
I ULY 1, 1936 PH YqS I CAL REVI Ew V 0 L U 1VI E 5 0

The Heat Conductivity of Tungsten and the Cooling Effects of Leads upon Filaments
at Low Temperatures

IRvINQ LANGMUIR AND JQHN BRADsHAw TAYLQR, General Electric Company
(Received May 4, 1936)

The theory and the equations governing the temperature
distribution, resistance, and heat flow in a tungsten
filament as affected by its leads are given for the low
temperature range (&600'K), both for the general case
and for several special cases. A low temperature vs. current
scale for tungsten is calculated from these equations using
measurements of heat conductivity given in this paper
and previously obtained data on the radiating properties
and resistance of tungsten. It is given in the form of
tables and formulas from which, knowing the current,

filament dimensions, and lead and bulb temperatures one
can find the maximum temperature, TI, of the filament.
Methods are described for calculating the effect on TI of
a spring attached to one end of the filament. The heat
conductivity of tungsten, X, was determined experimentally
for this low temperature range. X at 273'K is 1.66 watts
cm ' deg. ' and decreases with rising temperature ac-
cording to the equation log ) +0.9518=0.30 log T to 1.31
at 600'K.

I. INTRoDUcTIQN

"N a recent paper' we have described experi-
- - ments with an evacuated tube containing a
tungsten filament attached to leads which could
be maintained at any desired temperature (220'
to 600'K). In the experiments already considered,
the lead temperature, To ('K), was higher than
the bulb temperature T~, and the current A
through the filament was adjusted so that the
filament was also at the temperature To, as
indicated by its resistance, the resistance-
temperature curve having been previously deter-
mined. In this way the cooling effect of the leads
was eliminated and thus the power input gave
directly the difference between the power radi-
ated and that absorbed from the back-radiation
from the bulb.

The results were accurately expressible by the
equation

W=K(T"—T " 'T')

where ~ = 5.332; e =0.87; loglo X=83.7105—100;
and 8' is the net radiation in watts cm ' at a
temperature T in a bulb at T~.

It is the object of the present paper to describe
experiments with the same tube in which the
current A is no longer held at the value which
makes the filament temperature equal to To.
Measurements of the resistance and voltage
input enable us to calculate the heat conductivity
of the filament and the temperature distribution
along the filament.

' I. Langmuir and J. Bradshaw Taylor, J. Opt. Soc. Am.
25, 321 (1935), (Referred to as Paper I.)

Forsythe and Worthing' have measured the
temperature distribution along incandescent
filaments near the leads and have calculated the
heat conductivity X. Their results are reproduced
(within 0.2 percent) by the equation

X=0.840(T/1000) watts cm ' deg. '. (2)

Langmuir, MacLane, and Blodgett' used this
relation in developing equations for calculating
the change in any of the characteristics of a fila-
ment which results from the cooling effect of the
leads. The temperature distribution, determined
by an optical pyrometer, over the central part of
short filaments agreed well with that calculated
and thus confirmed the accuracy of the Forsythe-
Worthing values of the heat conductivity at
temperatures above 1500'K. The analysis of the
data, however, led to the conclusion that at
lower temperatures the heat conductivity must
be greater than is given by Eq. (2).

The heat conductivity of tungsten at O'C is
given by Barratt' as 1.60 watts cm ' deg. ' and
by Kannuluik' as 1.66. The experimental method
of Kannuluik appears to be very accurate, but it
should be noted that he "annealed" the tungsten
only at 1300'C, a temperature which is quite
insufficient to bring drawn tungsten wires into a
steady state. He gives the specific electric re-

' W. E. Forsythe and A. G. Worthing, Astrophys. J. 61,
146 (1925).'I. Langmuir, S. MacLane and K. B. Blodgett, Phys.
Rev. 35, 478 (1930). References to previous literature on
the cooling eEects of leads are given.

4 T. Barratt, Proc. Phys. Soc., London 20, 347 (1914).
5 W. G. Kannuluik, Proc. Roy. Soc. A131, 320 (1931);

A141, 159 (1933).
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sistance of the wires as 6.0&(10 ' after annealing
at 200'C and 5.65 &(10 ' after annealing at
1300'C. These resistances are 20 and 13 percent,
respectively, higher than normal values for well

aged tungsten. Langmuir has shown' that a
drawn tungsten wire undergoes a 15 to 20 percent
decrease in cold resistance when first heated to
1500' for one minute and a further decrease of
2 to 4 percent upon aging for 24 hours at 2400'K.

There. is therefore evidently a need to know )
more accurately in the range of temperatures
below 1500'K. In some studies of the adsorption
of caesium on thoriated tungsten filaments by
methods already described' we have needed to
know accurately the relation between the tem-
perature at the midpoint of the filament and the
heating current even when the filament tem-
perature only slightly exceeds the bulb tem-
perature.

II. THEORY8 OF THE EFFECT OF LEADS ON THE

TEMPERATURE DISTRIBUTION AND

RESISTANCE

Let A p be the current in amperes, which must
be passed through the filament in order to
maintain the filament at the uniform tempera-
ture Tp when the bulb is at O'K, or at any tem-
perature so low that there is no appreciable back-
radiation from the bulb. The value of Ap is
evidently given by Eq. (3) if we place dT/dx =0,
so that

A p' ——2x'r'Wp/Rp,

where S'p and Rp are the values of t/V and R
which correspond to the case that the bulb is at
O'K and the whole filament is at Tp.

The current A is conveniently expressed in
terms of a dimensionless quantity P defined by

P = (A /A o)'. (6)

When the current A is small so that 0 is small
compared with unity, the values of 8 should
increase approximately in proportion to A', or
in other words 0 should vary approximately
linearly with P.

If we insert these values from Eqs. (4), (5),
and (6) into Eq. (3), we obtain

The general equation for the temperature dis-
tribution along a filament of nonuniform tem-
perature is given by

d t'Xd8i W R

dx EXo dx) Wp Rp
(7)

d(dTi
r'

i
)'

i
= 27rrW A'R/mr'—

dx ( dx)

where II, a quantity having the dimensions of
(3) the square of a length, is given by

Here r is the radius of the filament, ) is the heat
conductivity, T is the absolute temperature at a
point x along the filament, lV is the net radiation
from the filament at the point x in watts cm ',
A is the current through the filament in amperes,
and R is the specific resistance of the filament in
ohm cm.

It is desirable to express Eq. (3) in terms of
dimensionless quantities. For this purpose we
will replace T by 8 defined as follows:

where Tp is the temperature of the leads.

" I. Langmuir, Phys. Rev. 7, 302 (1916), see p. 313.
7 J. Bradshaw Taylor and I. Langmuir, Phys. Rev. 44,

423 (1933).
The theory and equations in this part and in Part I I I

enabled us to develop a temperature current scale for
tungsten (Part V) in a convenient form but need not be
referred to when calculating temperatures since Part V has
been made complete in itself.

H= rhpTp/2 Wp.

Here ) p is the value of t which corresponds to Tp.

By Eq. (1) we see that

and
g p

——KTp"

W/Wp ——(1+8) —(1+8s) '(1+8) ', (10)

and then by Eq. (10) we find

where 0~ is the value of 0 corresponding to the
bulb temperature Tg. We have seen that to
maintain the filament at Tp when T& ——0 requires
that P=1. Let Pp be the value of P which cor-
responds to the current required to maintain the
filament at Tp when the bulb is at any tempera-
ture T&. In this case we may put in Eq. (7)
d8/dx=0 and R=Rp and so obtain

Po= W/Wo when 8=0
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R/Rp ——(1+8)p. (13)

We shall see that X does not have a large tem-
perature coefficient. Within a reasonably large
range of temperatures we may assume that )
varies in proportion to a power of the tempera-
ture, so that

X=X,(1+8)", (14)

where k is a constant.
Instead of expressing our equations in terms of

x, the absolute length along the filament, let us
now use a new variable p defined by

pp=( Wp/r lbpTp)'*x= x(2') '*. (15)

By using this relation, Eq. (10) may be written

W/Wp= (1+8)"—(1 —Pp)(1+8)'. (12)

Over very wide ranges of temperature the
specific resistance R of tungsten increases in
proportion to T& where p is a constant. There-
fore, we have

Let xo and po be the values which correspond
to the ends of the filament where T= To. These
quantities then represent the half-length of the
filament. By integration of Eq. (17) we obtain

pp= (1/2) (1+8)'(F—F2) ''d8.
e

(19)

SQ

0/Dp = (1+8)p(dx/xp).
0

(20)

We can thus express 0 as a function of q and
so obtain the temperature distribution along the
filament.

We are also interested in knowing the resist-
ance of the filament. Let 0 be the resistance of
the half-length xo of the filament when the
current A is passing and let Qo be the value of 0
when the filament is at the temperature To.
Then by Eq. (13) we have

By Eq. (15) pp is proportional to x, and therefore
VVith these substitutions into Eq. t', 7j we have

1 d'8 k t d8i'
+ i

—
I

=(1+8)--'
2 dppp 2(1+8) (dpp)

—(1—Pp)(1+8)' ' —)8(1+8)' ' (16)

dx jxp =d 1/2/ppp = (d8/ppp) (d /2/d18) . (21)

Substituting this into Eq. (20) and combining
with Eqs. (17) and (19) gives

X(1+8)"(F—Fl) 'd8. (22)

81

By replacing [dg/de)' a d lng (1+8) by new (an)/B =(1 2/W)f [(1+9)'—1]
variables, this equation can be brought to the 0

linear form and one integration can be per-
formed. In this way we obtain

where
(1+8)"(d8/dP) =2(F—F1) l,

In this equation AD has been used to denote the
increase in resistance (0—Qp) caused by in-

creasing the current from A 0 to A.
F= I:(1+8)'""—1]j(~+&+1)

—(1—P p) L(1+8) '+'+' —1]/(p+ &+1)
-OL(1+8) +"+'-1]/(.+~+ 1) (18)

The quantity I'& may be regarded as an integra-
tion constant.

