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The experimental work of Dunning has shown that for
fast neutrons the capture cross sections of heavy nuclei
are small compared to their cross sections for elastic
scattering. While it cannot be concluded from this that
polarization effects (i.e., contributions to the elastic scatter-
ing from quasi-stationary states of the nucleus-neutron
system) are negligible, it seemed worth while to investigate
the results of a treatment neglecting polarization. We
use the effective potential for a neutron in the 6eld of a
heavy nucleus developed by Van Vleck. The values of the
constants of the inter-particle interactions are adjusted
slightly f'rom those found by Feenberg from binding
energy calculations. The problem reduces to that of a
neutron in the fIeld of a potential we11 whose depth is a
slowly varying function of the neutron velocity. The scat-
tering problem is solved by the method of partial cross

sections. Anomalous resonances due to the attractive po-
tential are found in the higher partial cross sections. Al-
though these resonances have anomalously high peaks it is
shown that on account of their sharpness they contribute
little to the cross section for a neutron beam having a
broad velocity distribution. The cross section is found to
vary markedly with both velocity and atomic number.
Even for a broad velocity distribution corresponding to
Dunning's experimental source oscillations remain in the
cross section as a function of atomic number. However, the
existing experimental points fit the curve within the experi-
mental error. That the experimental results are in no case
much larger than those given by the theory would perhaps
indicate that contributions due to polarization eA'ects
are small. Possible experimental work to test the theory is
mentioned.

INTRoDUcnoN

XPERIMENTAL work on the scattering
and absorption of fast neutrons has been

carried out by several investigators. ' ' ' Perhaps
the most comprehensive investigation of the
scattering of fast neutrons has been made by
J. R. Dunning and his eo-workers. Using as a
source the neutrons emitted by the nuclear reac-
tion between beryllium and alpha-particles from
radon and its equilibrium products, Dunning has
obtained values for. the collision cross section of
several heavy nuclei. He has shown further that
even for nuclei known experimentally to capture
fast neutrons, as evidenced by the production of
gamma-rays or of arti6cia1 radioactivity, the
capture cross section is of the order of less than
ten percent of the cross section for elastic scatter-
ing. The experimental collision cross sections ht
a Z& law within the experimental error, Z being
the atomic number.

It is to be emphasized that we are here inter-
ested in fast neutrons, of kinetic energy greater
than one-half million electron volts. The experi-
mental results for slow neutrons, ' 4 or neutrons

' Chadwick, Proc. Roy. Soc. A136, 702 (1932}„A142,1
(1933).

'Curie-Joliot, J. de phys. et rad, 4, 21 (1933); 4, 278
(1933}.' Dunning, Phys, Rev ..45, 586 (1934);Dunning, Pegram,
Fink, and Mitchell, Phys. Rev. 48, 265 (1935).

4 Amaldi, O'Agostino, Fermi, Pontecorvo, Rasetti and
Segre, Proc. Roy. Soc. A149, 522 (1935).
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having approximately thermal velocities, are
much more complicated. For these slow neutrons
abnormally large collision cross sections are found
for certain nuclei. In these cases the cross section
for elastic scattering is negligible in comparison
with that for neutron capture.

Bohr' has shown since the inception of this
work that these results can be explained only by
consideration of the numerous and closely spaced
energy levels of the nucleus. The chance of the
neutron giving up some of its kinetic energy to
other degrees of freedom of the many-particle
system is very good; robbed of most of its veloc-
ity, the neutron stays long enough in the nucleus
to make the probability of capture large. Breit
and signer' have independently dealt with the
considerations discussed by Bohr in more explicit
mathematical detail. They consider the effect of a
single quasi-stationary level of the combined
system of neutron and nucleus which has an
energy in the thermal region, and show that it is
reasonable that the breadth of the level due to
radiation damping is large in comparison to that
due to re-emission of a neutron. The ratio of the
absorption to the extra scattering due to the level
is correspondingly large. Of course the e6ect is

only important near resonance, i.e. , when the

' N. Bohr, Nature 13', 344 (1936).
6 Breit and signer, Phys. Rev. 49, 519 (1936).
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energy of the system is near that of the quasi-
stationary level.

