assigned the values given in the tables
(just below the values of 8 which are applicable
only to Case 1). a9, 0o°-3%, and oo™*1% are given
in Table I.

TaBLE I1. 6,/8 as function of ¢o and 8.

g=0 g=1 B=2 B=3 g=4 B=6 B=8 B8=10
o0 = oo = g0 = a0 = g0 = o= g0 = go=

2 1.0000 0.8504 0.7708 0.7182 0.6798 0.6257 0.5881 0.5594

0.00 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
.02 .00040 .00040 .00040 .00040 .00020 .00040 .00040 .00040
.04 .00159 .00159 .00160 .00160 .00160 .00161 .00162 .00162
.06 .00355 .00357 .00358 .00359 .00361 .00364 .00367 .00370
.08 .00625 .00630 .00634 .00638 .00643 .00653 .00662 .00672
.10 .00964 .00974 .00984 .00993 .01006 .01029 .01053 .01078
12 .01367 .01385 .01405 .01424 .01450 .01495 01543 .01595
.14 .01827 .01857 .01891 .01922 .01970 .02072 .02162 102234
.16 .02337 .02382 .02434 .02488 .02560 .02660 .02800 .0294
.18 .02891 .02951 .03024 .03105 .03208 .03318 .03514 .0369
.20 .03481 .03554 .03646 .03754 .03890 .04078 .0429 .0442
.22 .04099 04179 .04285 .04412 .04575 .04850 .0505 .0507
.24 .04740 .04857 .0499 .0514 .0530 .0554 .0566 .0563
.26 .05396 .05506 .0565 .0585 .0604 .0616 .0619 .0611
.28 .06061 .0618 .0633 .0656 .0674 0674 .0668 .0647
.30 .06730 .0686 .0700 .0720 .0733 .0727 .0706 .0676
32 .07398 .0753 .0765 .0781 .0788 0772 .0737 .0698
.34 .08061 .0820 .0829 .0838 .0836 .0810 .0763 .0717
.36 .08714 .0881 .0885 .0889 .0879 .0838 .0784 0731
.38 .09355 .0941 .0940 .0937 .0919 10863 .0801 .0743
.40 .09981 .0996 .0988 .0978 .0952 .0885 .0814 .0751
42 .10591 .1049 .1035 .1017 .0982 .0902 .0826 .0759
44 11181 .1102 .1080 .1051 .1008 .0918 .0835 .0765
46 11751 .1149 1120 .1083 .1031 .0931 .0842 .0769
48 .12301 1197 1157 1110 .1050 .0942 .0848 .0773
.50 .12829 .1239 1190 1134 .1067 .0950 .0852 .0776
55 .14052 1336 .1260 1181 .1100 .0966 .0862 .0781
.60 .15146 1413 1313 1214 1124 .0977 .0867 0784
.65 .16110 .1476 1354 1240 1139 .0984 .0870 .0785
.70 .16956 1530 1384 1258 1150 .0988 .0872 .0786
75 1771 1573 .1408 1272 1158 .0991 .0873 0787
.80 1834 .1608 .1426 .1280 1163 .0993 .0874
.85 .1890 1637 .1440 .1288 1167 .0995 .0875
.90 .1938 .1660 1451 .1293 1170 .0995

1.00 .2016 .1687 .1466 .1300 1174 .0996

1.10 .2074 1712 1474 .1303 1175 .0996

1.20 2116 1728 1479 .1305 1176

1.30 .2148 1738 .1482 .1306 1177

1.40 2172 1746 .1484 1307
) 2241 1759 .1487 .1308 1177 .0997 .0876 .0788




HEAT CONDU‘CTIVITY OF TUNGSTEN

TABLE II1. 6, as funciion of oo and B.