In general we shall measure x and y from the
point where the filament temperature is a
maximum, but if the two leads which cool the
filament are at the same temperature To, then
the maximum is also the midpoint. For this con-
dition then, at the center of the filament the
temperature gradient is zero and therefore
d8/dpp=0. Let the value of 8 at the maximum
(center in this case) be 8'. Then the value of F)
is given by Eq. (18) if we replace 8 by 8&2

and

Wp = 24 p Up/2 2[rxp

Rp ——2[rp Up/A pxp.

(23)

(24)

Multiply these equations and solve for Vo and
obtain

Up = (2 Wp& p/r) "xp. (25)

Relation between qo and the voltage Vo

Let us consider again the filament maintained
at the lead temperature To by the current Ao
while the bulb is at O'K. Then according to the
definitions already given, the radiation in watts
per cm' is 8 0 and the specific resistance is Ro.
Let Uo be the voltage drop along the half-length,
xo, of the filament. Then we have
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Eq. (15) furnishes us with another relation
involving Wp/r I.f we eliminate this factor
between Eqs. (15) and (25) we get

where

~0=&Oq 0,

kp = (2RpTp'hp)"

(26)

(27)

Flow of heat a 1ong the 61ament

Let Q be the heat flux along a filament in

watts; then
(28)Q=7rr9dT/dx

By Eqs. (4), (14), and (27) this becomes

and ko is the value, at T= To, of a quantity k

defined by
h= (2RTX)". (27a)

This parameter k is a specific property of
tungsten as it depends on the temperature but
not on the dimensions of the filament. We see
from Eq. (26) that it has the dimensions of a
voltage.

According to the Wiedemann-Franz law, )R,
at a given temperature, is nearly the same for all
metals and according to Lorenz XR increases in

proportion to T. If these laws are applicable, k

should increase in proportion to T but should be
the same for all metals.

the integration constant c is to be determined by
the boundary conditions.

With a filament having two leads at the tem-
perature To, c becomes —I'j, and the heat that
flows into each lead is given by

Qp ——A php( —Fg) l

since, by Eq. (18), F=O when 0=0.
Eqs. (19), (22), and (31) represent the general

solutions of the problems of the temperature dis-
tribution, the resistance and the heat flow in

filaments. There are, however, certain special
cases in which the equations can be so simplified
as to facilitate the calculations. We shall consider
some of these.

Case 1:I.our Ualues of 8&. When p diflers only
little from Po, the temperature of the whole
filament is not far above To so that we may take
) as constant and then put 0 =0. Furthermore, in

Eq. (16) we may expand the terms involving
powers of 1+0.If we omit terms involving powers
of 0 higher than the first, the equation becomes
linear and can be integrated. Choosing the
integration constants so that d8/dy=0 when

@ =0, and at the leads where y= go, 0=0, we
thus find that the temperature distribution along
the filaments is given by

Q = (7rr'& p /2Rp) (1+8) Pd ~/dx (29)

In Eq. (15) we can eliminate XpTp by using
Eq. (27) and by Eq. (5) we obtain where

2(P-P.)—
0=— 1—

C' cosh Cpo

C'= 2[(u —p+pp(p —p) l.

(33)

(34)

x = (7rr'h p/A pRp) p (30)

By combining Eqs. (17), (30), and (29) we find

The temperature at the center of the filament
is found by putting p =0:

Q =Aphp(F+c) l, (31) 8&= [2(P—Pp)/C'](1 —sech Cpp). (35)

where we have used c to represent the integration
constant.

Fq. (31) is applicable to the flow of heat
through a spring or lead to which a filament is

attached. In such a case the heat flowing into the
hot end may be such that there is no value of 0

which makes de/dy==0. A similar case arises if
a filament is attached to two leads, one of which
is at a, temperature above TM while the other is

below TM, where TM is the temperature to which
the current A would heat the central part of the
filament if it were infinitely long. The value of Q
is then not zero even when 0= 0M. In such cases

By expanding the factor (1+8)& in Eq. (20),
combining with Eq. (21) and inserting the value
of 8 as given by Eq. (33) we find

2p(p —pp) tanh Cpp
AQ/Qp ——— 1—

C2 Cpo
(36)

Short Filament: When po is sufficiently small,
we can expand the cosh factors in Eq. (33) and
so reduce the equation to

e = (p po) (v o' P')—[1—(C'/—12)(5Pp' —P') 3 (37)

Thus when p02 is small compared to unity the
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where

8 8MLI sc(P %o)]

8M=2(P Po)—/C' (40)

In this case the temperature is practically
uniform at OM over the central part of the
filament.

When C'p0'&)6 the hyperbolic tangent in Eq.
(36) becomes unity so that

2.(V-e.)
DQ/Qo ——— —& /(o,

Q2
(41)

where = 2 p (P Po) / C'— (42)

Thus when the filament is long, AQ/Qo varies
linearly with 1/Ipo.

Case Z: Large values of P (or o = p). If a filament
is very long, the cooling effect of the leads
becomes inappreciable in the central part of the
filament and for this region we may put in Eq.
(16) d8/d(G and d'8/doo' both equal to zero and
thus obtain

(1 —po) +)8(1+8M) '= (1+8M) ', (43)

where OM is the value of 0 over the central part
of a very long filament corresponding to a tem-
perature TM.

Let us now introduce into Eq. (18) a new vari-
able defined by

(r = (1+8)/(1+8M) = T/TM. (44)

If we then eliminate P by Eq. (43), we find for
the value of F FI, which is nee—ded for Eq. (19),

where
F FI ——(1+8,)I)"+"+'(III —II), —(45)

~p+k+1 &n)+ &+I

H=
p+k+i o)+k+1
Ge+k+I GP+k+I

+i —
iCa+k+1 p+k+1)

(46)
( (1+8M)p 'P)

i
1+

1 —P,

temperature distribution is parabolic, and the
heat transfer by radiation is small compared to
that conducted.

A similar expansion applied to Eq. (36) gives

AQ/Qo ——(2/3)(P Po) phoo(1 —2CI(poo/5). (38)

Long Filament: When the filament is so long
that C'opo')6, then the relationship of Eq. (33)
may be sufficiently accurately expressed (within
1 percent) by

where

(ru —k —I)/2( Y Y)

ao ——1/(1+ 8M),

(47)

(4g)

P=(1/2)f 'd (G,—G)
0

(4())

and G=
p+k+1 (v+k+1

(50)

Similarly from Eqs. (20) and (21) we obtain

Q/Qo = ao (Zi —Z„)/( YI —Yo), (51)

where
(r

Z= (1/2) Gp" do(G, —G)-l.
0

(52)

The temperature distribution and the resist-
ance of filaments is thus given by Eqs. (47) and
(51) in terms of the functions Y and Z. These
calculations are most readily made by series
expansions in terms of powers of G or of (1—G).
Although general expansions can be obtained for
the coefficients of the terms of these series, they
are too complicated to justify their presentation
here. In the third part of this paper we shall give
such series for the particular values of o~ and p
which have been adopted.

and H& is obtained from this equation by putting
G = G.I ——(1+8I)/(1+8M).

The last term in Eq. (46) becomes negligible
when o= p, Ir«1; or when P/(1 —Po) is very
large. This occurs acccording to Eq. (11) if T&
is small compared to To or if P is very large com-
pared to unity. The data previously published'
have given co = 5.332; p = i.23; and e =0.87 for
the temperature range from 250' to 600'K.
Because of this small difference of 0.36 between

p and ~ the errors made by replacing e by p in

Eq. (46) are small even when p is compable
with unity.

The greatest errors in y0 with small values of p
occur with filaments so long that o.I is nearly
unity and may approach a limiting fractional
error of (p —o)/2(o) —p) or about 4.5 percent.
With shorter filaments for which O. i is consider-
ably less than unity, the errors are much smaller.

Replacing o by p in Eq. (46), substiuting in

Eqs. (45) and (19), we are led to the following
equations:
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Case 3:A general method' for calculating po and
Q by Power senes in 8. It is seen from Eqs. (19)
and (22) that the expressions for rpo and Q/Qo

can be brought into the general form

2a(8) = N(8)LF(8) F(8-)] 'd8,-(»)
0

where N and Ji represent any arbitrary functions
which for 0&8&0& can be expanded by Taylor's
theorem into a series in powers of 0 —Oi with coef-
ficients that are functions of 0I. The coefficients
themselves can be expanded in powers of ei. In
this way by carrying out the integration we
obtain

(—Fg) i/=A)S+AgS'+A~S'+A~S'+ (54)

where
S= (0,)»,

A1 ——Np,

c4 3 = (2/3) N1 —(5/12) NpF2/FI,
2 5 = (4/15) N2 —(3/10) N1 F2/FI —(11 /60) Np F3/Fl

+ (43/160) Np(F2/FI)',
3 7

——(8/105) N3 —(13/105) N2 F2/FI —(29/210) N 1 F3/F1
+ (23/1 12)N1 (F2/F1) —(31/560) Np(F4/F1)
+ (27/112) Np(F2/F1) (F3/F1) —(177/896) Np(F2/F1) '.

