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The Dependence of Nuclear Forces on Velocity
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It is shown that the Majorana force may be considered
as a special case of a neutron-proton interaction dependent
on velocity and angular momentum. Any interaction of this
more general form, which is non-Wignerian, and represents
attraction, accounts for the saturation properties of nuclear
binding in the same way as do the Heisenberg and
Majorana potentials. An analysis of the binding in heavy
nuclei in terms of angular momentum is given on the basis
of the Fermi-Thomas statistical model. An illustration is

given showing that the assumption of velocity dependent

forces is also consistent with the properties of light nuclei:
a particular form of interaction, containing two parameters,
is found to give results much the same as those of the
ordinary Majorana theory. Finally, the most general
dependence of two-particle forces on spin, separation, and
velocity, consistent with the conservation laws, is deter-
mined, and it is pointed out that experiments on the
scattering of fast neutrons in hydrogen are capable of
deciding between Majorana forces and a more general
form of velocity dependence.

w ITH forces of an exchange nature acting
between neutrons and protons, Heisen-

berg was able to account for the dominating
feature of nuclear stability —the fact that for
heavy nuclei the binding energy per particle is

nearly a constant. Majorana's modification of
the interaction to account for the closed shell

nature of the alpha-particle gave support for a
neutron-proton force which corresponds to an
exchange of the coordinates but not the spins
of the two particles. In contrast with Heisen-
berg's potential, however, just this last feature
of the Majorana force takes away the possibility
of a simple picture of the neutron-proton inter-
action in terms of the kind of exchange familiar
in the theory of molecular structure.

It is therefore interesting to notice that

Majorana's interaction may be described as an
ordinary potential without exchange but with
dependence on both the separation and the
relative velocity of the neutron and proton.
To bring this fact into evidence let us describe
the motion of the two particles by a wave func-
tion P depending on the position of their center
of gravity A=(Ai, A2, A3) and on their separa-
tion X=(Xi, X2, X3). Then, when we multiply
the Majorana potential V» into P(A, X), we

obtain a new function of A and X, given by

U, tl = V(X)tl(A —I)
the change from X to —X bringing about the
exchange of the neutron and proton. Taylor's
theorem assures us now that the operator
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has all the properties of U», provided that P a.nd its derivatives are continuous. But the operator
8/BX represents just i/k times the relative momentum, P, of the two particles. Consequently, we

have in
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the representation of the Majorana interaction
in terms of relative momentum and separation
of the neutron and proton.

The expression (1) shows the very special
(lcpcndcnce on nio»ic»t. uni of Majf)ran;&'s f&)i cc,
and at the same time suggests the question:
4Vhat are the consequences for nuclear struc-

ture of assuming between neutrons and protons
a more general interaction. In the following we

attempt partially to answer this question.
If we assume an interaction, V12 ~, depending

o» nionicntuni a»d separation i» a gcnelal way,
V(X, P), we will find it convenient. to represent.
it not as a differential operator by replacing
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P by ih—d jdX, but as an integral operator, ' ac-
cording to the equation

V» P(x) = fJ(X, $)P(()d(, (2)

where

J(X, f) =h ' I V(X, P) cxp IiP(X —()/h}dP. (3)

As is well known, the Majorana force in this
representation is simply J(X, g) = V(X)5(X+(),
and the Wigner force V(X)5(X—$).

The general interaction "kernel, '" J(X, F),
may be viewed as a matrix of (continuously)
many rows and columns. The Inatrix element at
the point X, ( determ. ines that part of the time
rate of change at P at X which is proportional to
the probability amplitude for the two particles
being at some other separation (. To be in accord
with the law of conservation of energy, J(X, ])

must be self-adjoint: J(f, X) = J"''(X, F). Because
of the fact that J is independent of the position
of the center of gravity, conservation of total
linear momentum is automatically maintained.
The requirement of constancy of angular mo-
mentum is equivalent to saying J must be
independent of the orientation of the reference
system in space; i.e. , J depends on the magni-
tudes r and p of the vectors X and ( and the
angle 0~~ between them, but not on the orienta-
tion of these vectors in space.