83

8=15 8=20 p=25 8=30 B =40 8=50 B=60 8 =80
0 0‘.’; 104 0;774 0712529 0‘.’40338 0‘.’4‘1)05 1 0.;840 0‘.7;676 0‘.730429
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
.01 .0015 .0020 .0025 .0030 .0040 .0050 .0060 .0081
.02 .0060 .0081 0101 0121 .0163 .0204 .0247 .0332
.03 .0136 0183 .0229 .0278 .0375 .0473 .0575 0784
.04 .0245 .0330 0417 .0505 .0687 .0877 1075 1497
.05 .0388 .0526 .0666 .0813 1120 1448 .1800 2582
.06 .0568 0774 .0991 1216 .1705 .2239 .2886 429
.07 .0786 .1081 .1401 1730 2473 .3328 429 .684
.08 1048 1456 .1909 2384 3494 4839 .641 1.027
.09 .1358 .1908 2527 .3206 4800 674 .895 1.321
.10 1718 .2447 .3259 4170 .6330 .879 1.121 1.521
A1 2135 310 414 532 794 1.065 1.296 1.650
12 .2605 377 .509 .651 .945 1.209 1.418 1.734
13 3137 452 .608 770 1.068 1.312 1.502 1.788
.14 .3703 533 704 .873 1.164 1.387 1.561 1.827
15 428 .609 .789 961 1.233 1.440 1.604 1.854
.16 486 .681 .864 1.031 1.286 1.478 1.634 1.871
A7 .543 .745 926 1.084 1.326 1.509 1.656 1.884
18 .597 .803 977 1.126 1.357 1.531 1.672 1.894
.19 .643 .850 1.019 1.161 1.380 1.548 1.685 1.900
.20 .684 .889 1.053 1.188 1.399 1.561 1.694 1.905
21 721 921 1.081 1.210 1.414 1.571 1.701 1.908
.22 .754 948 1.1027 1.227 1.425 1.579 1.706 1.911
.24 .806 .990 1.1354 1.253 1.441 1.589 1.712 1.914
.26 .844 1.020 1.1580 1.271 1.451 1.595 1.716 1.915
.28 .873 1.0409 1.1733 1.282 1.458 1.599 1.718 1.916
.30 .8945 1.0557 1.1837 1.289 1.462 1.601 1.719
.35 9271 1.0772 1.1980 1.299 1.466 1.603 1.720
40 19430 1.0868 1.2038 1.303 1.468 1.604
% 9594 1.0946 1.2078 1.305 1.468 1.604 1.7205 1.916
When Tp is so low, e.g. when the bulb is TaBLE IV. 8, as function of ¢ and B.
immersed in liquid air, that back-radiation is
“ . . 8 =100 g =120 B =140 B=160 B=180 B =200
negligible; then T3 may be taken as effectively a0 = a0 = a0 = 70 = 70 = a0 =
L .. @0 0.3249 0.3109 0.2994 0.2899 0.2817 0.2746
equal to zero. For this condition, then from
E 114 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
q. (114), 005 .0025 .0030 .0035 .0040 .0045  .0050
.010 .0101 .0122 0142 .0163 .0184 .0205
Bo=1, and f)'=0'0_4'102. .015 .0231 .0279 .0327 .0376 .0425 0475
.020 0419  .0508 .0599 .0691 .0786 .0882
In Table I, column 6, there are tabulated the .025 .0673 .0821 .0974 .1132 .1295  .1465
. . .030 .1003 1230 1476 1732 .2002 .2288
values of 8 for this special case (Bo=1), corre- 035 1425 1766 .2145 .2544 2987  .3465
sponding to the values in column 1 of B for 040 .196 .2458 .3040 .3673 .4390 .5203
. .045 .264 .3386 4258 .526 .646 .789
Case 1 (I'p=Ty), for which, from Eq. (114), 950 350 461 .594 762  .957 1.197
Bo=0. In column 2 are the values of ¢p. Columns  .055 .463 .630 .829 1081 1371 1.642
. . y , .060 612 .846 1.141 1.446 1.719 1.956
1 and 2 list the same f’s and oo's as head the  lg65 704 1112 1440 1723 1963 2.161
Tables II to VII. 070 1.013 1.364 1.669 1.920 2.128 2.297
075 1.228 1.578 1.838 2.058 2.239 2.391
C Fil . . . .080 1.407 1.713 1.960 2.157 2.320 2.458
ase 3. Filament joined to a spring 085 1.544 1.828 2.050 2.226 2.377  2.506
. . . . . . . . . 2.541
As discussed in Part IIT it is often necessary to '832 {?ig {3% %iéi %%ZS %ié? 2.266
hold a filament taut by means of a spring 100 1.809  2.027 2.202 2.349 2475  2.585
. 105 1.863  2.066 2.232 2.373 2.493 2.600
between one end of the filament and its lead. {1y 1902 2096 2256 2390 2.506 2.610
The spring, heated by conduction of heat from  .115 1934 2121 2274 2403 2516 2.617
. . 120 1,960 2.139 2.288 2.414 2.524 2.623
the filament, may increase the maximum temper- 135 1999 2166 2.307 2.428 2.535  2.631
ature T, of the filament. It was shown in IIT  .140 2.024 2.184 2319 2436 2.541 2.636
that th ff : ti if the fil 1 th 3 150 2.041 2.196 2.327 2.442 2.544 2.638
at the efiect is as it the filament length were w 2078 2217 2339 2440 2.540  2.641