Here N„and F„are the nth derivatives of
N(8), F(8) with respect to 8 at the point 8=0.

Thus in calculating po and Q/Qo we may take
F(8) as given by Eq. (18) so that

6=po —P,
F2 = td —E+ (Pp P) (p+ h) —Pp(p —c) etc.

In calculating yo by Eq. (19) we place

N(8) = (1+8)',
No 1; N, = h; N2——= h (h —1) etc. ,

~=5.332; p=1.23; and &=0.87.

In order to determine X from our experimental
data we at first assumed k=0, and were thus
able to calculate po and t1Q/Qo in terms of p and
ei by the methods we shall outline. Experiments
with low values of 8& (which justify the as-
sumption h = 0) and with various values of To
soon showed that

k = —0.30 (56)

gave the variation of t with temperature to a
satisfactory approximation.

y + 1 2033o 0. 0+0 2355 o.2.630J
+0 1498~4.5GOJ2+0 129~6.490JH

—0 02944o' '"J+0 1279o' 4"J'
—0.05046o'6"J'+0.1380o-'" "J'

—0.0724o""J', etc. , (57)

where J= (1.4705o g' "—0.4705a.P '") '. (58)

Values of Y and Z.

When the bulb temperature T~ is low com-
pared to To or when P is either large or very
small, the temperature distribution is given
accurately by Eq. (47), but even for intermediate
values of p this equation gives a rather good
approximation. Let us therefore derive methods
for calculating F.

Introducing the numerical values of or, p, and k
in Eqs. (49) and (50), expanding and integrating,
we obtain

A similar method applied to Eq. (52) gives

+0.1180o' "J'+0.1084o." "J'

while for AQ/Q, by Eq. (22) we split the
second member into two integrals placing I 93 g 86

N(8) =(1+8)1'+" for the first and N(8) =(1+8)~
for the second.

III. GENERAL EQUATIoNs FQR TUNGsTEN FILA-
MENTs UP To 600 K

—0.0249o.& 9"' J+0.1115o9 65J
—0.0412o""J' etc. (59)

We have shown' that the radiation and
resistance of tungsten filaments between 220'
and 600'K are accurately represented by Eqs. (1)
and (13) if we place

'We wish to thank Dr. H. Poritsky for obtaining the
expressions involved in this method and for helpful dis-
cussions of other sections of this paper.

For values of o approaching o.i, it was possible to
develop other expansions giving Yi —Y in terms
of powers of (a& —o)/o&. By adding the values of
F and Yi —Y thus obtained in the range in
which both series were accurate, the values of Yi
were obtained and were found for o.i&0.6 to be
accurately given by
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where y& = 1 —~&.

Similar calculations for
accurate for r~) 0.1, give

Z&, satisfactorily

Zg =0.08782 —0.8039 logio ye+0.3029yl

—0.448y /+0. 06y&'. (61)

Infinitely 10ng filament

For the special case that 0~ ——1, which corre-
sponds to T& ——T~, the value of Y, which we may
denote by V~I, is given accurately by the
following equation over the range from 0=0.3
to 1.0.

F~——0.7892 —0,8039 log&0 y —0.3935y

—0.1475y' —0.0641y' —0.0330y'

—0.021y'", . (62)

where y=1 —o.. An analogous expression for Z~~,

very accurate for 0-)0.2, is

Z~ ———0.1542 —0.8039 logio y+0.0360y

+0.0698y'+0.0340y'+ 0.0108y4

+0.00227y'. (63)

Yg ——1.03 1.2 —0.8039 log io ye+0.390yl

+1.573yz' —1.31y&'+0.050yz'+1. 5yg', (60)

~ 2.316( P P) (64)

To calculate o-o, the value of 0 at the leads, we

can use the following equation derived from
Eqs. (43) and (48):

p
—

&
—4.102 (1 p )& 0.36 (65)

For the case that Po ——0 (that is, Ts= Tp), the
values of P as a function of 0.0 are given in the
first two columns of Table I (see Part V). Values
of P for the case Po ——1, or T~ ——0, are given in the
6th column.

The temperature distribution near the central
part of a long filament for which 0.~)0.95 is given

by

By means of the foregoing methods, using 15
terms in Eqs. (57) and (59), tables were prepared
giving F and Z as functions of 0 and 0.

~ to an
accuracy of about 1 in 3000. The family of
curves in Fig. 1 represents the values of 0. as
functions of Y~ —Y for various values of o-j.

These curves give the temperature distributions,
since the ordinates, according to Eq. (44), are
proportional to the temperatures, while the
abscissas Y& —F by Eq. (47) are proportional to
distances measured along the filament from its
center. These distances may also be expressed in

terms of &p by Eq. (47) which takes the form

/0
Y/- YI I

pro

Og 009

0.8 0.08

0.7 007

0.6 006

0.5 OQ5'

0.4

0.3

0.2

O. /

05 /0 /8 2.0
Y/- Y

2.8

Fro. 1. 0- as a function of F1—Y for various values of a.1.
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Yq —Y=0.3491 cosh —' [(1—0)/(1 —aq)]. (66)

Calculation of 0& as a function of q, and p
(Tables II to IV)

In most cases where it is desired to take into
account the cooling effect of the leads upon the
filament, it is not necessary to know the tempera-
ture distribution over the whole length of the
filament, but a knowledge of the temperature at
the center of the filament and the resistance of
the filament suffices. Tables II to IV contain data
on the values of 8~ for selected integral values of P
and a set of evenly spaced values of yp.

For low values of yp the most convenient
method of calculating 8& is by use of the series
expansion furnished by Eqs. (53) and (54).
Taking co=5.332; p=1.23; &=0.87; k= —0.30,
and po

——0, we obtained in this way a series
giving po in terms of Oq/p. However, since we
desired to tabulate 0& for specified values of (pp

and p, this series, by reversion, was converted
into the following:

0)/P = yo'+ (1.175P —3.718)po'

+ (1.552P' —17.56P+13.49) q o'

+ (2.206P' —57 30P'+ 144.3P

—48.84) (po'+ . (67)

Beyond the range of usefulness of this series we
employed the 7 function for which we had
previously constructed tables giving Y as a
function of 0. for a set of 10 values of fTI. For each
of these o-& values we then interpolated by
Newton's rule to find PI —Fp for each of the
values of Op in Table I which correspond to
integral values of P.

For each value of p we thus had a set of values
of OI for a number of definite values of YI —Fp.
Taking then the selected values of yp used in
Tables II to IV and the values of o-p corresponding
to p in Table I we calculated Y& —Yo by Eq. (64),
and used these to obtain by interpolation the
corresponding values of o.

& from which OI could be
obtained by Eq. (44) and Eq. (48). This inter-
polation was carried out graphically. We found
it was often advantageous for each value of P to
plot Y~ —Yo against colog (1—o~), since for larger
values of o-I a nearly straight line was obtained,

~ 'b gyftigO 0 0 0OggQg
%i,age'0%

./0 .20 .30

FIG. 2. Corrections 601 applied in the calculation of 01 for
the tables.

Calculations of AQ/Qo in Tables V to VII

For sufficiently low values of 0& we obtain
from Eq. (54) the following expansion:

AQ/Qp =0.82008'+ (0.01720+0.1220/P) HP

+ (0.0088+0.2510/P+0. 4148/P') 8,'. (68)

The lower values of 8~ from Tables II to IV
were used in this way to calculate AQ/Qo for
given values of pp and P. For values of 0~ too
large for rapid convergence of this series, AQ/Qo
was calculated from Y and Z by Eq. (51). The
necessary interpolations were facilitated by using
the following relationships.

When Oj is small a very good approximation is
given by

which by Eq. (60) approached a limiting slope of
0.8039.

Since the tables are to be used mainly for the
case that Ta = Tp, (pp=0), there is a slight error
involved in the calculations of 8& by the foregoing
method due to the replacement of e by p in
deriving Eq. (47). By using the series expansion
of Eq. (54) again using ~=1.23 instead of 0.87
and comparing this with Eq. (67), it was possible
to calculate the small correction, 60&, to apply to
0I.. As can be seen from Fig. 2, the correction was
negligible for very large and very small values of
both p and 8, and only rarely exceeded one
percent. Many checks were made of the accuracy
of these corrections by direct calculations of q by
Eq. (19), using numerical integration by Simp-
son's rule.

It is believed that with these corrections that
were applied in calculating the data for Tables II
to IV that the values of 8 are accurate to within a
couple of units in the last figure.
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AQ/QP = (1+O1)"[1—(P/3) O1/(1. +O1)]. (69)

By using the tables of 7 and Z, values of
AQ/Qo were calculated and compared with those
given by Eq. (69) placing p = 1.23; the differences
thus obtained were then plotted as a family of
curves for various values of P and 0i. These
curves together with tables of the function
involved in Eq. (69) were used for interpolation.
This method was useful for values of 0~ much
larger than those for which Eq. (68) could be
applied.

