58 BOUCKAERT,

ACKNOWLEDGMENTS

I wish to express my appreciation to Professor
Lloyd P. Smith, under whose direction this work
was carried -out, for his constant advice and
encouragement.

I also wish to express my gratitude to Dr. V.
K. Zworykin, of the Electronic Research Labo-
ratory of the RCA Manufacturing Company, for
extending to me the facilities of the laboratories

SMOLUCHOWSKI AND WIGNER

for this work, as well as to express my appreci-
ation for his constant advice and encouragement.

I am particularly indebted to Dr. E. G.
Ramberg for many valuable discussions and for
his contributions to the explanation of the
phenomenon.

I wish to express my thanks to Messrs. H. W.
Leverenz and H. W. Rhoades for the -care in
preparing the various oxidizing baths employed.

JULY 1, 1936

PHYSICAL

REVIEW VOLUME 50

Theory of Brillouin Zones and Symmetry Properties of Wave Functions in Crystals

L. P. BOUCKAERT,* R. SMOLUCHOWSKI AND E. WIGNER, The Institute for Advanced Study
Princeton University, Princeton, New Jersey and the University of Wisconsin

(Received April 13, 1936)

It is well known that if the interaction between electrons
in a metal is neglected, the energy spectrum has a zonal
structure. The problem of these ‘‘Brillouin zones"” is
treated here from the point of view of group theory. In
this theory, a representation of the symmetry group ot
the underlying problem is associated with every energy
value. The symmetry, in the present case, is the space
group, and the main difference as compared with ordinary
problems is that while in the latter the representations
form a discrete manifold and can be characterized by
integers (as e.g., the azimuthal quantum number), the
representations of a space group form a continuous mani-
fold, and must be characterized by continuously varying

I

NVESTIGATIONS of the electronic structure
of crystal lattices in particular in metals,
made on the basis of Bloch’s theory, led to the
conception of the so-called Brillouin zones.! In

* C. R. B. Fellow.

1 The existence of these zones was first noticed by
M. J. O. Strutt, Ann. d. Physik 85, 129 (1928); 86, 319
(1929); and then, independently, by F. Bloch, Zeits. f.
Physik 52, 555 (1928); cf. also P. M. Morse, Phys. Rev.
35, 1310 (1930). From another point of view, they were
discussed by R. Peierls, Ann. d. Physik 4, 121 (1930).
Their connection with x-ray reflection was first pointed
out by L. Brillouin (cf. e.g., Die Quantenstatistik (Berlin,
1931)). Important physical applications, were given by
H. Jones, Proc. Roy. Soc. Al44, 225 (1934); 147, 396
(1934); H. Jones, N. F. Mott and H. W. B. Skinner, Phys.
Rev. 45, 379 (1934); . C. Slater, Phys. Rev. 45, 794 (1934) ;
Rev. Mod. Phys. 6, 209 (1934); F. Hund and B. Mrowka,
Ber. Sachs. Akad. D. Wiss. 87, 185, 325 (1935). Compare

parameters. It can be shown that in the neighborhood of
an energy value with a certain representation, there will
be energy values with all the representations the pa-
rameters of which are close to the parameters of the
original representation. This leads to the well-known
result that the energy is a continuous function of the
reduced wave vector (the components of which are pa-
rameters of the above-mentioned kind), but allows in
addition to this a systematic treatment of the ‘‘sticking”
together of Brillouin zones. The treatment is carried out
for the simple cubic and the body-centered and face-
centered cubic lattices, showing the different possible
types of zones.

spite of these investigations, which cover a large
part of the field, it seems desirable to develop
the theory from a unique point of view. It
appears that taking into account special sym-
metry properties of different lattices brings out
interesting features of the constitution of the
B-Z which are not evident from the existing
general theory. These features can be dealt with

also F. Hund, Zeits. f. tech. Physik 16, 331, 494 (1935);
Zeits. f. Physik 99, 119 (1936). Hund’s work deals with
those properties of the Brillouin zones which are common
to all zones of the same lattice (as matter of fact he does
not discriminate between different types of zones at all).
We consider here the different types of zone separately.
The differences between the different types are of the
same kind as e.g. the difference between even and odd
terms in atomic spectra. It is surprising that there are at
all common properties of all zones but Hund has shown
that this is the case for the more complicated crystal
structures.
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uniformly by the methods of group theory,? and
we propose to take up the subject here from this
point of view. The first start in this direction
has been made by F. Seitz,’ and we shall use his
results extensively, though a knowledge of his
work should not be necessary for the under-
standing of this paper.