increased by an amount Ax.
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Ax is found from either Eq. (93),
Ax=(2H)*P(1—Pg/b)
or from Eq. (94),
Ax=xg/s%

In Eq. (93), 2H is obtained from the value of
(r/2H)? for the filament just as in Case 1; P has
the values given by Eqs. (88) or (89); and /b is
given by Eq. (91).

In Eq. (94), x5 is the total length of the spring
in cm, and s is the ratio of the diameter of the
spring to that of the filament.

For springs of practical design,'® the simpler
Eq. (94) is usually sufficiently accurate. If for

D J. B. TAYLOR

some reason the spring must be longer than
required by usual design, it may become neces-
sary to use Eq. (93).

Having obtained Ax, ¢, is calculated from Eq.
(108), in which x, is now not the actual half-
length of the filament as before, but the half-length
plus Ax/2. 6,, T1, and A are then found as in
Cases 1 or 2.

The above method must be used, of course,
even in the absence of a spring, when the
filament leads are of such small diameter or so
long as to be heated by conduction from the
filament. As can be seen from Eq. (94), this is
avoided if the leads are only a few cm long and
have a diameter at least 10 times that of the
filament.

TABLE V. AQ/BQ as function of oo and B.

8= B=1 B=2 8=3 B= B=6 B=38 s=10
%0 1.6’000 0?;5()4 0?70708 0?’70182 0.0(;)798 0.60257 0.508 1 0.50594
0.00 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
.02 .00033 .00033 .00033 .00033 .00033 .00033 .00033 .00033
.04 .00130 .00131 .00131 .00131 .00131 .00132 .00132 .00134
.06 .00291 .00293 .00294 .00295 .00296 .00299 .00302 .00307
.08 .00513 .00517 .00520 .00524 .00528 .00536 00544 .00553
.10 .00792 .00799 .00808 .00818 .00827 .00846 .00866 .00888
.12 .01123 .01139 .01156 .01174 .01194 01232 .01273 .01318
14 .01502 01528 .01557 .01588 .01624 01711 .01788 .01851
.16 .01924 .01962 .02007 .02060 .02114 .02201 .02326 .02446
.18 .02382 .02434 .02497 .02577 .02655 .02754 .02933 .0309
.20 .02871 .02934 .03015 .03120 .03228 .03394 .03604 .0371
.22 .03385 .03443 .0353 .0366 .03806 .04056 0428 .0433
24 .0392 .04022 .0414 .0429 .0444 .0466 .0483 .0484
.26 0447 .04579 0472 .0491 .0509 .0522 .0534 .0534
.28 .0503 .0515 .0531 .0553 0571 .0577 .0580 .0573
.30 .0559 .0573 .0589 .0609 .0624 .0629 .0620 .0605
.32 .0616 .0629 .0644 0661 .0675 .0673 .0654 0634