For still larger values of 0& we may calculate
44 Q/Qo by

AQ/Qp ——op "—1 B/(po. — (70)

This equation, which is a generalization of
Eq. (41), may be looked upon merely as a
definition of B. It follows then from Eqs. (51) and
(47) that

B= 170' ""'[(Y1—U ) —(Z —ZP) ] (71)

As 0~ approaches 0,~, so that o.
~
—+1, 8 ap-

proaches a limiting value 8 which may be
obtained by combining Eqs. (71), (60), (61), (62),
and (63):

This is sufficiently accurate for ao) 0.5.
By calcula, ting B by Eq. (71) for various

values of p and o.
& a family of curves was obtained

giving 8—8 as a function of o.
& which was very

convenient for accurate interpolation. Em-
pirically it was found for large values of o.

& and
for values of P from 1 to 200 that

—0 145P—0.21(1 ~ )1.17 (73)

By these various methods the values of
AQ/Qo were obtained which are given in Tables
V, VI, and VII.

Let V be the voltage drop across the half
filament. Then

v= P' v, (Q/Q. ).

If the leads did not cool the ends of the
filament, the current A would heat the whole
filament to T~. Let V~~ be the voltage drop that

B =&7'0"'( 0429.4 yo+ 02173y 0 +00 981 Sy '0

+0.04375y&4+0.02327y&'+ ). (72)

would then be required for the half-filament. We
find readily that

V~I =p' Voo 0 ~. (74)

The effect of each lead in cooling the filament
is thus to lower the voltage by an amount
6 V= V711 —V. By Eqs. (70) and (26) we get

6 U= plI40B

where B is given by Eq. (73).

(75)

' K. B. Blodgett and I. Langmuir, Rev. Sci, Inst. 5,
321 (1934).

Effects due to the heating of the leads or springs

The tables in this paper are adapted primarily
for calculations involving filaments whose ends
are at the bulb temperature or some other
definitely known temperature. The heat that is
conducted from the filament into the leads must
heat the junction, but if the diameter of the leads
is 10 times that of the filament, the temperature
drop in the leads is about that in a length of
filament only one-hundredth of the lead length
and so produces negligible effects.

In experimental work with tungsten filaments
it is often desired to mount a filament in a
definite position in a tube, such as at the axis of
a cylindrical anode. To maintain the filament in
this position even when it elongates upon heating,
it is necessary to use a spring to hold the filament
taut. The proper design" of springs for this
purpose often requires that the spring shall
contain a considerable length of wire of diameter
ranging from 3 to 6 times the filament diameter.
The heat conducted into the spring may then
heat the spring to a degree that cannot be
neglected in calculations of the temperature
distribution and resistance of the filament.

Let. T2 be the temperature at the junction
between the filament and spring. It is evident
that with a given current A passing through the
wire the temperature distribution over the whole
filament will remain unchanged if we replace the
spring by an additional section of filament whose
length hx is so chosen that the temperature drop
in it is the same as that which occurs in the
spring (T,—T,).

Thus, if we can calculate hx for each lead and
add these increments to the length of the filament
before calculating go by Eq. (15), we can proceed
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As=sr»o, (81)

to determine 0& by the equations and tables
already given on the assumption that the lead
temperature is To. Let us then find methods of
calculating Ax.

The temperature distribution along a filament
near a lead whose temperature is To may be
calculated by Eq. (19). The value of F can be
obtained by expanding Eq. (18) in a power series
in 8. Placing Po ——0 and using the data of Eq. (55)
we get

F= —PH+ (2.231 —0.465P) 8-'

+ (3.42+0.011P)Ho. (76)

Numerical calculations for springs of practical
sizes have shown that 02 is so small that only the
first term of this expansion is needed. By Eq.
(19), by integrating between 0 and Ho, we obtain

p~~=(-F)-:-(-F -pH): (77)

Introducing the value of F into Eq. (17) and
letting b denote the value of dH/dp at the point
02 we have

b= (dH/doo)o=o, =2(—F, PHo)'. —(78)

By eliminating F& between Eqs. (77) and (78),
we find

~o = (8 /b) (1 PHolb'+ —. ) . (79)

In Fig. 2 let the curve ABC represent the
temperature distribution along a filament. Eq.
(79) enables us to calculate Ap (the distance AD)
from Ho (the distance BD) and the temperature
gradient at B. The heat flow Q at 73, by Eqs.
(29), (30) and (78), is found to be

Q = 2Aobo(1+ Ho) "b. (80)

Now if we replace the section AB of the
filament by a spring along which the temperature
distribution is EFB, the curve BC is unchanged.
If the spring is of very great length, it will be
heated, except near its ends, to a uniform
temperature Tq by the current A that Hows

through it. We may calculate this temperature
from the data of Table II. Let A g be the current
that would be needed to maintain the spring at
To if its ends are at To while the bulb is at O'K.
Since the current to heat a long filament to any
temperature varies with d" where d is the
diameter, we have

Hs ——0.224P/s'. (83)

In general, the temperature distribution along
a spring of finite length will be of the type
illustrated by the curve EFB in Fig. 3. We may
assume that one end is welded to a lead of such
large diameter that 0=0, while the other end,
which joins the filament, is heated to 02 which is
greater than Og. Thus to calculate the tempera-
ture distribution, we cannot use Eq. (17) for
this was based on the assumption that dH/dp= 0
at 8&, but must go back to Eq. (16). By a method
like that used in the derivation of Eq. (33) we

thus find that the temperature distribution along
the spring is given by

Coos =sinh ' (CHs/a)+sinh ' [C(Ho —Hs)/+] (84)

where C is defined by Eq. (34) and a is an
integration constant which is equal to the value
of dH/doo at Hs.

By analogy with Eq. (78), we let bs be the
value of dH/doos, for the spring at its junction
with the filament (Ho).

Applying Eq. (80) to both the spring and
filament and considering Eq. (81) we find

bs =b/'s'. (85)

By obtaining dH/doo at Hs and at Ho from

Eq. (84) and equating these derivatives to u and
bq, we obtain the relation

a'= bs' —C'(Ho —Hs)' (86)

In Eqs. (78), (79), (83), (84), (85), and (86)
we have six equations involving six unknowns,

02, 0~, a, b, b~, and Ay and so may solve for Dp
in terms of the known parameters s, pg, P, and
Fi (or Hi). A few numerical calculations involving

springs of practicable design have shown that
0~ is negligible in its effect and that FI, according
to Eq. (76), can be replaced without appreciable
loss of accuracy by —PO&. The problem is thus
greatly simplified so that the calculation of Ap
can be reduced to the following procedure.

where s is the ratio of the diameter of spring
wire to that of the filament. The value of p for
the spring wire, by Eq. (6), is

Ps=(A/As)o=(A/Ao)'/s'=P/s'. (82)

Since s' is large, ps is small, and therefore in

Table II we take P =0, yo
——~, and so find
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P= (1/Csl) tanh Cps. (87)

Calculate a quantity P (which is equal to
82/b) by the equation

the change in resistance. As seen in Fig. 3 the
observed resistance when a spring is attached is
the sum of the resistance Q~ of the spring and
the resistance Qp of the filament, so that

If Cq q))1 this reduces to

P = (1/Csl) (1 —2e-'c's ).
If Cy~((1 it becomes

(88)
0 = 0g+ 0p

——0g+ 02+ Qp

= Qg —QgD+20p
since 02 ——Qp —Q~D.

(95)

P = (v s/sl) [1—(2/3) C'-p,~"-]. (89)

Theii Dy is given by

On passing a current, the resulting changes in
resistance are given by

AQs = (bpQs/C2stps)(1 —1/cosh Cps), (96)
6 (p =P P'P/b— (90) (neglecting Os compared to 02) and

where b/v=2(0/e) '-2P. (91) 2 QgD = —,p020gD, (97)
This may be used to calculate Q by Eq. (80).

The value of 82, when desired, may be found
from

(92)82 ——2Pp[(8)/p) ' P]. —

According to Eqs. (34) and (55), the numerical
value of C is 2.99. The value of yq used in these
calculations can be obtained from the length x~
of the spring wire by Eq. (15) using a value of
IZz which by Eq. (8) is sII where II is the value
for the- filament.

From Eqs. (90) and (15)

Sx =x,/s'. (94)

If for short leads a material is used which has
a heat conductivity ) ~, the value of Ax given by
the above equation should be multiplied by
(7 0/7 s).

The heating of the leads has also an effect on

tT2

AggD

FiG. 3. The temperature distribution along a filament
supported at one end by a spring.

Ax = (2II) lP(1 PP/b), —(93)

while for short spring wires or leads this becomes,

where Q~ and Qg~ are the cold resistances. The
increase in Qp, vis. , AQp may be calculated from

P and pp by the tables.

IV. EXPERIMENTAL DETERMINATION OF THE

HEAT CONDUCTIVITY X

The relations given in Part II show that the
heat conductivity ) may be calculated from a
determination of the value of ror of 0 resulting
from passage of a current through the filament.
For filaments below 600'K it is more convenient
to use the resistance Q. The experimental
procedure was as follows.

Three tubes were used. One (Tube No. 1) was
the tube described in Paper I which by use of
hollow copper leads allowed control of Tp inde-
pendently of T&. Two other tubes (Nos. 2 and 3)
had heavy leads of 120-mil molybdenum, arc-
welded in hydrogen to the filament to insure
good thermal contact. The filaments were of
thoriated tuogsten 0.00499 cm in diameter, and
had total lengths in Tubes 1, 2, and 3 of 25.82 cm,
12.86 cm and 5.87 cm, respectively. The use of
three filament lengths provided a check on the
method of calculation and increased the range
of values of P, for which 0 could be accurately
measured. For the shortest filament, low values
of p gave changes in resistance too low to be
measured accurately, while for long filaments the
higher values of P gave filament temperatures
outside the range for which radiating properties
had been determined.