What conclusions of a general nature can we

draw from the binding energies of heavy nuclei
as to the interaction J(X, g) between neutrons
and protons& Following Majorana, let us apply
to a heavy nucleus the Fermi-Thomas statistical
method, in the form given it by Dirac. ' In the
first approximation, the wave function for a
nucleus composed of I' protons and N neutrons
is given by

4 i(1) 4i(P) +i(1) . il i(X)

C p(1) C I'(P) +ii (1) 4 p (X)

For. the potential energy due to the neutron-proton interaction we obtain

V„„=P 4;*(p)C~„*(n)V;.,„. 0;(p)%~i, (n)dr„dr„
i, k

If we may neglect spin forces, we have C;(p) =f;(0„)p(x„), etc. . On expressing the integral in terms
of the position, R, of the center of gravity of the typical neutron and proton, and the separation X
of the two particles, we then have

Xl f' &l " ( Xl (
V „=JI Z ~ 'I R+—I~ I

R+-
I

J(x &) Z W *I R-—
I&i'I R—

I
dxdgdR.

'=1 E 2 ) E 2) &=i L. 2) E 2I
(4)

Applying the Fermi-Thomas statistical treatment, we express the density of particles at any
point in terms of the maximum momentum of the particles there through the relations

p,,(x„)=2h ' P„(x,,)
dP and p„(x„)=2h '

I „(x„)
dp'.

Analogously, following Dirac, we express the mixed proton and neutron densities in the brackets
in (4) by

''I he well-known equivalence of the two representations may be denionstrated by partial integra. (ions, as shown for
example by Dirac. (In the expansion of U(X, P), the order of factors is taken to be X'"P".)' Following the language of integral equations.' P, A. M. Dirac, Proc. Camb. Phil. Soc. 20, 376 (1930). See also %. Heisenberg, RePort of 1933 Solvay Congress
(Paris, 1934).
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&~(R+ (X+6)/4)
2h ' exp {iP(g—X)/2kIdP (a)

P„(R—(X+$) /4)
exp I iP'(X —g) /25 ) dP', (b)

respectively. Now if the density of particles in the nucleus is very great, and if further p„&p„, as is
in general the case, then the mixed densities (a) and (b) behave with respect to X—( very nearly as
8-functions, but (b) dominates, having a narrower width and higher peak. Thus the integral giving the
potential energy of the nucleus,

r r ~ P„(R+(X+(}/4} P„(R—(X+()/4}
V „= dRjl Jl dXd(J(X, g) 2k-'dP 2k 'dP' exp {i(P'—P)(X—()/2kI,

only depends on the value of J(X, g), in the
neighborhood of (=: X, and we have approxi-
mately

V „=)fdR2p„)I SdXJ(X, X)

under two conditions:

(A) that the neutron and proton densities do
not vary greatly within distances of the order of
the range of action of J; and

(B) that J(X, () shall not be too narrow a
function in its dependence on X—g; or more
precisely, that for a fixed g, J shall not vary
rapidly when X—g is varied in the range 0 to

2k/P (width of the mixed density function
(b)).

Condition (A) is the usual requirement for
the accuracy of the statistical method. Con-
dition (B), however, is definitely not satisfied
by an interaction of the Wigner type, J(X, f)
= V(X)5(X—g). In this case, as is well known,
we obtain instead of (5) the expression

V.„= i" I dRdXp„(R+X/2) V(X)p.(R-X/2),

in contradiction with the saturation character of
nuclear binding. On the other hand, the Ma-
jorana potential, J(X, g) = V(X)6(X+)), is in
agreement with (B), and (5) gives the often
demonstrated result:

V„„= ldR2p„V(0).

At the same time we see from (5) that the
Majorana force is a very special one, and that
any interaction depending upon X and ( in ac
cordance milk condition 8 miQ equally gael/ O,c-
count for tke saturation effect in nuclear binding.