34 .0672 .0687 .0700 .0712 .0719 .0707 .0684 .0660
.36 0728 .0740 .0750 .0758 .0760 .0741 .0712 .0682
.38 .0783 .0792 .0798 .0802 .0800 0771 .0736 .0702
.40 .0837 .0841 .0842 .0842 .0835 .0798 .0757 .0719
42 .0890 .0889 .0885 .0878 .0867 .0823 0777 .0735
44 .0942 .0936 .0927 .0914 .0897 .0846 0794 .0750
.46 .0992 .0979 .0963 .0946 .0925 .0866 .0810 .0763
.48 .1041 1023 .1002 .0978 .0951 .0885 .0825 0774
.50 .1088 .1063 .1036 .1006 0974 .0902 .0838 .0785
.55 .1200 1157 1114 .1070 .1026 .0939 .0867 .0809
.60 .1302 1236 1179 1123 .1068 .0970 .0891 .0829
.65 1394 .1306 1235 1167 .1103 .0995 .0911 .0845
.70 1478 1368 .1283 1204 1133 1017 .0928 .0859
75 1554 1426 1324 .1236 1159 .1037 .0944 .0872
.80 1622 1476 .1360 1264 1182 .1053 .0956 .0882
.85 .1684 .1520 1392 1288 .1202 .1068 .0968 .0892
.90 1741 .1559 1420 1310 1220 .1081 .0978 .0900
1.00 .1838 1625 1467 1347 .1250 1102 .0996 .0915
1.10 1920 .1679 .1506 1377 1274 1120 .1010 .0926
1.20 .1989 1723 1538 .1402 1294 1135 .1022 .0936
1.30 .2047 1761 1565 .1423 1312 1148 .1032 .0944
0.140 .2098 1793 .1588 .1441 1326 1159 .1040 .0951
®© .27566 .2205 .18875 .16746 15185 .13002 11515 .10433
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Bg=15 B =20 B=25 8=30 B8 =40 B =50 8 =60 B8 =80
) 0‘.,50 104 0‘.74)7 74 0(.’4?529 03‘338 0(.’205 1 0‘.,30840 0.30676 0342‘)
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
.01 .0012 .0016 .0020 .0025 .0033 .0041 .0050 .0066
.02 .0049 .0066 .0083 .0100 0134 0168 10202 0273
.03 0112 .0150 .0188 0228 .0308 .0389 0472 0644
.04 .0201 0271 .0342 0414 0564 0721 .0884 1231
.05 .0318 .0432 .0547 .0669 0921 1192 .1483 .2129
.06 .0466 .0636 .0815 .1000 .1405 .1848 .2386 .356
.07 0646 .0889 .1186 .1426 .2043 .2759 .3563 .574
.08 .0862 .1200 .1575 1969 .2900 4046 .539 .879
.09 1118 1575 .1804 12657 4005 .569 763 1.152
.10 1418 .2010 .2200 .3480 .5343 748 970 1.363
11 .1766 .257 318 446 677 916 1.142 1.511
.12 .2161 314 429 .550 812 1.061 1.278 1.624
13 .2610 378 517 .655 929 1.174 1.378 1.715
14 .3091 448 .597 749 1.030 1.262 1.459 1.791
15 .359 .515 676 .835 1.109 1.333 1.527 1.856
.16 .409 578 .749 .909 1.174 1.394 1.586 1.912
17 A58 .637 812 968 1.230 1.447 1.638 1.961
18 .506 694 .867 1.019 1.277 1.494 1.682 2.004
.19 .550 742 913 1.063 1.319 1.534 1.722 2.044