The tubes were baked at 450'C and pumped
during the experiments through liquid-air traps.
The filaments were heated initially at 2000'K
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to produce a fine grained structure and then at
2400' and 2800', as described in Paper I, to a
condition where further aging caused no change
in resistance or emissivity. "

In most of the experiments Tp was made
equal to T& by immersing the tube and its leads
in a constant temperature bath. The filament
current A and resistance 0 were found from
voltage measurements with a precision potenti-
ometer.

An example is given below of the steps and
quantities involved in the calculation of the heat
conductivity from experimental data.

Table II, using the equations

I~()= I~'xo/d',

Ap ——A'd&,

Rp ——R'm /4.

((g(g)

(100)

(101)

hp ——Uo/ po, (102)

and so the heat conductivity, Xp, at the tempera-
ture, Tp, of the leads could be calculated from
Eq. (27).

From the value of P and AB/00, given by the
experiments, the corresponding value of pp was
found from Tables V, VI, or VII of Part V.

Now from Eq. (26) of Part II,

TUsz L Tp= Tgg A
No. (cm) ('K) (amp. ) p ApX10' VpX10' RpX10p Bp lj o =ho2/2RO To (103)

2 12.86 244.1 0.01949 20 4.358 6.3871 4.4567 1.4665
3 5.87 244.1 0.01949 20 4.358 2.9154 4.4567 0.6675

Qp, the resistance of the filament when entirely
at the temperature Tp, was first determined as in

Paper I, and then the change in resistance,
0—Qp

——AQ, caused by passage of the current A.
This current A was chosen by calculation from
(Eq. (6) Part II)

p = (A/Ao)' (98)

TI7SF. 0—Qp T1
No. =rhQ $& happ hp Xp (Eq. 104) fI& T&—Tp ('K)

2 0.3335 0.2274 0.1050 0.06083 1.701 1.720 0.2765 67.5 311.6
3 0.02545 0.03813 0.0473 0.06177 1 .745 1.720 0.0473 11.6 255.7
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I I
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The values of e~, ——(T~ —To)/To, and of T~

were found as described later in Part V.

to correspond exactly to integral values of p. In
the examples shown, P is 20. Ap, and the quan-
tities Vp and Rp were obtained from Paper I,

/so—

/70—

/. 60-

/.50-

p/

/
/

/ ra'bg
7~373./ K0

"It should be noted that brief aging (few minutes) at
temperatures even as high as 2600'K will not produce a
tungsten filament which is unchanged by further heating.
For example, in the case of filaments used in these experi-
ments, after the initial aging at 2000' for about 2 minutes,
aging at 2400'K caused a decrease in cold (264 K) re-
sistance of 2 percent after 1 minute, 5 percent after 40
minutes, and after 4 hours at 2400' and 30 seconds at
2800' the total decrease was about 7 percent. At the same
time, in spite of this decrease in cold resistance, the voltage
for a constant current giving a maximum filament tem-
perature of about 600'K increased. Thus the emissivity
had decreased, which indicates either a cleaning or a.
smoothing of the filament surface. (See also reference 6.)
It is possible that filaments when only slightly aged are
clean, but unless special tests are made, it is clear that the
filament temperature is uncertain. Experiments, involving
adsorbed films on tungsten for example, can be interpreted
most easily when the tungsten by proper aging has been
brought into a condition where its surface and tempera-
ture are reproducible.
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Fro. 4. Experimental data on the heat conductivity Xo
as a function of the temperature TI at the middle of the
filament as determined for five values of lead tempera-
ture To.
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By experiments at values of To(= TI&) from
244' to 473'K, the dependence of ) 0 on To was
determined. For each value of 20 a series of
values of P (i.e. of A) was used giving tempera-
tures, T~, at the middle of the filament up to
1100'K. However, in each case, the calculation
as described above gave ) 0, i.e. , X at T= To.

Preliminary experiments (described below)
under simplifying conditions had indicated that
the variation of t with T was given by

log X=0.9518+k log T, (104)

where k= —0.30. This value of k was used in
the construction (see Part III) of the tables in

Part V. That the present much more extensive
experiments confirm this choice of k is shown by
examination of the collected data in Fig. 4.

)f) is plotted as a function of TI, for the five
values of To from 244 to 473'K. Considering
only values of T& below 600'K," it is seen that
) 0, at each To, is independent of T~ and shows
no significant change in the three different tubes,
i.e. , no change with filament length. This fact
that ) 0 is independent of TI indicates that the
value of k equal to —0.30 used in Eq. (104) is
correct. Otherwise there would have been a
progressive change in Xo as T~ was varied.

The values of ) at the five values of T=TO,
calculated from Eq. (104) are given as solid
horizontal lines in Fig. 4. The evident agreement

"In experiments where T» exceeded 600'K, ) 0 increased
with T». This behavior, observed in all tubes, was not
caused by changes in emissivity due to an attack of the
filament surface by residual gases, since on returning to
temperatures below 600' the normal values of P0 were
obtained. Also the effect was independent of bulb tempera-
ture. It was most marked in Tube No. 1, which had the
longest filament and least in Tube No. 3 with the shortest
filament. It is believed that the explanation lies in the fact
that the relations of Paper I between energy radiated and
filament temperature are not applicable much above the
maximum filament temperature (580'K) for which they
were determined. Between 225, and 580'K, the energy
radiated is given by TVg =ET"""2. However, as pointed
out on p. 325 of Paper I, the exponent of T must increase
above 600'K in order to reach the values of Jones and
Langmuir and Forsythe and Watson which are accepted
as accurate above 1000'K. Calculations show that this can
account for both the magnitude and direction of the ob-
served deviations of X0. The effect should be greatest for
the longest filament, since a greater proportion of its length
is at temperatures near T».

Incidentally, it was observed that very slight traces of
water vapor from bulbs insufficiently baked cause appre-
ciable changes in emissivity which increase with bulb tem-
perature, and are immediately recognized by the lag effects
produced when the filament temperature is raised or
lowered.

(below T& ——600'K) of the experimentally de-
termined points with these calculated values of
X is an independent confirmation of the correct-
ness of k.

Since we at first had no knowledge of k, i.e. , of
the variation of X with T, the preliminary
experiments mentioned above were carried out.
Using Tube No. 1, the bulb was immersed in

liquid nitrogen and the leads were held at
temperatures, To, between 240 and 450'K. At
each value of To the resistance, 0, was measured
for several values of current, A, chosen to cause
only small deviations of the filament temperature
from To. Since for each value of To the maximum
temperature rise was small ( 10'), » could be
taken as independent of temperature (k = 0), and
Eq. (36) of Part II, Case I (low values of 8&),

could be applied. With the bulb in liquid nitrogen
T& is effectively equal to zero and this equation
takes the form,

AD/Qp =0.300(P—1) 1—
tanh 2.864(pp

2.864' p

(105)

T
('K)
600
800

1000

1.313
1.18
1.08

T

1200 1.00
1300 0.98
1500 0.99

These values justify the corrections to the I' —lV
equation found necessary by Langmuir, Mac-

where P and Qo are found as already described.
Since the resistance changes, 60, are small, the

measurements tend to be less accurate than in

the experiments where TI —Tp was large. How-
ever, it is seen from Eq. (105) that for the small
resistance changes involved AQ is a linear func-
tion of P (or of A2). So by plotting AQ vs. A', the
slope of a line through the individual points
allowed a satisfactorily accurate calculation of

From Eqs. (102) and (103), Xo was then
calculated.

Thus at several temperatures T(= Tp), X(=ho)

was determined and found to depend on temper-
ature as given by Eq. (104).

The values of X determined in the present
work may be extrapolated to join the data of
Forsythe and Worthing, ' giving a curve of X vs. T
which has a minimum at about 1300'K and
joins Ii —8 at 1500'K. Values of ) from this
curve are as follows.
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Lane and Blodgett' for temperatures below
1500'K (see Introduction).

Since the variation of 3 with T is established
by the experiments, an equation for k as a
function of T can be derived. From Eqs. (27a),
(101), and Eq. (6) of Paper I,

tion of current, from which temperatures can be
found for any value of current used in experi-
ments. This is done in the following way.

From Table VIII or Eq. (107) find the value
of (r/2H)l corresponding to Tp. Then using the
known value of r, calculate yo from

log h =96.4826 —100+0.965 log T. (106) q p xp/—(—2FI) '* (108)

Likewise (2H)'* for use in Eq. (93) can be
expressed as a function of T. Since H depends
not only on T but also on the filament radius r,
it is convenient to use the quantity (r/2FI)l.
From Eqs. (15) and (104) and Eqs. (6) and (7)
of Paper I,

log (r/2H)''=91. 3793 —100+2.316 log T (107).
Table VIII in Part V gives k, X, and (r/2H)'

for a series of values of T, as calculated from the
above equations.

V. CALCULATION OF FILAMENT TEMPERATURE

AND RESISTANCE FROM THE TABLES

Tables I to VIII, prepared as described in
Part III, are given to facilitate calculations of
filament temperature or resistance from a knowl-
edge of the filament dimensions, the filament
current, and the lead and bulb temperature.
Directions and examples are given for the
several usual cases. The theory and equations
in Parts II and III need not be referred to.