In the theory of Bloch, every electron has a
separate wave function. This assumption is
identical with the Hartree-Fock approximation
method and amounts to neglecting the statistical
correlations between electrons. If we neglect
these correlations, every electron obeys a sepa-
rate Schrodinger equation of the type
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in which ¥V contains the ordinary and exchange
potentials of the ions and electrons.* The po-
tential V has the whole symmetry of the lattice,
that is, the group of our Schrédinger equation (1)
is the space group of the lattice.

It is clear from the ordinary group theory?
that every characteristic value of (1) belongs to
a certain representation of the space group and
the dimension of the representation is equal to
the number of characteristic functions belonging
to this characteristic value.? Thus far the group
theory of the B-Z is not different from the group
theory of any other system. But while in atoms,
molecules, etc., the characteristic values of (1)
are well separated, the characteristic values of
(1) for a crystal form a continuous manifold.
There will be several characteristic values in the
neighborhood of any one E and the representa-
tions of these characteristic values will be said
to form the neighborhood of the representation
of E for this B-Z. Thus a certain topology for
the representations must exist and it will be
shown that part of this topology is independent

9?92
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2 Cf. e.g., E. Wigner, Die Gruppentheorie und ihre An-
wendungen (Braunschweig, 1931). The first application of
group theory to crystal lattices has been given by H. Bethe,
Ann. d. Physik 3, 133 (1929).

3 F. Seitz, Ann. of Math, 37, 17 (1936).

4 L. Brillouin, Actualités Scientifiques et Industrielles
(Paris, 1933).

5To the symmetry operations of the space group, the
“reversal of time”’ (cf. E. Wigner, Gott. Nachr. 546 (1932))
should be added. It has been remarked by F. Hund (refer-
ence 1) that this will often be of great importance. It can
be omitted, however, in the case of the cubic lattices
investigated here.
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of the special B-Z. Even if E, E/, be in
different B-Z but have the same representation,
there will be energy values neighboring E (with
a few exceptions) with the same representations
as those of energy values neighboring E’, etc.
The investigation of the ‘“‘topology” of repre-
sentations will be essentially the subject of this
paper, from the mathematical point of view.

II.

We must review next, the theory of representa-
tions of space groups. F. Seitz? has shown that all
space groups are soluble groups and their repre-
sentations can be obtained according to the
general theory for these.® ® Seitz first considers
the invariant subgroup formed by the transla-
tions. Since these commute, the corresponding
matrices in the representation can be assumed to
have the diagonal form. This means that we shall
consider such linear combinations ¢, (u=1, 2,
- - -n, where n is the dimension of the representa-
tion) of the wave functions, which are merely
multiplied by constant factors (‘“multipliers”)
w1, wu2, wu3 if a displacement by the three
elementary identity periods is made. In other
words, the matrix corresponding to the displace-
ment by the first elementary identity period is a
diagonal matrix with the diagonal elements wy,,
w21, +, wn1, with similar matrices for the
representatives of the other displacements. Since

all matrices must be unitary, |wu|=w.]
= |w,3| =1; and if one writes

wy1= e kezithyyitkzz)

wyo= e kazrthyyathzz) (2)

wy3= e Fazathyysthzzg)

with %y, 1, 21, %2, V2, 22, X3, Vs, 23, the x, ¥, z
components of the first, second and third identity
periods, the vector k is called” “the reduced
wave number vector.” Of course, k will be, in
general, different for the different wave functions
Y1, Y2, +*+, ¥, It must be remembered, how-

¢ G, Frobenius, Berl. Ber. 337 (1893); I. Schur, Berl. Ber.
164 (1906).

7 Cf. A. Sommerfeld and H. Bethe’s article in Handbuch
der Physik, Vol. 24 (Berlin, 1933), chapter 3. Also J. C.
Slater, Rev. Mod. Phys. 6, 209 (1934). For a simple cubic
lattice x; =y, =2z3=d; y1 =z =x2=2=%x:=9;=0. For a face
centered lattice yy =z =xe=z:=x3=y;=d/2; x1 =y, =2,=0
etc.

’
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ever, that the reduced wave vector k is de-
fined by (2) only up to an integer multiple of
a vector r of the reciprocal lattice, i.e., a vector r,
for which

rX1F Y17 .81= 271,

(2a)

rxx2+ryy2+7z22-_— 211
roX3t7,ys+7.53=2mng

always can be added to k, without changing its
meaning. The space of k is periodic with all
the periods r, satisfying (2a); two reduced wave
vectors differing by such an r are considered
identical. If there are no essential gliding planes
and screw axes in the space group,® one needs to
consider, in addition to the above translations,
rotations and reflections only. If such a trans-
formation is applied to y,, it will be transformed
‘into a wave function, say ¢\, the reduced wave
vector of which arises from that of ¢, by just
the rotation or reflection considered. Thus the
reduced wave vectors of the wave functions of
one representation all arise from one another by
the pure rotations and reflections of the group,
i.e., the elements of the crystal class. If the re-
duced wave vector of one ¢, is transformed by
every element of the crystal class into a different
vector, this will be true for all of them, and we
shall have as many wave functions ¢, + -+, ¥,
as the crystal class has elements. The matrices
of the representation corresponding to rotations
and reflections will merely interchange the dif-
ferent y,. If there are symmetry elements which
leave a wave vector invariant, they form a
group which we shall call the group of the wave
vector. So, for example, if the wave vector lies in
the x direction, its group will contain all rotations
around x and all reflections in planes through x.