.20 .591 784 .953 1.102 1.357 1.571 1.758 2.078
21 .629 .821 .989 1.137 1.390 1.604 1.790 2.109
.22 664 .854 1.021 1.168 1.420 1.633 1.819 2.137
.24 720 910 1.076 1.222 1.472 1.685 1.870 2.187
.26 764 .956 1.122 1.267 1.517 1.728 1.913 2.228
.28 .803 .995 1.161 1.306 1.554 1.765 1.950 2.264
.30 .837 1.029 1.194 1.338 1.586 1.797 1.981 2.295
.35 .906 1.096 1.260 1.404 1.652 1.861 2.045 2.358
.40 .952 1.144 1.309 1.453 1.700 1.909 2.092 2.404
w 1.2872 1.4830 1.6489 1.7930 2.0385 2.2449 2.4247 2.7304
TABLE VII. AQ/Q as function of ¢o and B.
B =100 B=120 B =140 B =160 B =180 B =200
@0 0.;249 0. 0109 0420994 0‘3)899 0'.,;8 17 0'.720746
0.88(5) 0.88(2)(1) 0.0000 0.0000 0.0000 0.000(7> 0.0000
. . 0025 .0029 .0033 .0037 .0041
010 0083 0100 .0117 .0134 .0151  .0168 TasLe VIIL. Values of h, X and (r/2H)*.
015 .0190 .0229 .0268 .0308 .0349  .0390
'85(5) .8g151§ .846,%7 .0492 .0868 0646  .0725 To(°K) h N (r/2HY} X 108
. . 0675 .0800 .0930 .1066 .1205
030 .0824 .1013 .1215 .1426 .1650  .1887 240 0.0602 1.729 0.780
035 .1172  .1457  .1768  .2100  .2469  .2867 250 .0626 1.708 0.857
040 162 .2037 .2512 .3042 .3646  .4329 260 .0650 1.688 0.938
045 218 2801  .3534  .438 540  .663 270 .0674 1.669 1.024
050 .290  .383 496 640 810 1.023 273 .0682 1.663 1.051
055 .385 .527 .699 921 1.182  1.435 280 0698 1.651 1.114
060 511 J14 977 1.247  1.512  1.746 290 0722 1.633 1.209
065 .670 951 1.252  1.522 1.764 1.980 298 0742 1.620 1.287
070 .864 1.184 1473 1.734 1956 2.150 300 .0746 1.617 1.307
075 1.061 1.389 1.647 1.892 2.098  2.283 310 0770 1.601 1.410
080 1.228 1.549 1.796 2.018 2.215  2.393 350 .0866 1.544 1.868
085 1.364 1.665 1.904 2.120 2.312  2.487 400 .0985 1.483 2.545
090 1.486 1.768 2.002 2.209 2.397  2.569 450 .1104 1.432 3.343
095 1.588 1.854 2.082 2.286 2.472  2.641 500 1222 1.387 4.267
100 1.670 1.928 2.153  2.354 2.537  2.706 550 1340 1.348 5.321
105 1741 1.994  2.216  2.415  2.597  2.764 600 1457 1.313 6.510
110 1.803  2.052 2.272 2470 2.650 2.815
115 1.858  2.105  2.323  2.519  2.698  2.863
120 1908  2.153  2.369  2.564 2.743  2.908
130 1.994 2236 2450 2.644 2.821  2.985
140 2,067 2.307 2.519 2712 2.888  3.050
150 2.132  2.368  2.579 2,770  2.945  3.107
w 29861 3.2087 3.4069 3.5860 3.7501 3.9020
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Examples of the calculation