How this result comes about is most easily
visualized by anaIyzing into groups of different
relative momenta all the neutrons which inter-
act with a given proton in a heavy nucleus.
On the Fermi-Thomas statistical model, there
are in the small element of volume d~~ just
li/„=2k '(4m/3)P„'dr„protons, distributed uni-

formly in momentum and direction of motion up
to a certain maximum momentum, P„and simi-
larly there are in dr„, /i/„= 2k '(4m /3)P ~dr

neutrons. The number of protons in dv„which
are in interaction with neutrons at a given dis-
tance r, having with respect to them relative
momenta p,. parallel to r and p, perpendicular to
r, is determined by the volume common to two
spheres of radii P„/2 and P„/2 separated by a
distance p= (pP+p, ')'*. On expressing p in
terms of the quantum number L, giving the
mutual angular momentum of neutron and
proton, we find (provided that the neutron
density does not vary appreciably with r) that
the average number of neutrons at a distance
between r and r+dr from a given proton, having
with respect to it an angular momentum I5 and
a, radial momentum in the range p,. to p„+dP„
is given by

pc(P, ., r)dp, .dr = (2L+1)(dP,dr/k)16f(P„'[P, '+(L+-', )'k'/r']")., . (6)
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where f(x) = 1

x 3x j P ) ) P„) 3 (P„
f(x)=———

I
1+—I+-'I1+

"
I—

2 4 0 P„') 4 P„') 32x (P„' )
f(x) =0

if x& P,,,/'2P„—-;',

if x is between limits,

if x& P.)2P„+

A neutron-proton potential Vr, (r, p, .) dependent
on velocity and angular momentum gives rise
to an interaction energy

P f Ur. (r, P, .) pr. (P„r)dp, dr
r. 0

between the given proton and all neutrons.
However, to avoid complications arising from
the operator nature of a quantum-mechanical
momentum, we transfer this expression to the
form

definiteness, we have taken the density of
neutrons equal to the density of protons and
the volume of a nucleus of atomic weight A as
(4x)3) (1 48 X10 '~)'r1. ) As a check, the density
summed over all angular momenta (heavy curve)
is compared with the expected value 47rr'p„

(lower dotted curve).
Let us suppose we have a Wigner type of

interaction between neutrons and protons; it has
the same dependence on r for all values of the
angular momentum, and expression (7) for the
potential energy of the given protons becomes

Jr(r, p)or (p, r)d.rdP,
I

(7) P f V(r)or(r, r)dr
r, J

where Jr, (r, p) is the interaction kernel, related
to Vr(r, P,.) b,y an equation similar to (3), and

or(p, r) is a mixed density matrix, connected
with pr(P, , r) by an analogous relation. ' In
particular, the diagonal values of the density
matrix determine the number of neutrons of a
given L in a range of distance, dr:

o r(r, r)dr , = ~f pr. (P„r)dP, dr

Fig. 1 shows the radial density, ar(r, r), of.
neutrons of various angular momenta. (For

'The value of the mixed density matrix o-i.(p, r) may
also be obtained from the equation just before (5) by
expressing J in terms of its components JJ, and carrying out
the integration over 812. Otherwise the mixed density
matrix is not uniquely defined in the text (unless the
neutron and proton densities are everyv here constant).
In the general case, where these densities depend on
distance, oL(r, p) should be regarded as giving, not the
density of neutrons referred to a given point in proton
space, but the density of neutron-proton pairs of a given
mutual angular momentum referred to a given position,
R, of the center of gravity of the pairs. Then the ar. 's may
be consistently defined. The total mixed density matrix
0.(X, (; R) is given by

l &~'*(R+x/2) p*(R+ (/2) l
i .V

X I ZQI, *(R—X/2) p), (R—(/2) I,

and the o-L, 's may be found. from this by inverting an
equation very similar to Eq. (9) below.