In general there will be known:

r =radius of filament (cm),
xp ——half length of filament (cm),
Tp = lead temperature ('K),
Tg =bulb temperature ('K),
A = filament current (amp. ).

Case 1. (Ts=Tp)
This is the experimental condition existing, for

example, when the bulb and the filament leads
are immersed in a bath at constant temperature.
The filament leads are to be chosen of such a
diameter (at least 10 times filament diameter)
and as short as possible so that they are not
appreciably heated by the filament currents to
be used, or by conduction of heat from the
filament.

It is ordinarily convenient to construct a table
or curve giving filament temperature as a func-

P = (A/Ap)' (110)

where Ao for the filament in question is calculated
from

Ao= A'd',

where d is the filament diameter and A' is taken
from Table II in Paper I, or calculated from
the equation

log A'=96. 1952—100+2.051 log Tp (112).
AQ/Qp is found in a similar way by using &pp,

TABLE I. Limiting values of various functions.

P
(Pp =o) ~p

0 1.0000
1 0 8504
2 .7708
3 .7182
4 .6798
6 .6257
8 .5881

10 .5594
15 .5104
20 .4774
25 .4529
30 .4338
40 .4051
50 .3840
60 .3676
80 .3429

100 .3249
120 .3109
140 .2994
160 .2899
180 .2817
200 .2746

0.0000
.1759
.2974
.3923
.4709
.5981
.7004
.7877
.9594

1.095
1.208
1.305
1.468
1.604
1.720
1.916
2.078
2.217
2.340
2.450
2.550
2.641

0.00000
.0577
.0839
.0983
.1075
, 1186
.1248
.1287
.1336
.1355
.1361
.1361
.1354
.1343
.1330
.1305
.1281
.1260
.1241
.1223
.1207
.1192

(~n/np)

0.0000
.2205
.3775
.5024
.6074
.7801
.9212

1.043
1.287
1.483
1.649
1.793
2.038
2,245
2.425
2.730
2.986
3.209
3.407
3.586
3.750
3.902

6

(Pp = ~)
(~p 4 lp2)

1.000
1.943
2.910
3.888
4.87
6.84
8.83

10.81
15.79
20.77
25,75
30.74
40.72
50.71
60.70
80.68

100.7
120.7
140.6
160.6.
180.6
200.6

happ pp

1.000
0.943

.910

.888

.870

.845

.826

.811

.785

.766

.752

.740

.722

.709

.697

.680

.667

.657

.648

.640

.634

.628

Now for integral values of P as given in the
Tables (II, III, IV) find the values of 8~ corre-
sponding to this value of po. Tj, the temperature
at the middle of the filament, is given by

Tg ——(1+P,) Tp. (109)

The currents, A, required to produce each
tempera, ture T~, are found from the values of p
using the equation
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P, and Tables V, VI, and VII." This value of
AQ/Qo is usually not required, but if compared
with a measured value of 60/00 serves as a
check on the calculation of Ti. Also if the
filament length and hence qo are unknown, then
a determination of 00 and of AQ caused by the
current A enables one to find yo and then ei

(and T,) from the tables.

Case 2. (Ts(To)

In some types of experiments the bulb may be
at a lower temperature than the leads. The
tables have been prepared primarily for use
when Tg = To. However, when T~(To, a current

"It should be noted that for convenience in tabulation,
81/p and AQ/ptlo are given in Tables II and V instead of
~1 and AQ/()0 as in the remainder of the tables.

temperature scale may be obtained by the
following procedure:

Calculate po for the lead temperature To which
is to be used and find Oi and Ti for the various
values of P in the tables exactly as in Case i.
These values of P, however, must not be used to
calculate the currents A. Instead, a new value
of P must be calculated using Eq. (65) of Part III,

where from Eq. (11), Part II,

P
—1 (T /T )4.462

and 0.0 is assigned the values given in the tables
(just below the values of P which are applicable
only to Case 1). 00, oo' '"', and 00 ""are given
in Table I.

TABLE II. 81/P as function of pQ and P.

0.00
.02
.04
.06
.08
~ 10
~ 12
.14
.16
.18
.20
.22
~ 24
~ 26
.28
.30
.32
.34
,36
.38
.40
.42
.44
.46
.48
.50
.55
.60
.65
.70
.75
.80
.85
.90

1.00
1,10
1.20
1.30
1.40

P=0
aQ=

1.0000

0.00000
.00040
.00159
.00355
.00625
.00964
.01367
.01827
.02337
.02891
.03481
.04099
.04740
.05396
.06061
.06730
.07398
.08061
.08714
.09355
.09981
.10591
.11181
.11751
.12301
.12829
.14052
.15146
.16110
.16956
.1771
.1834
.1890
.1938
.2016
.2074
.2116
.2148
.2172
.2241

p=1
O'Q =

0.8504

0.00000
.00040
.00159
.00357
.00630
.00974
.01385
.01857
.02382
.02951
.03554
.04179
.04857
.05506
.0618
.0686
.0753
.0820
.0881
.0941
.0996
.1049
.1102
.1149
.1197
.1239
.1336
.1413
.1476
.1530
.1573
.1608
.1637
.1660
.1687
.1712
.1728
.1738
.1746
.1759

P=2
OQ =

0.7708

0.00000
.00040
.00160
.00358
.00634
.00984
.01405
.01891
.02434
.03024
.03646
.04285
,0499
.0565
.0633
.0700
.0765
.0829
.0885
.0940
.0988
.1035
.1080
.1120
.1157
.1190
.1260
.1313
.1354
~ 1384
.1408
.1426
~ 1440
.1451
.1466
.1474
, 1479
.1482
.1484
.1487

p=3
ETQ =

0,7182

0.00000
.00040
.00160
.00359
.00638
.00993
.01424
.01922
.02488
.03105
.03754
.04412
.0514
.0585
.0656
.0720
.0781
.0838
.0889
.0937
.0978
.1017
.1051
.1083
.1110
.1134
.1181
, 1214
.1240
.1258
.1272
.1280
.1288
.1293
.1300
.1303
.1305
.1306
.1307
.1308

p —4
O'Q =

0.6798

0.00000
.00040
.00160
.00361
.00643
.01006
.01450
.01970
.02560
.03208
.03890
.04575
.0530
.0604
.0674
.0733
.0788
.0836
.0879
.0919
.0952
;0982
.1008
.1031
.1050
.1067
.1100
.1124
.1139
.1150
.1158
.1163
.1167
.1170
.1174
.1175
.1176
.1177

.1177

p=6
O'Q =

0.6257

0.00000
.00040
.00161
.00364
.00653
.01029
.01495
.02072
.02660
.03318
.04078
.04850
.0554
.0616
.0674
.0727
.0772
.0810
.0838
'.0863
.0885
.0902
.0918
.0931
.0942
.0950
.0966
.0977
.0984
.0988
.0991
.0993
.0995
.0995
.0996
.0996

.0997

P=8
O'0 =

0.5881

0.00000
.00040
.00162
.00367
.00662
.01053
.01543
.02162
.02800
.03514
.0429
.0505
.0566
.0619
.0668
.0706
.0737
.0763
.0784
.0801
.0814
.0826
.0835
.0842
.0848
.0852
.0862
.0867
.0870
.0872
.0873
.0874
.0875

.0876

P =10
O'Q =

0.5594

0.00000
.00040
.00162
.00370
.00672
.01078
.01595
.02234
.0294
.0369
.0442
.0507
.0563
.0611
.0647
.0676
,0698
.0717
.0731
.0743
.0751
.0759
.0765
.0769
.0773
.0776
.0781
.0784
.0785
.0786
.0787

.0788
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TaoLE III. 01 as function of yo and p.

0.00
.01
.02
.03
.04
.05
.06
.07
.08
.09
.10
.11
.12
.13
.]4
.15
.]6
.]7
.18
.19
.20
.21
.22
.24
.26
.28
.30
~ 35
40

p =15
0'0 =

0.5104

0.0000
.0015
.0060
.0136
.0245
.0388
.0568
.0786
.1048
.1358
.] 71.8
.2135
.2605
.3137
.3703
.428
.486
.543
.597
.643
.684
.721
.754
.806
.844
.873
.8945
.9271
.9430
.9594

P =20
00=

0.4774

0.0000
.0020
.0081
.0183
.0330
.0526
.0774
.1081
.1456
.]908
.2447
.310
.377
.452
.533
.609
.681
.745
~ 803
.850
.889
.921
.948
.990

1.020
1.0409
1.0557
1.0772
1.0868
1.0946

P =25
00 =

0.4529

0.0000
.0025
.Oioi
.0229
.04] 7
.0666
.0991
.1401
. 1.909
.2527
.3259
.414
.509
.608
.704
.789
.864
.926
.977

1.019
1.053
1.081
1.1027
1.].354
1.1580
1.1733
1.1837
1.1980
1.2038
1.2078

P =30
00 =

0.4338

0.0000
.0030
.0121
.0278
.0505
.0813
.1216
, ]730
.2384
.3206
.4170
.532
.65]
.770
.873
.961

1.031
].084
1.126
1.161
1.188
1,210
1.227
1.253
1.271
1.282
1.289
1.299
1.303
1.305