A wave function ¢, with a wave vector k
either is left invariant under the transformations
of the group of k, or else transformed into a new
Y with the same wave vector, k, however. In
the first case there will be only one wave function
with the wave vector k. In the second case there
will be several of them and they will transform

8 We mean by this that all symmetry elements can be
considered as products of two symmetry elements, the one
of which is a pure translation, the other a pure rotation or
reflection. This is the case in the most important space
groups.
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under the transformations of the group of k by
an irreducible representation of this group,
which we shall call the small representation.
These are the results of Seitz.

Hence the representations of the space group
must be characterized by two symbols. The
first gives the reduced wave vectors (or set of w)
which occur in the representation; the figure of
all these wave vectors forms a ‘‘star” with all
the rotational and reflection symmetries of the
lattice. Three such stars are given in Fig. 1 for

o, ¢/ 2 R Fn/g
C

a b
Fic. 1.
a two-dimensional quadratic lattice. The second
symbol characterizes the small representation,
which is an irreducible representation of the
group of one wave vector (the groups of all wave
vectors of a star are holomorphic). If the wave
vectors lie in general positions (Fig. 1a) their
group will contain the unit element only. In
this case the second symbol may be omitted.
It may be emphasized again that two wave
vectors must be considered identical, if the
corresponding set of w's is the same. Thus for
example, if the three k.x;+k,y;+k.2; are all
integer multiples of = (not necessarily of 27)
the wave vector k., k,, k. is identical with the
wave vector —k,, —k,, —k. and the inversion
(x——x, y——1y, z——23) always belongs to the
group of the wave vector.?

III.

We now consider an energy value E with a
certain representation D and the wave functions
Y1, **+, ¥ If we multiply one of these by
eilkeztryyteza) where kg, ky, k., are the components

9 It is in this connection that the time reversal is impor-
tant (cf. F. Hund, reference 1). If the crystal class does not
contain the inversion, &, ky, k, will still be carried over into
—k,, —ky, —k. by the ‘‘time reversal.”’ Since, as we shall
see, the above consideration determines the surface of the
B-Z, this will be fundamentally affected by the operation
of time reversal.
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of a very small vector, it will have the wave
vector k+x and belong to a new representation
D’. The set of new representations obtained in
such a way will be called the neighborhood of D.
It is clear that there will be near E, an E’ with a

representation D’. For if ¢, satisfies (1),
Yreitrastryyteza) = 4,/ satisfies

h? h% 0 0 a
( - ﬁ'ﬁA+ V) ¢/1/ +W(Kx’_v+ Ky—'—+ Kz—_) \bll

2m / m ox dy 9z

. %2
=(E+—<Kx+xf+u>)¢l'. 3)
2m

In this equation the second term is small, and
its negative value may be treated as a perturba-
tion. Performing the perturbation calculation,
we shall obtain a characteristic value E’ of (1)
which is near E and the wave function of which
will have the same translational symmetry as ¢/,
since both the original operator in (3), and the
perturbation

h% i) 5] ]
- ( K+ ky—+ Kz—)
m dax dy 9z

(3a)

have the whole translational symmetry of the
lattice.

This is all the general theory we need. If E
had a star of the general type, the star of E’
also will be of the general type and our result
merely states the well-known fact, that the
énergy is a continuous (and even differentiable)
function of the components of the wave vector.
The set of all energies and wave functions which
may be obtained from one single energy level
continuously by this operation, never touching a
point in which the star degenerates, is properly
defined as one Brillouin zone. The restriction to
such representations, the stars of which are of
the general type, is necessary for the definition
of a Brillouin zone, since, as we shall see, two
or more Brillouin zones may stick together for
degenerated stars (as those in Figs. 1b and 1c).

If we consider an energy value, the wave
vectors of which are left invariant by some of
the rotation or reflection operations, the situation
still will be left essentially unchanged, if no two
wave functions have the same reduced wave
vector (the same multipliers). If, however, two
or more (say s) wave functions have the same

wave vector, and we choose «,, «,, k. in such a
way that the new wave vector (k+x) has the
general position, there will be s orthogonal wave
functions, with the wave vector k+x and with
energies near E. Since for general wave vectors
it never happens that two wave functions with
the same wave vector belong to the same energy
value, we must conclude that they all belong to
different B-Z which are very close for small x
and that for the original energy value E these s
B-Z “stick together.”” The sticking together will,
therefore, always occur for such wave vectors
which are left invariant by some symmetry
operations.!?