According to Bohr the nucleus plus neutron
system has such quasi-stationary levels, more
closely spaced than those at thermal energies, in
the energy range corresponding to fast neutrons.
Here the absorption due to such levels may be
small in comparison to the scattering, and iti s
impossible to conclude from the experimental
absence of large absorption that the extra scatter-
ing due to the existence of these levels, or, in
other language, to polarization effects, may be
neglected.

In the light of the above remarks the simple
treatment of the problem dealt with in this paper
is not to be taken too seriously. The work was
well begun, how'ever, before Bohr's paper made
clear the possibility of large polarization effects,
and it was thought of some interest to complete it.
At the present stage of nuclear theory a more
refined treatment appears impractical. It should
be said that the vices of our treatment are in-

herent in the use of the statistical model. Its re-
sults may be worse than those for binding energy
calculations with the statistical model, but only
because scattering calculations are generally
more sensitive to approximations than energy
calculations.

EXTENSION OF VAN VLECK S TREATMENT OF THE

INTERACTION BETWEEN A NEUTRON

AND A HEAVY NUCLEUS

J.H. Van Vleckr has considered theinteraction
of a neutron and a heavy nucleus on the basis of
a statistical treatment of the particles of the
nucleus. He employs the types of inter-particle
interaction found necessary to the theory of the
binding energy of nuclei. Binding energy con-
siderations lead to neutron-proton interaction of
the Msjoranas (exchange) type. The Wigner'
(ordinary) potential makes the binding energy of
heavy nuclei increase too rapidly with atomic
weight. Similarly neutron-neutron interaction of
the spin coupling type7 is required; in other
language than that of the vector model this cor-
responds to one part Wigner to two parts Majo-
rana interaction. "

' Van Vleck, Phys. Rev. 48, 367 (1935).
E. Majorana, Zeits. f. Physik 82, 137 (1933).
Wigner, Phys. Rev. 43, 252 (1933).
Feenberg and Knipp, Phys. Rev. 48, 906 (1935).

The complete Hamiltonian is thus of the form

where IIO is the nuclear Hamiltonian, M is the
mass of the neutron (or more properly the re-
duced mass of neutron and nucleus if the origin
of coordinates is chosen as the center of gravity
of the nucleus), J(r„~,)P~(m, p;) is the Majorana
interaction between the neutron and the jth
nuclear proton, and X(r„„,.)s s„,is the inter-
action between the neutron and the ith nuclear
neutron. P~(n, P;) is the Majorana exchange
operator permuting the coordinates of the neu-
tron and the jth proton, s„,is the vector spin
matrix for the ith nuclear neutron, Z is the
atomic number, and N the number of neutrons
in the nucleus. IIO of course contains terms similar
to the last two in Eq. (1), so that the Hamil-
tonian is symmetric in the neutrons.

We shall neglect nuclear neutrons not in closed
shells, so tha, t the last term of Eq. (1) will not
contribute directly to a self-consistent field
effective potential. However, when exchange is
taken into account it does enter. From the Dirac
vector model, " which shows that the exchange
effect for identical particles a and b is formally
equivalent to insertion of a spin coupling factor
—(~~)(1+4s, s~), the exchange potential due to
neutron exchange is here

—P(1/2)P~(n, e;)(1+4s„s„,.)X(r„„,.)s„s„,,
i=1

or
N

—Q(3/8 —(1/2) s„s„,)X(r„„,)PM(n. , n, ), .

in virtue of the matrix identity 16(s, s~)'
+88 sq —3 =0.Thus the Hartree-Fock equation
satisfied by an approximate one-particle wave
function for the neutron is

—(3/8)2
I

k'*(x-.)&(r-.)
i=1 a J

)&p;(x„)p(x„„)dr„„=WP(x„),
» Cf. Van Vleck, Phys. Rev. 45, 405 (1934).
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where q;(x), P,(x) are one-particle wave functions
for the jth proton and ith nuclear neutron re-
spectively, and W is the kinetic energy of the
free neutron.