If we increase the density of neutrons in the
nucleus, all the curves in Fig. 1 are increased in

height and move in to smaller values of r,
so that the interaction energy is increased in

proportion to the neutron density. On the other
hand, a Majorana interaction gives attraction
for the neutrons of angular momentum L=O,
repulsion for L = 1, attraction for L = 2, etc.
Thus the total potential energy per proton is an
alternating sum,

Q( —1)~ V(r)o r. (r, r)dr,
L t

whose value is not changed by an increase in

the neutron density, essentially because the
greater magnitude of the densities, o-r, is bal-
anced by the increased cancelation of terms of
opposite sign which occurs as the curves move in

to smaller values of r. This is, of course, only
another way of putting Eq. (5), which states
that in the general non-Wignerian case the
interaction energy per proton is

16 J(X, X)dX=16+(2I.+1) Jr, (r, r)dr, (8)
t. L

a result independent of the neutron density.
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FIG. 1. Density of neutrons of various angular momenta
around a given proton, using (L+1/2)'A' for the square
of the angular momentum. Use of L(L+1)A' gives the
upper dotted curve, in disagreement with the expected
value 4zp„r' (lower dotted curve) for the total density.

The Majorana force, which is independent of the
relative radial momentum p,. of the two inter-
acting particles, since it depends on p as 6(r p), —
is nevertheless a very singular type of interaction,
for it relies entirely upon the (—1) ~ dependence
of potential upon angular momentum. to bring
about the saturation effect in neutron-proton
binding. This is seen in the fact that it gives a
divergent result for the right-hand side of (8)
although the left-hand side converges. Indeed,
any dependence of interaction upon angular
momentum alone, other than the Majorana
type, must make the energy per proton de-
pendent on the density of neutrons.

In other words, any interaction which is to
give saturation binding, and is not to be of the
Majorana type, must depend on radial momen-
tum; only then does the right-hand side of Eq.
(8) exist. The criterion which we have now
developed for a satisfactory interaction, that
the right-hand side of (8) shall converge, may
seem to add restrictions to the earlier condition 8
(following Eq. (5)), but in fact it causes difficul-
ties only for the Majorana force, which is a
special singular case, and would have been
realized as such if we had not interpreted condi-
tion B liberally above. The dependence of the
general interaction on radial momentum makes
it clear that if the nuclear density is increased,
resulting in greater mean velocities of neutrons
and protons, constancy of the energy per proton
is ensured by the change of potential with

velocity. Indeed, if the interaction kernel,
J(X, &), is not of the singular Majorana type, we
can conclude that the potential V(X, P) must
decrease in magnitude for sufficiently high
velocities, for it represents the Fourier transform
of a regular function.

We obtain more detailed information as to the
neutron-proton interaction by considering the
simple two-body problem involved in the stabil-
ity of the deuteron and the scattering of neu-
trons by protons. Referred to a frame of reference
in which the center of gravity of the two par-
ticles is at rest, the wave equation is

This equation m.ay be separated in polar co-
ordinates, r, 0, p, by writing P as a spherical
harmonic Y~.(8, p) of order L (Lfi being the
a.ngular momentum of the system) times an
undetermined function, fz(r)/r, and by analyz-
ing the total interaction J(X, ])= J(r, p, Ou) into
parts referring to the interaction of two particles
of definite angular momentum. , thus.

= P(2L+1)PI,(cos 9,~3 Jq. (r, p)/47rrp. (9)

The result is that f,.(r) satisfies the equation

(0'/2p) f"(r) + [L L(L+1)5'/2pr'—]f(r)

(r, p)f(p)dp (10).
One fact at once emerges of interest in connec-
tion with the analysis of scattering experiments:
From the behavior of two particles with angular
momentum I A we cannot in general, without
further information, draw conclusions as to the
behavior of the same two particles moving with
some other angular momentum.

Now we know from the binding energies of
H' and He4 that neutrons and protons of zero
angular momentum form stable configurations.
Furthermore we have indications that the nu-

clear forces fall off rather rapidly with distance.
Consequently, the first component, J,(r, p), of
the neutron-proton interaction must be negative,
and a reasonable assum. ption is that it varies
with distance as e ". To give J the proper
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where (b'/M) ~' =D.