We must investigate two more cases. First let
x be such a vector that k-« still has the group
of k. In this case, the small representation of E is
equivalent to the small representation of E’.
Otherwise the wave functions would have to
change abruptly even for a small change of k.
The sticking together will be the same along
symmetry elements.

In the second case, the group of k+x is only a
subgroup of k, but still contains more than the
identity. This case occurs, for instance, if we
pass from a symmetry axis to a symmetry plane
through this axis, or from the vector k=0 to a
symmetry axis. The small representations of E’
will be irreducible representations of the sub-
group, and if the small representation of E ‘is
not irreducible as representation of the group of
k+x, the B-Z which stuck together for k will be
partly separated for k+x. The small representa-
tions in these B-Z will be, for k+x, the irre-
ducible parts of the small representation of the
group of k.

The proposed characterization of a B-Z is
given, hence, by the small representations of the
groups of all wave vectors, which have a group
greater than unity. For wave vectors lying in
equivalent symmetry elements, the small repre-
sentations are equivalent, and for a symmetry
element which is a subgroup of another, the
small representation must be contained in the
small representation of the latter. Wherever
the small representation is s dimensional, we
have a sticking together of s B-Z, all of them
having this same small representation for the

10 Including the time reversal.
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symmetry element under consideration. Again,
it is important to remember that the group of
the wave vector for which

koxitkyitkzi=nmT 4)

holds for one 7, say 7=1,, contains all elements
which transform k in such a way, that
(kyxi+kyyi+k.2:;) /T remains an integer for 1=1,
and is unchanged for the two other i, since the
corresponding wave vectors are all the same.

The argument which shows that the small
representation will be the same all along a
symmetry element, breaks down for such points
in which two B-Z touch each other, if no such
touching is required by symmetry considerations.
In the case that the energy for a certain value of
k is the same in two B-Z, without this being the
result of the symmetry, we speak of an accidental
degeneracy.!* In points of accidental degeneracy,
the small representations of the two B-Z may
be interchanged, but the case of such an acci-
dental degeneracy is explicitly excluded from the
following considerations. One can see that it
does not occur for very large lattice constants,
though it may occur for the actual ones.

In the following sections, these results will be
applied to the three most important cubic
lattices, the simple, the face-centered, and the
body-centered cubic lattices. Since, for instance
all small representations of wave vectors in the
fourfold axes are the same, this small repre-
sentation will be called ‘‘the representation along
the fourfold axis’ and a similar notation will be
used for the other symmetry elements.

It has been pointed out by J. C. Slater! that
the energy as function of k should be considered
as a periodic, multivalued function, the periods
being the vectors of the reciprocal lattice. The
““discontinuities’’ then arise from considering for
some k one, for other k other branches of this
multivalued function. In our way of talking,
the periodicity is expressed by the fact that two
wave vectors differing by a vector r of the
reciprocal lattice, are considered identical. It is
convenient to single out from all sets of
“identical” vectors one (generally the shortest),
and not to consider the rest at all. The manifold

(for 1 = 1«1)

10 The case of an accidental degeneracy will be treated
in a paper by C. Herring, to appear shortly. We wish to
thank Mr. Herring for interesting discussions on this
subject.
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of these “reduced wave vectors’’ forms the inner
of the B-Z, their boundary in the k.k k. space
(where the discontinuities are assumed ordi-
narily) forms the surface of the B-Z.

The energy as function of k has, furthermore,
all the symmetry of the (reciprocal) lattice.
This is clear, since wave functions with all the k
of a star belong to the same representation, and
have the same energy, hence.

1V.

We want to consider the effect of the time
reversal, first. This transforms k into —k. Thus
—k is always in the star of k, even if there is no
inversion center present: the energy as function
of k is always equal for k and —k. Just as for
x-ray reflection, the inversion is always added to
the symmetry of the problem.!

For a triclinic lattice, for instance, this means
that the derivative of energy with respect to k
is zero in the middle of the faces, edges and at
the corner points of the B-Z, i.e., for

koxithyitkzi=nar (1=1,2,3). (5

One can see directly also, that the group of these
k contains the time reversal and the wave
functions are real, hence. Thus the average
value of the perturbation operator (3a) vanishes
for these wave functions and the energy change
goes with %

This cannot be claimed, however, for all the
surface of the B-Z, i.e., for points for which only
one of Eq. (5) is satisfied. The derivative of
energy with respect to k will not vanish in these
points and they will not really form the surface
of the Brillouin zone.!?