P =40
IFO =

0.405 1

0.0000
.0040
~ 0163
.0375
.0687
.1120
, 1705
.2473
.3494
.4800
.6330
.794
.945

1.068
]..164
1.233
1.286
1.326
1.357
1.380
1.399
1.4].4
1.425
1.441
1.451
1.458
].462
1.466
1.468
1.468

p =50
0'0 =

0.3840

0,0000
.0050
~ 0204
.0473
.0877
.1448
.2239
.3328
.4839
, 674
.879

1.065
1.209
1.312
1.387
1.440
1.478
1.509
1.531
1.548
1.561
1.571
1.579
1.589
1.595
]..599
1.601
1.603
1.604
1.604

P =60
rro =

0.3676

0.0000
.0060
.0247
.0575
.1075
.1800
.2886
.429
.641
.895

1.121
1.296
1.418
1.502
1,561
1.604
1.634
1.656
1.672
1.685
1.694
1.701
1.706
1.712
1.716
1.718
1.719
1.720

1.7205

P =80
0'0 =

0.3429

0.0000
.0081
.0332
.0784
.1497
.2582
.429
.684

].027
1.321
1.521
1.650
1.734
1.788
1.827
1.854
1.871
1.884
1.894
1.900
1.905
1.908
1.911
1.914
1.915
1.916

1.916

WVhen T~ is so low, e.g. when the bulb is

immersed in liquid air, that back-radiation is

negligible; then T& may be taken as effectively
equal to zero. For this condition, then from
Eq. (114),

Po
——1, and P=oo 4'0'

In Table I, column 6, there are tabulated the
values of P for this special case (Po ——1), corre-
sponding to the values in column 1 of P for
Case 1 (Ts=To), for which, from Eq. (114),
Pp= 0. In column 2 are the values of o.p. Columns
1 and 2 list the same P's and oo's as head the
Tables II to VII.

Case 3. Filament joined to a spring

As discussed in Part III it is often necessary to
hold a filament taut by means of a spring
between one end of the filament and its lead.
The spring, heated by conduction of heat from
the filament, may increase the maximum temper-
ature T1 of the filament. It was shown in III
that the effect is as if the filament length were
increased by an amount Dx.

+0

0.000
.005
.010
.015
.020
.025
.030
.035
.040
.045
.050
.055
.060
.065
.070
.075
.080
.085
.090
.095
.100
.105
.110
.115
.120
.130
.140
.150

P =100
[TO =

0.3249

0.0000
.0025
.0101
.0231
.0419
,0673
.1003
.1425
.196
.264
.350
.463
.612
.794

1,013
1.228
1.407
1.544
1.656
1.742
1.809
1.863
1.902
1.934
1.960
1.999
2.024
2.041
2.078

P =120

0.3109

0.0000
.0030
.0122
.0279
.0508
.0821
.1230
.1766
.2458
.3386
.461
.630
.846

1.112
1.364
1 ~ 578
1.713
1.828
1.917
1.977
2.027
2.066
2.096
2.121
2.139
2.166
2.184
2.196
2.217

p =140
0'0 =

0.2994

0.0000
~0035
.0142
,0327
.0599
.0974
.1476
.2145
.3040
~ 4258
.594
.829

1.141
1.440
1.669
1.838
1.960
2.050
2.114
2.164
2.202
2.232
2.256
2.274
2.288
2.307
2.319
2.327
2.339

p =160
0'0 =

0.2899

0.0000
.0040
.0163
.0376
.0691
.1132
.1732
.2544
.3673
.526
.762

1.081
1.446
1.723
1.920
2.058
2.157
2.226
2.279
2.319
2.349
2.373
2.390
2.403
2.414
2.428
2.436
2.442
2.449

P =180
PO =

0.2817

0.0000
.0045
.0184
.0425
.0786
.1295
.2002
.2987
.4390
.646
.957

1.371
1.719
1.963
2.128
2.239
2.320
2.377
2.419
2.451
2.475
2.493
2.506
2.516
2.524
2.535
2.54].
2.544
2.549

TABLE IV. 01 asfunction of yo and p.

P =200
cro =

0.2746

0.0000
.0050
.0205
.0475
.0882
.1465
.2288
.3465
,5203
.789

1.197
1.642
1.956
2.161
2.297
2.391
2.458
2,506
2.541
2.566
2.585
2.600
2.610
2.617
2.623
2.631
2.636
2.638
2.641
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bx is found from either Eq. (93),

d x = (2FI) iP (1 Pf—3/b)

or from Eq. (94),

ax =xs/s'.

In Eq. (93), 2FI is obtained from the value of
(r/2')l for the filament just as in Case 1;P has
the values given by Eqs. (88) or (89); and P/b is
given by Eq. (91).

In Eq. (94), x& is the total length of the spring
in cm, and s is the ratio of the diameter of the
spring to that of the filament.

For springs of practical design, ' the simpler
Eq. (94) is usually sufficiently accurate. If for

some reason the spring must be longer than
required by usual design, it may become neces-
sary to use Eq. (93).

Having obtained Ax, po is calculated from Eq.
(108), in which xo is now not the actual half-
length of the filament as before, but the half-length
plus 6 x/2. ei, Ti, and A are then found as in
Cases 1 or 2.

The above method must be used, of course,
even in the absence of a spring, when the
filament leads are of such small diameter or so
long as to be heated by conduction from the
filament. As can be seen from Eq. (94), this is
avoided if the leads are only a few cm long and
have a diameter at least 10 times that of the
filament.

TABLE V. Ail/P&)0 as function of po and P.

0.00
.02
.04
.06
.08
.10
.12
.14
.16
.18
.20
.22
.24
.26
.28
.30
.32
.34
.36
.38
.40
.42
44
.46
.48
.50
.55
.60
.65
.70
.75
.80
.85
.90

1.00
1.10
1.20
1.30
0.140

p=0
00 =

1.0000

0.00000
.00033
.00130
.00291
.00513
.00792
.01123
.01502
.01924
.02382
.02871
.03385
.0392
.0447
.0503
.0559
.0616
.0672
.0728
.0783
.0837
.0890
.0942
.0992
.1041
.1088
.1200
.1302
.1394
.1478
.1554
.1622
.1684
.1741
.1838
.1920
.1989
.2047
.2098
.27566

p=i
0'0 =

0.8504

0.00000
.00033
.00131
.00293
.00517
.00799
.01139
.01528
.01962
.02434
.02934
.03443
,04022
.04579
.0515
.0573
.0629
.0687
.0740
.0792
.0841
.0889
.0936
.0979
.1023
.1063
.1157
.1236
.1306
.1368
.1426
.1476
.1520
.1559
.1625
.1679
.1723
.1761
.1793
.2205

p=2
(TO =

0.7708

0.00000
.00033
.00131
.00294
.00520
.00808
.01156
.01557
,02007
.02497
.03015
.0353
.0414
.0472
.0531
.0589
.0644
.0700
.0750
.0798
.0842
.0885
.0927
.0963
.1002
.1036
.1114
.1179
.1235
.1283
.1324
.1360
.1392
.1420
.1467
.1506
.1538
.1565
.1588
.18875

p=3
0'0 =

0.7182

0.00000
.00033
.00131
.00295
.00524
.00818
.01174
.01588
.02060
.02577
.03120
.0366
.0429
.0491
.0553
.0609
.0661
.0712
.0758
.0802
.0842
.0878
.0914
.0946
.0978
.1006
.1070
.1123
.1167
.1204
.1236
.1264
.1288
.1310
.1347
.1377
.1402
.1423
.1441
.16746

p=4
0'0 =

0.6798

0.00000
.00033
.00131
.00296
.00528
.00827
.01194
.01624
~ 02114
.02655
.03228
.03806
.0444
.0509
.0571
.062$
.0675
.0719
.0760
.0800
.0835
.0867
.0897
.0925
.0951
.0974
.1026
.1068
.1103
.1133
.1159
.1182
.1202
.1220
.1250
.1274
.1294
.1312
.1326
.15185

p=6
tro =

0.6257

0.00000
.00033
.00132
.00299
.00536
.00846
.01232
.01711
.02201
.02754
.03394
.04056
.0466
.0522
.0577
.0629
.0673
.0707
.0741
.0771
.0798
.0823
.0846
.0866
.0885
.0902
.0939
.0970
.0995
.1017
.1037
.1053
.1068
.1081
.1102
.1120
.1135
.11.48
.1159
.13002

P=8
0'0 =

0.5881

0.00000
.00033
.00132
.00302
.00544
.00866
.01273
.01788
.02326
.02933
.03604
.0428
.0483
.0534
.0580
.0620
.0654
.0684
.0712
.0736
.0757
.0777
.0794
.0810
.0825
.0838
.0867
.0891
.0911
.0928
.0944
.0956
.0968
.0978
.0996
.1010
.1022
.1032
.1040
.11515

p =10
00 =

0.5594

0.00000
.00033
.00134
.00307
.00553
.00888
.01318
.01851
.02446
.0309
.0371
.0433
.0484
.0534
.0573
.0605
.0634
.0660
.0682
.0702
.0719
.0735
.0750
.0763
.0774
.0785
.0809
.0829
.0845
.0859
.0872
.0882
.0892
.0900
.0915
.0926
.0936
.0944
.0951
.10433
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TABLr VI. AQ/00 as function of yo and p.