Consider the filament in tube No. 2, used in
the experiments on heat conductivity, which had
a length of 12.86 cm and a diameter of 0.00499 cm
(~2 mil).

T Tr Ax Xo (r/2H)}
(°K) (°K) Bo (cm) (cm) X103 0
(1) 300 300 0 0 6.43 1.3071 0.1683
(2) 300 0 1 0 6.43 1.3071 0.1683
3) 300 300 0 0.40 6.63 1.3071 0.1735
A’
T amp. AXx10° A

01 (°K) B cm™¥2  (amp.) (amp.)
(1) 0.740 5220 20 18.869  6.651  0.02974
(2) 0.740 5220 20.77 18.869 6.651 0.03031
(3) 0.768 5304 20 18.869  6.651 0.02974
(1) Given Tp=T,=300°K, the filament

mounted directly on heavy leads. Calculate T}
and the corresponding current 4, for B=20.
This is an example of Case 1. As shown in the
accompanying table x, the half-length, is
12.86/2=6.43 cm. (r/2H)* at 300° from Table
VIII is 1.3071X1073. From xo, (r/2H)} the
known value of the filament radius 7, and Eq.
(108), ¢o is then calculated to be 0.1683. From
Table III for =20 and this value of ¢, 6; is
found to be 0.740. From Eq. (109) T} is 522°K.
From Table II, Paper I, A’ at 300° is 18.869, so
that by Eq. (111) A4, is 6.651X10~* amp.
Finally, using Eq. (110) with 8=20 and this
value of 4y, we find A to be 0.02974 amp.

(2) Given T,=300°K as in Example (1), but
the bulb is now immersed in liquid air so that

Tp=0. Calculate T, and A for =20. This is an

example of Case 2, By=1.

One proceeds exactly as in Example (1) up to
the calculation of 4. Here instead of using 8= 20,
the corresponding value of 8 in column 6 of
Table I, equal to 20.77, is used with Eq. (110) to
calculate 4. As to be expected, this value is
slightly larger than the current required in
Example (1).

(3) To=T3=300°K as in Example (1), but
one end of the filament is joined to a spring.

CONDUCTIVITY
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Calculate T, and 4. This is an example of Case 3.

Making use of the relations given in reference
10 on spring design, one finds that a spring
suitable for a filament of the present length and
diameter can have the following dimensions:
a 10-cm length of 10-mil spring wire wound into a
spring of 12-mm diameter (~3 turns).

Ax equal to 0.40 cm is found from Eq. (94), in
which xg is the spring length (10 cm) and s is the
ratio (10/2=35) of the diameters of spring and
filament. ¢y, equal to 0.1735, is calculated as
before from Eq. (108) in which xo is now 6.43
+(Ax/2) or 6.63 cm. The remaining steps in the
calculation of 7 and 4 are unchanged. One notes
that although the current is the same as in
Example (1), the presence of the spring has
increased T about 8°.

Table I

Table I gives limiting values of wvarious
functions, and has in part been referred to under
case 2. In addition, column 3 lists values of
0. (14-0xm)To=Tuy, the temperature at the
middle of the filament when it is infinitely long,
or so long that the central part is not cooled by
the leads. For a filament of given diameter, 6,
approaches 6y as a limit as the filament is made
longer and as § is increased. (AQ/),, in column §
is the corresponding limiting value of AQ/Q.
This behavior is shown in Figs. 5 and 6 which are
plots of Tables II to VII. It will be noted in
Tables II, I11, and IV that 6; as a function of ¢
extends practically to the value of 6. However,
in Tables V, VI, and VII for the same values of
00, AQ/Q has not closely approached its limiting
value. These tabulated values of AQ/Q, may be
extended to (AQ/Q), by calculation from the
equation

AQ/ Q= (AQ/Q)e— Bo/ ¢0.

where B, has the values given in column 4 of
Table 1.

Column 7 gives values of ¢¢®-3 for use with Eq.
(113). In this same equation o¢4!% is given by
the values of 8 in column 6.