According to the program of section III, we
shall determine now ‘the small representations
and their connections in the different types of
B-Z for the simple cubic, body-centered, and
face-centered cubic lattice. We shall begin with
the simple cubic lattice, although no metal with
this structure is known.

11 Cf, G. Friedel, Comptes rendus 157, 1533 (1913). For
a more critical discussion of Friedel's rule, cf., however,
e.g., P. P, Ewald’s article in Handbuch der Physik, Vol.
23/2 (Berlin, 1933).

12t is not always true, thus, that the % for which
dE/dk=0, are those for which the Bragg conditions are

satisfied.
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'[/fz TasLE 1. Characters of small representations of T, R, H.
! .
: £ LRIE 3ce 6C 6C: 8Cs  J  3JCe 6JCi 6JC: 8JCs
' /I —_—
voF RS Lottt 111111
o/ r, |1 1 -1 —1 1 1 1 -1 -1 1
rie._ 8 . T (2 2 0 0 —1 2 2 0 0 —1
RSV 2 W3 -1 1 -1 0 3 -1 1 —1 0
& M W3 -1 -1 1 0 3 -1 —1 1 0
y ottt o1 11—t =1 =1 =1 —I
v I T R e S e S |
|2 2 0 0 —1 -2 —=2 0 0 1
I's (3 -1 1 -1 0 =3 1 =1 1 0
s (3 =1 =1 1 0 =3 1 1 —1 0
Fic. 2.

V.

Simple cubic lattice. Here the surface of the
B-Z is a cube as represented in Fig. 2, with the
cube edge 27/d. The inner symmetry elements
are: the center T, the threefold axis A, the fourfold
axis A, the twofold axis Z, the symmetry planes
AZ, ZA and AA. The simplest way to obtain the
group of a wave vector ending on the surface is
to draw in all equally long wave vectors which
are ‘“‘identical”’ with it. The group of the figure
constructed in this way is the group of the wave
vector. For thearbitrary vector of the surface r/d,
ky, k. for instance, the figure contains the
vector —w/d, ky, k., and the group of the wave
vector is, hence, the symmetry plane k..
Similarly, for the point T, there are four vectors
+m/d, £7/d, k., and the group contains the four-
fold axis k. and all the symmetry planes through
it. It is holomorphic with the group of the wave
vector ending at A which contains the four-
fold axis k, and the symmetry planes through
this. The group of S is holomorphic with that of
T ; that of Z contains the symmetry planes k&,
and kyk, and the rotation by = about k,. R has
the full cubic group like T'; M has the group of T
and, in addition, the symmetry plane k.k,.
X has the same symmetry.

The tables®® give the characters of the irre-
ducible representations for the groups of the
wave vectors designated in the upper left corner.
The corresponding representations will be the
“small representations’ characterizing the B-Z.
The upper right corner contains the group
elements. E is the identity, its character will be

13 The representations of most crystallographic groups
were given already by H. Bethe, loc. cit., reference 2.

All of them are given in E. Wigner, Gott. Nachr. (1930),
p- 133.

TaBLE I1. Characters for the small representations of A, T.

AT E Ca2 2Cy 2JCs2 2JCe
Ay 1 1 1 1 1
Ay |1 1 1 1 —1
AY |1 1 —1 1
AY [ 1 1 —1 —1
A5 |2 -2 0 0 0

the dimension of the representation. C; is the
threefold axis; Cs, the rotation by 4m/2 about
the fourfold axis; C.%, the rotation by = about
the same axis; and C, is the rotation about the
twofold axis; J is the inversion. JC; is the
product of J and Cy, etc. JCy and JC2 are the re-
flections in the symmetry planes perpendicular
to the twofold and fourfold axes, respectively.
The figures before the symbols of group elements
denote how many group elements of that kind
are present in the group. The lower left corner
gives the notation to be used to designate the
small representation in question; it is always
given for one of the wave vectors only, as, for
instance, for I' in Table I. The small representa-
tion of the wave vector R which has the same
character as TI'yy’ will be designated by R;¢/, etc.
The lower right corner contains the character of
the group element above it, for the representation
to the left.

In order to save space we have included in the

TaBLE 111. Characters for the small representations of A, F.

A F E 2C; 3JC:
Ay 1 1 1
Ag 1 1 -1
Az 2 —1 0
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TABLE IV. Characters for the small representations of Z, S.
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TaBLE VII. Compatibility relations between T' and A, A, 2.

z, S E Ca JCq JC2
ot 1 1 1 1
P2 1 1 —1 -
N 1 —1 —1 1
Z4 1 -1 1 -

tables some wave vectors (H and F) important
for the body-centered lattice only.