+0

0.00
.01
.02
.03
.04
.05
.06
.07
.08
.09
.10
.11
.12
.13
.14
.15
.16
.17
.18
.19
.20
.21
.22
.24
.26
.28
.30
.35
.40

P =15
CJO =

0.5104

0.0000
.0012
.0049
.0112
.0201
.0318
.0466
.0646
.0862
.1118
.1418
.1766
.2161
.2610
.3091
.359
.409
.458
.506
.550
.591
.629
.664
.720
.764
.803
.837
.906
.952

1.2872

P =20
00 =

0.4774

0.0000
.0016
.0066
,0150
,0271
.0432
~ 0636
.0889
.1200
, 1575
.2010
.257
.314
.378
.448
.515
.578
.637
.694
.742
.784
.821
.854
.910
.956
.995

1.029
1.096
1.144
1.4830

P =25
0'0 =

0.4529

0.0000
.0020
.0083
,0188
.0342
,0547
~ 0815
.1186
.1575
.1804
.2200
.318
.429
.517
.597
.676
.749
.812
.867
.913
.953
.989

1.021
1.076
1.122
1.161
1.194
1.260
1.309
1.6489

P =30
0'0 =

0.4338

0.0000
.0025
.0100
,0228
.0414
,0669
.1000
.1426
.1969
.2657
.3480
.446
.550
.655
.749
.835
.909
.968

1.019
1.063
1.102
1.137
1.168
1.222
1.267
1.306
1.338
1.404
1.453
1.7930

p =40
PD =

0.4051

0.0000
.0033
.0134
.0308
~0564
.0921
.1405
.2043
.2900
.4005
, 5343
.677
.812
.929

1.030
1.109
1.174
1.230
1.277
1.319
1.357
1.390
1.420
1.472
1.517
1,554
1,586
1.652
1.700
2.0385

P =50
00 =

0.3840

0.0000
.0041
~0168
.0389
.0721
.1192
.1848
.2759
.4046
.569
.748
.916

1.061
1.174
1.262
1.333
1.394
1.447
1.494
1.534
1.571
1.604
1.633
1.685
1.728
1.765
1.797
1.861
1.909
2.2449

p =60
0'0 =

0.3676

0.0000
,0050
.0202
.0472
.0884
, 1483
, 2386
.3563
.539
.763
.970

1.142
1.278
1.378
1.459
1.527
1.586
1.638
1.682
1.722
1.758
1.790
1.819
1.870
1.913
1.950
1.981
2.045
2.092
2.4247

P =80
(TO =

0.3429

0.0000
.0066
,0273
.0644
.1231
.2129
.356
.574
.879

1.152
1.363
1.511
1.624
1.715
1.791
1.856
1.912
1.961
2.004
2.044
2.078
2.109
2.137
2.187
2.228
2.264
2.295
2.358
2.404
2.7304

TABLE VII. AQ/00 as function of q 0 and 18.

+0

0.000
.005
~ 010
.015
.020
.025
.030
.035
.040
.045
.050
.055
.060
.065
.070
.075
.080
.085
.090
.095
.100
.105
.110
.115
.120
.130
.140
.150

P =100
0'0 =

0.3249

0.0000
.0021
.0083
.0190
.0344
.0553
.0824
.1172
.162
.218
.290
.385
.511
.670
.864

1.061
1.228
1.364
1.486
1.588
1,670
1,741
1.803
1 ~ 858
1.908
1.994
2.067
2.132
2.9861

P =120
0'0 =

0.3109

0.0000
.0025
.0100
.0229
.0417
.0675
.1013
.1457
.2037
.2801
.383
.527
.714
.951

1.184
1.389
1.549
1.665
1.768
1.854
1.928
1.994
2.052
2 ~ 105
2.153
2.236
2.307
2.368
3,2087

P =140
0'0 =

0.2994

0.0000
.0029
.0117
.0268
.0492
.0800
.1215
.1768
.2512
.3534
.496
.699
.977

1.252
1.473
1.647
1.796
1.904
2.002
2.082
2, 153
2.216
2.272
2.323
2.369
2.450
2.519
2.579
3.4069

P =160
&TO =

0.2899

0.0000
.0033
.0134
.0308
.0568
.0930
.1426
.2100
.3042
.438
.640
.921

1.247
1.522
1.734
1.892
2.018
2.120
2.209
2.286
2.354
2.415
2.470
2.519
2.564
2.644
2.712
2.770
3.5860

P =180
O'P =

0.2817

0.0000
.0037
.015]
,0349
.0646
.1066
.1650
.2469
.3646
.540
.810

1.182
1.512
1.764
1.956
2.098
2.215
2.312
2.397
2.472
2.537
2.597
2.650
2.698
2.743
2.821
2.888
2.945
3.7501

p =200
0'0 =

0.2746

0.0000
.0041
.0168
.0390
.0725
.1205
.1887
.2867
.4329
.663

1.023
1.435
1.746
1,980
2.150
2.283
2.393
2.487
2.569
2.641
2.706
2.764
2.815
2.863
2.908
2.985
3.050
3.107
3.9020

To( K)

240
250
260
270
273
280
290
298.
300
310
350
400
450
500
550
600

0.0602
.0626
.0650
.0674
.0682
.0698
.0722
.0742
.0746
.0770
.0866
.0985
.1104
.1222
.1340
.1457

1.729
1.708
1.688
1.669
1.663
1.651
1..633
1.620
1.617
1.601
1.544
1.483
1.432
1.387
1.348
1.313

(r/2H) & )& 10'

0.780
0.857
0.938
1.024
1.051
1.114
1.209
1.287
1.307
1.410
1.868
2.545
3.343
4.267
5.321
6.510

TABLr. VIII, Values of 0, X and (r/ZH)&.
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II. EA'I' CON DUCT I VI'I Y OF TUNCxSTF N

To ~B Ax xp (r/2II) &

('K) ('K) Pp (cm) (cm) X10 pp

(1) 300 300 0 0 6.43 1.3071 0.1683
(2) 300 0 1 0 6.43 1.3071 0.1683
(3) 300 300 0 0.40 6.63 1.307i 0.1735

TI
0, ('K) p

(1) 0.740 522.0 20
(2) 0.740 522.0 20.77
(3) 0.768 530.4 20

A'
amp.
cm 8~'

18.869
18.869
18.869

A oX 10'
(amp, )

6.651
6.651
6.651

A
(amp. )

0.02974
0.03031
0.02974

(1) Given Ts Tp 300——'K,——the filament
mounted directly on heavy leads. Calculate T&

and the corresponding current A, for P=20.
This is an example of Case 1. As shown in the
accompanying table xp, the half-length, is

12.86/2=6. 43 cm. (r/2II)' at 300' from Table
VIII is 1.3071 &(10 '. From xp, (r/2II) '*, the
known value of the filament radius r, and Eq.
(108), happ is then calculated to be 0.1683. From
Table III for P =20 and this value of qp, fj& is
found to be 0.740. From Eq. (109) T& is 522'K.
From Table II, Paper I, A' at 300' is 18.869, so
that by Eq. (111) Ap is 6.651 )& 10 ' amp.
Finally, using Eq. (110) with P=20 and this
value of Ap, we find A to be 0.02974 amp.

(2) Given Tp=300'K as in Example (1), but
the bulb is now immersed in liquid air so that
T~=O. Calculate TI and A for p=20. This is an
example of Case 2, Pp=1.

One proceeds exactly as in Example (1) up to
the calculation of A. Here instead of using P = 20,
the corresponding value of P in column 6 of
Table I, equal to 20.77, is used with Eq. (110) to
calculate A. As to be expected, this value is

slightly larger than the current required in

Example (1).
(3) Tp= Ts ——300'K as in Example (1), but

one end of the filament is joined to a spring.

Examples of the calculation

Consider the filament in tube No. 2, used in

the experiments on heat conductivity, which had
a length of 12.86 cm and a diameter of 0.00499 cm

( 2 mil).

Calculate T~ and A. This is an example of Case 3.
Making use of the relations given in reference

10 on spring design, one finds that a spring
suitable for a filament of the present length and
diameter can have the following dimensions:
a 10-cm length of 10-mil spring wire wound into a.

spring of 12-mm diameter ( 3 turns).
Dx equal to 0.40 cm is found from Eq. (94)', in

which xs is the spring length (10 cm) and s is the
ratio (10/2 = 5) of the diameters of spring and
filament. pp, equal to 0.1735, is calculated as
before from Eq. (108) in which xp is now 6.43

+ (Ax/2) or 6.63 cm. The remaining steps in the
calculation of T~ and A are unchanged, One notes
that although the current is the same as in

Example (1), the presence of the spring has
increased T& about 8'.

Table I
Table I gives limiting values of various

functions, and has in part been referred to under
case 2. In addition, column 3 lists values of
8~. (1+8M) Tp = Tpl, the temperature at the
middle of the filament when it is infinitely long,
or so long that the central part is not cooled by
the leads. For a filament of given diameter, OI

approaches 0~ as a limit as the filament is made
longer and as P is increased. (AQ/Qp) in column 5

is the corresponding limiting value of AQ/Qp.

This behavior is shown in Figs. 5 and 6 which are
plots of Tables II to VII. It will be noted in

Tables II, III, and IV that 0~ as a function of pp

extends practically to the value of 8~. However,
in Tables V, VI, and VI I for the same values of

ppp, AQ/Qp has not closely approached its limiting
value. These tabulated values of DQ/Qp may be
extended to (AQ/Dp) by calculation from the
equation

AQ/tip = (AQ/Qp) 8 /(pp, —

where 8 has the values given in column 4 of
Table I.

Column 7 gives values of o.p "for use with Eq.
(113), In this same equation pp ""is given by
the values of P in column 6.