The cross section, pro, for the collision of neutrons
and protons of zero angular momentum may
also be calculated exactly:
o.o = 16~b' I 4k'b'+

I
b' —k'

—(b'+ k') '/(b+ ~) ']'I ' (12)
where

(b'/M) k' =E=Eo/2,

Eo being the energy of the incident neutron.
To calculate the total cross section a, we must
make some assumption as to the forces acting
when L &0; the simplest possible assumption is

JJ.(r, p) =0 for 1.)0 (i.e. , J(r, p, H~g) independent
of 8&2). o is then exactly equal to o o, however, even
if J&, J&, etc. , do not vanish, 0- will be closely equal
to 0.0 for neutron energies of several million

volts and lower. Fig. 2 shows the dependence of
cross section on neutron velocity for several
values of b. The recent experiments of Fermi
(capture of slow neutrons) give support for a
'S level at +1.30,000 ev; there is therefore
little doubt that we can only obtain a complete
account of neutron scattering by bringing in a
spin dependence of J as is done in the Majorana
theory. From binding energies of other nuclei,
also, there seems to be evidence' for the de-

pendence of nuclear forces on spin.
' E. Feenberg and J. K. Knipp, Phys. Rev. 48, 906

(&93S).

symmetry with respect to interchange of r
and p, we might now take J,(r, p) equal to

Ae—~"b(r p),—which represents a force inde-

pendent of radial velocity. We have seen, how-

ever, that such a force is only consistent with the
binding energies of heavy nuclei if it is of the
Majorana type. If we do not wish to restrict
ourselves to this form of interaction, we must
bring in dependence on velocity, keeping Jo
symmetrical; our simplest possibility is to
assume that Jo has the form —ae ""+&'.

For a velocity dependent interaction of the
form just mentioned, the wave equation has an

extremely simple solution, and there is found to
be never more than one stable S state of the
deuteron, whatever the values of a and b.

Identifying the energy of this state with the
experimental binding energy, D, of H', we ob-
tain an equation giving the magnitude of the
interaction in terms of its narrowness, b:

g/2b = (k'/gg) (g+ b)' (11)

20

Io b

0.5
0 IO

Fro. 2. Cross section for elastic scattering of neutrons in
hydrogen as a function of neutron energy. Calculated on
the basis of spin-dependent force of the type —ae '("+»
with constants adjusted to give singlet level of deuteron
at 0.13 MEV, triplet level at —2.15 MEV. The curve
b= ~ is the same as that given on the Majorana-Heisen-
berg or Wigner theory.

1„1„(scalar functions, s, of X and g)

+1„n„(vector function, l, or X a.nd g)

+n„1 (another vect.or function, n)

+n„(a tensor function, w, of X and g) n„.

We have already in Eq. (9) expressed the fact
that the most general scalar invariant depends
only on ~X~, ~f~, and X (, or r, p, and 8&u.,

Application of the interaction Jo ———ae '"+»

to the treatment of the alpha-particle also gives
results not essentially different from those of the
corresponding Majorana theory; we have there-
fore in this interaction a simple illustration of a
velocity dependent force which gives quite
reasonable physical results.

We bring this discussion to a close by in-

vestigating what is the most general dependence
of the neutron-proton interaction kernel, J(X, $)
on spin, position, and velocity consistent with'

the conservation laws. We denote by 1„and
n„= ($„, g„, I,) the unit matrix and the three anti-
commuting spin matrices of the proton and use

and n„=($„, q„, I„) for the corresponding
neutron operators. Any function of the spins of
the two particles is a matrix representable as a
sum of the sixteen product matrices of the type

with suitably chosen coefficients. In the
case of the interaction operator, these coefficients
must be such as to give invariance with respect
to any rotation of the axes of reference; in other
words, J must have the form
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similarly, the most arbitrary vector function
may be written

t,X+Ap[X, (]+tt(,
and the general tensor is

w„XX+fw,oX[X, (]+w,tX(
+gawp [X, $]X—wpp[X, (][X,F]+i wpp[X,

+wt, (X+iwto([X, g]+wt tg,
where the t's and m's are functions only of r, p

and Hn, and Xg is a tensor in the sense that it gives
the scalar (X n„)(g n„) when operating on the
two vectors n„and n„. The rotational invariance
of the interaction obtained in this way insures
constancy of angular momentum. The conserva-
tion of total linear momentum is assured because
J depends on the separation of the particles
but not the position of their center of gravity;
and energy is conserved if (and only if) the fol-

lowing conditions for the self-adjoint nature of
J are satisfied:

(a), s(p, r, 8l2) =s*(r, p, 0&2), with similar relations on tp,

Qp, 'N, happ, and my~; and
(b), ~*(p, ~, 012) tg*(r, p, 0&~), and corresponding connec-

tions between n, and N$, zo p and ur~p, w, ~ and xg:„' and wp,
and nrpp.

Eleven functions of r, p, and 0~~ are therefore
required to describe the spin interaction in the
general case. In contrast with this is the situa-
tion when the interaction is restricted to depend
on X and E as 8(X+eF) J(X, F. ) reduces to

Is(r)+(X n„)t(r)+(X n„)tt(r)
+(X n„)(X n„)w„(r)+(X [n„, n„])w~(r)

+ (n„n„)ws(r) } 5 (X+.e()

because we have only one vector instead of
three with which to form invariants. Various
special cases are summarized as follows:

(1) c= —1; only s(r) different from zero (Wigner);
(2) ~ = 1;all functions vanish except s(r) =mg(r) (Heisen-

berg);
(3) e = 1; only s(r) nonvanishing (Majorana);
(4) e = —1;all functions zero except s(r) =wz(r) (13artlett);
(5) e= —1; m, (r) = —3p„p„r ', sod(r) =p„p„r '; all other

functions zero (magnetic spin forces).

The magnetic interaction between proton ve-
locity and neutron spin requires for its represen-
tation a more general dependence of J(X, g) on (
than that given by 5(X+&().

The proper value of the kernel, J(X, g), re-

quired to account for the interaction between
neutrons and protons (or between protons and
protons, and neutrons and neutrons) is of course
not arbitrary, but Fixed by general physical
principles of which we have not as yet a proper
understanding. The fact that present treatments
of nuclear binding point to neutron and proton
velocities in the nucleus of the order of cj4
suggest a question as to whether the simple
mathematical forms of the kernel given by (2)
and (3) really give correctly the interaction be-
tween two nuclear particles, at distances smaller
than the classical electron radius, moving with
high relative velocities. In this connection it may
be mentioned that, in a paper now in preparation
for publication, it is shown on the basis of present
theory that the interaction between two normal
alpha-particles of not too high energy is repre-
sentable in terms of an equivalent potential
J(X, g). This kernel, whether derived on the
assumption of Wigner or Majorana forces be-
tween neutrons and protons or the more general
type of interaction we have considered in this
paper, is itself definitely not representable in its
dependence on f by 6(X+eg), and consequently
is not a force of the Wigner or Majorana type.

In summary, we have found:

(1) that the most general interaction between two par-
ticles consistent with the conservation laws requires for
its specification ~ 3 numbers (dependence of force on
distance, relative velocity, and angular momentum) in
contrast with a Wigner or Majorana potential, which is
described by only oo numbers (dependence on distance);

(2) that a simple form of the interaction, dependent on

velocity, and acting only between neutrons and protons
of zero mutual angular momentum, is well adapted to the
treatment of the binding energies of light nuclei; and

(3) that this particular interaction is only one instance
of a whole group of non-Wignerian potentials, any one of
which will account for the saturation effect in nuclear
binding.

A decision between the Majorana force and a force of
the more general nature considered above would appear
possible as follows:

(1) from the dependence of the neutron-proton collision
cross section upon velocity for high energy neutrons. A
swifter falling off is to be expected for velocity dependent
forces.

(2) the consequences of the Majorana interaction for the
detailed structure of heavy nuclei are somewhat different
from those given by the general non-singular type of force,
Detailed calculations are needed to show which features of
nuclear structure are most sensitive to the characteristic
differences between the two kinds of interaction.