For the points dealt with so far, it was
sufficient to denote the group elements by the
symbols C2, Cs, etc., all the rotations about two-
fold axes being in the same class and having
the same character in all representations. But
for the point M, the rotation by = about the
fourfold axes k., k, is not equivalent to the rota-
tion about the fourfold axis, k., which is per-
pendicular to the wave vector. The latter will be
denoted by Cg2L. Although the groups of the
wave vectors ending at M and at X are holo-
morphic, the element in the second group which
corresponds to C,2L of the first is the rotation by
« about k., which is the axis parallel to the wave
vector T'X. It will be denoted by C/ZlI.

TABLE V. Characters of small representations of M, X.

M | E 2C¢ CerL 2CiL 2C: J

D 2JC  JCe21 2JCsL 2JC:
X | E 2Ce2a Ca21 2Ca1 2C J

2JCeL JC211 2JCHH1 2JC2

1

|

|
OO

[
[
|
(I
|

(|
OO e
|
|
OO

[

O D . e

Il

|
|

S
DO DO = b e s b e
DO DO b ek b okt et
| P
DO DO s s s e e
|
[
DO DD Pt =t bt e
O D

V4 E Cq? JCy? JCL

G, K, U L Co JCy? JC2

D E JCa JC21
Z) 1 1 1 1
Zs 1 1 1 —1
Zs 1 -1 1 1
Zs 1 -1 1 -1

This finishes the investigation of the symmetry
axes in Fig. 2, and there remain only the sym-
metry planes. A somewhat closer inspection will
show, however, that the small representations

I 12 T INEY Tos’

A Ay A1A, A11A5 Az,Aa
Ay Ay Ay AgAs AAs
Zl . 2:4 2124 222324 212223
r I I’ Ty T2
Ay Ay’ AAY JASTAYS JAvYavs
As Ay A3 A1A; A2Az
2y 23 2,23 212224

212324

TaBLE VIIL. Compatibility relations between M and =, Z, 1.

My M M3 My My Ay’ My My M; My
2 2 % Z4 Zy Z3 Ty Zy ZeZy iy
VAR AR Zy Z Zs Zy Zy  ZiZs ZaZs

T, T, Ty TV TV Ty T» T Ts Ty

TaBLE 1X. Compatibility relations between X and A, Z, S.

X X2 Xz X4 Xy X Xy Xy Xs Xy
Ay A A A A A A AL A As

Zy Zy Zi Zi Zo Zo Zz Zy ZiZy ZiZ
St S S S Se Ss S S 5S SiS

prevailing on the symmetry axes already de-
termine the representations for the symmetry
planes, i.e., they determine whether the wave
function will remain unchanged or assume the
negative value, if reflected in one of the sym-
metry planes.

A B-Z must be characterized by one each of
the following 10 symbols: T, A, A, 2, R, T, M,
S, X and Z. If there is an accidental degeneracy,
however, the representation may change on an
axis, etc. Not all the combinations of symbols
correspond to possible B-Z. The small repre-
sentation A on the fourfold axis must be con-
tained in the representation I' of the center,
if this is considered as a representation of the
group of A, and similar conditions exist between
all pairs of adjoining symmetry elements. Table
VII shows with which A, A, Z, a certain I’
can be combined in the symbol of a possible B-Z.
The compatibility relations between R and T,
A, S, are the same as those between I' and
A, A, 2. (Table VII.) These compatibility
relations reduce considerably the number of
possible types of B-Z. In addition to these com-
patibility relations, there are others originating
from the four sets of wave vectors characterized
by k.=0; k,=ky, ky=Fk.; k.=m/d. Every wave
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vector satisfying one of these equations, has a
group consisting of a symmetry plane, and the
corresponding wave function will belong either to
the symmetric, or to the antisymmetric repre-
sentation of this group. This representation must
be contained in the small representations of the
axes lying in this plane. Table X gives, under +,

TaBLE X. Compatibility relations on symmetry planes.

SYMMETRY PLANE + -
212 223
k.=0 A1AsAs AV AYAs
Z]Z:g Z2Z4
23 2924
ke=k, >k, AAy AsA;
]‘\ Tg’ T,f, T2 Tl ! T5
A]A3 A'ZAS
ky=k:<k: 5,85 AP\
AAY Ay Ao D;
SlSd SZS:!
ke=m/d ThT.Ts TVTYTs
Z]Z4 ZzZs

those representations along the axes, which are
compatible with the symmetric representation in
the plane, and under — those which are com-

patible with the antisymmetric representation. It

shows that, for instance, 2, is incompatible with
A]’, Ag/, Zz, Zq, Ao, Tz, Tll.

As an example, we may consider the three B-Z
which stick together at k,=%,=k.=0 having for
this wave vector the representation I'ss. These
three B-Z will be separated along the twofold
axis, having there the small representations X,
Zs, 24, respectively (Table VII). We may con-
sider the one with =,. This necessarily goes with
As along the fourfold axis (Tables VII and X),
and sticks together with one of the other zones
there. Along the threefold axis it may have one
of the two representations A, or A;. We shall
assume that it has A,. For R, we still have the
choice of Ry, Ri5’, Ry’ or Rys. We shall choose R,.
This requires, then, Sy and T, and hence Z,.
According to Table VIII, it will have M’ and
according to Table IX, X;'. Its whole symbol
Wlll be 1‘2522A5A2R15T254Z4M3’X51 and we see
that most small representations were uniquely
given by the compatibility tables and the
previous choices.

We believe that the above description of B-Z
for the simple cubic lattice is complete from the
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point of view of symmetry. We are well aware,
of course, that many of the types which are
possible geometrically will not be important
physically, since they have, for example, too
high energies. It appeared to us, however, that
for the sake of clarity a complete geometric
discussion should be given once for a simple
case.

The construction of the compatibility tables is
very easy. If one is interested, e.g., in the com-
patibilities between £ and M, one considers for
M the characters corresponding to elements
which are contained in 2. These elements are
E, Cy, JC2L, JC; (one must take JC2L, not
JCg2, since the latter are the symmetry planes
k.k., kyk. which do not occur in the group of Z).
The corresponding characters in Mj3, for instance,
are 2, 0, —2, 0. One sees that this is the sum of
the characters of £, and 23 and these are, conse-
quently, compatible with M;. Thus it will not
be necessary to give the compatibility relations
for the other lattices explicitly.

VI. Bopv-CENTERED CUBIC LATTICE

The shape of the surface of the B-Z is self-
evident in the simple cubic lattice but not in
the body-centered lattice. The identity periods
can be taken as three space diagonals, with
coordinates 1/2d, +1/2d, +1/2d. The shortest
vectors of the reciprocal lattice are the face
diagonals, with coordinates 0, &2x/d, +2=/d;
+27/d, 0, £2x/d; £27/d, 2= /d, 0. Since the
inner of the B-Z should contain only different
vectors k, the addition of a vector of the re-
ciprocal lattice to a k lying inside the B-Z must
lead to a vector in the outside. This is most
simply accomplished by choosing the rhombodo-
decahedron of Fig. 3 as the surface, in which
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opposite faces just differ by a vector of the re-
ciprocal lattice. The distance T'H is 27 /d."*

The symmetry elements in the inside of the
B-Z are the same as in the simple cubic lattice,
T, A, A, Z, and the compatibility relations
between these are also maintained. The point H
has, however, the full cubic symmetry, since the
vectors of the reciprocal lattice transfer it to
all the end points of the coordinate axes. The
point P is identical with three similar vertices,
forming a tetrahedron.

TaABLE X1. Characters for the small vepresentations of P.

P I 3Cs2 8Cs 6JCs 6JC2
Py 1 1 1 1 1
P> 1 1 1 —1 —1
P; 2 2 —1 0 0
Py 3 —1 0 —1 1
Py 3 —1 0 1 —1

TaBLE XII. Characters for the small representations of N.

N E Cq? Coll JCa
1 1 1
1 —1 1
—1 1 —1
1 1 —1 —1
1
1
1
1

JCall

|

H__M__HH
I
—_

1 -1
-1 —1
1 1
—1 1

>
=
e

The small representations for the other points
were already given in the previous tables. We
shall not give the compatibility relations be-
tween axes and points, since they are easily
obtained by the method outlined in the previous
section. It may be mentioned that the group of
the vectors ending in a general point of the
surface is the symmetry plane JC,. The following
relations are analogous to those of Table X.

TasLe XIII. Compatibility relations for symmetry planes.

SYMMETRY PLANE + —

k.=0 2124, A1dods, GGy 21Zs, AV AY A5, GoG

k;=ky>k, 312;, MiAs, D1Ds 2924, AgAs, DoDy
ky=k,<k: A1As, A1AY'As, FiFs A2As, AoAAs, FoFs
botki=2x DDy FiFy, GiGs D2Ds, FoFs, GiGa

14 The vectors k in the inside of the B-Z are transformed
under this choice again into vectors in the inside by every
symmetry element.

SMOLUCHOWSKI

AND WIGNER

Since the surface of the B-Z is a symmetry
plane, the derivative of the energy perpendicular
to this plane is zero on the surface.

VII. FACE-CENTERED CUBIC LATTICE

The B-Z of the face-centered cubic lattice have
a rather complicated structure. The reciprocal
lattice is the body-centered lattice, the shortest
vectors of which are the space diagonals with
components =+27/d, *2w/d, +£2n/d. If we
assume the inner of the B-Z to be bounded by
the octahedron with the 8 planes +x+y+z
=37/d, then no wave vectors of the inside will
differ by one such vector. Nevertheless, some of
them will be equivalent, differing by the sum
of two shortest vectors of the reciprocal lattice,
+47/d,0,0;0, £47/d,0;0,0, 47/d. In order to
exclude these, one must cut off the corners of
the octahedron by planes parallel to the coordi-
nate planes at the distance +2w/d from these.
The resulting figure is the well-known truncated
octahedron of Fig. 4. With this choice of the
surface of the B-Z, every wave vector of the
inside will go over into a wave vector of the in-
side by all the symmetry operations. This
requirement, however, which determines the
whole shape of the surface for the simple cubic
and body centered cases, fixes the surface here
only at the truncating planes, but not at the
octahedral planes. One could, for instance, bulge
out in all octahedral planes the part which is
shaded on one of the planes in Fig. 4 and bulge
in by an equal amount the unshaded regions.
The resulting surface would still satisfy all
requirements. The truncating planes, on the
other hand, cannot be deformed. If we pushed
out a point on the k,=2x/d plane, we would have
to push in the corresponding point on the
k.= —2r/d plane. After this, however, the re-
flection on the k,k, plane would carry over wave
vectors of the inside to the outside of the surface
of the B-Z.

The B-Z is always uniquely determined if there
is a symmetry plane perpendicular to the vector
r of the reciprocal lattice,!® which generates that
part of the surface. In this case the surface lies
at the distance 7/2 on both sides of the symmetry
plane. This was true for the vectors parallel to
the coordinate axes which generated the surface

15 Cf, Eq. (2a).
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for the simple cubic lattice, it was true for the
vectors parallel to the face diagonals in the body-
centered structure and it is true for ‘the vectors
generating the truncating planes in Fig. 4. The
situation for the octahedral plane of Fig. 4, how-
ever, is similar to that for the triclinic lattice and
will be shown to have similar consequences.

Although the surface of the B-Z is thus left
undetermined by general requirements, it is
certainly allowable to assume it to have the shape
of Fig. 4.

In the inside of the B-Z we have again the same
situation as for the simple cubic lattice with the
same compatibility relations holding between
the small representations of I' and the two-,
three- and fourfold axes. This also applies to the
points X, .S and Z on the cubic plane. The point
W is identical with three other points of the
surface, two of which are shown on the figure,
while one at the bottom is hidden. The small

TaBLE X1V. Characters of small representations of W.

w

W,
W[ !
We
W2 !
Ws

=]
o
o
Q

DO et et ot bt

L yo 2Cs 3C2 J 2JCs 3JC2
L, 1 1 1 1 1 1
L, 1 1 -1 1 1 —1
Ly 2 -1 0 2 —1 0
Ly 1 1 1 -1 —1 -1
Ly 1 1 —1 —1 —1 1
Ly 2 -1 0 -2 1 0

representations for the points K and U were
given in Table VI. L is identical with its antipode.
The points Q on the line LW cannot be moved in
or out. They belong to the surface, since they

are carried over into themselves (i.e., into the
“‘identical” point on the opposite face) by the
twofold axis bisecting the Z and —X axes.
The wave function of the wave vector ending at
Q will be either symmetric or antisymmetric
with respect to this rotation. In the former case
it is compatible with Li, L,’, L3, L’ on one side
and with WW;'W; on the other. If it is anti-
symmetric, it is compatible with Lo, Ly, Lj, Ly
and Wz, Wzl and Wa.

The group of the points on the lines LK, KW,
LU, UW contains only the symmetry plane on
which they lie, they have no additional symmetry
owing to their position on the surface. This is
natural, since the surface can be shifted away
from them. The Compatibility Table X holds for
ks=Fk,>k,between 2 and A, but there is nothing
to replace T, and T must be omitted also from
the last section of (k,= 7 /d) of this table. The rest
of the table remains valid, however, and should
be supplemented by the compatibilities just
given, owing to the symmetry of the point Q.

The surface of the B-Z at the octahedral
planes cannot be chosen in such a way that the
“identical’’ point k,—2x/d, ky—27/d, k.,—27/d
to every point of the surface could be reached by
a symmetry operation also. This has the conse-
quence that the derivative of the energy per-
pendicular to the somewhat arbitrarily chosen
plane octahedral face will only vanish on the
diagonals (LW) corresponding to the separating
lines between shaded and unshaded regions. On
the other hand, it will have the consequence also
that the energy for k,=x/d4u, ky=m/d—pu—v,
k.=w/d+v will be equal to the energy for
—7/d+u, —w/d—u—v, —x/d+v and, because
of the twofold axis, also equal to the energy for
m/d—v, 7/d+u+v, v/d—pu. The energy as func-
tion of k will be symmetric with respect to the
line LW on the surface and, hence, will have
on the octahedral surface, a sixfold rotational
symmetry.