We need an approximate expression for

2 q'i (xm)q'i(x )
i=&

the Dirac density matrix" for the protons irj

the nucleus. This may be obtained by suppos-
ing that phase space is as full as permitted by
the Pauli principle within the volume r &R, P &P,
and empty elsewhere. Necessarily (4m/3)'P'R'
=Zk'/2. We assume further that the proton
wave functions are adequately represented locally
by plane waves, that is, that the local momentum
does not vary too rapidly with position within
the nucleus, and that all momenta p&P are
equally probable. Then

Z

P q;*(x„)q;(x„)='(sin k„r„„

='0,

kmrem cos kmrnm)/m fnm

(3)
I x„+x„I/2(R;
I
x„+x„I/2)R,

where km
——27rI'/k = (9m Z/4R') i.

A similar expression holds for

P P,*(x„„)P;(x.),
i=1

the Dirac density matrix for the nuclear neutrons,
with km replaced by k„=(97rN/4R')'. It is con-
venient to assume R the same for both expres-
sions; since N is roughly equal to Z and k„in-
volves N in a low power a further simplification
may be attained by replacing k„by k„.With

-'-' Dirac, Proc. Camb. Phil. Soc. 20, 376 (1930).

z
q;*(x„)q;(x„)='(2/k') ~f ~

j=l a)

exp I
(2m-i/k)(x„—x„)pgdp,

Ix„+x„I/2&R;
~ 0

Ix.+x.I/»R
the integration being over a sphere of radius P.
This gives

these simplifications our result is what we would
have obtained had we considered only neutron-
proton interaction with a J(r) equal to J(r)
—3N(r)/8; Eq. (2) becomes

p„'P(x„)+O'P(x„)= (8m'M/k') fff [J(r')
—(3/8)N(r')$I (sin k„r' k,r'—cos k„r')/vr'r"$

Xf(x +x')dr', r„&R; =0, r„)R, (4)

where we have written k2=8m2MW/k'. In ob-
taining Eq. (4) we have replaced the conditions
on Eq. (3) by the condition that the Dirac
density is zero when the neutron is outside the
nucleus and has the given value inside, a proce-
dure justified by the small range of the neutron-
proton and neutron-neutron interactions in com-
parison with R. Consideration of edge e8ects
would prove a useless refinement in view of the
fact that we have neglected them in obtaining
Eq (3).

We proceed to the problem of solving Eq. (4)
for r„&R.It is of the type

q'u(x)+k'u(x) =ffff(r')n(x+x')dr'.

Now this apparently troublesome integro-differ-
ential equation may be reduced to an ordinary
homogeneous differential equation, as Feenberg"
has very kindly shown. Namely, if we try a plane
wave solution, I=exp zk' x, we find it a solution
provided

k"+k'= fJ—ff(r') exp fk' x'dr'.

Now on account of the spherical symmetry of
f(r') the integral is independent of the direction of
the vector k'. Since any solution of 7'u+k"I =0
can be constructed from plane wave solutions
(having of course the same magnitude of k'), this
solution is also a solution of the integro-differen-
tial equation. Thus we may solve Eq. (4) by
solving

q'P+0" P =0, r (R;
q'P+O'P =0, r )R,

with

k" = k2 —(8m 2M/k2) JJ'J'(J(r) —3N(r)/8)
X L(sin kmr k„rcos k„r)/m'r' ]— (6)

Xexp ik'. xd7..
"Private communication to J. H. Van Vleck. Van Vleck

had previously obtained the result for an s wave function by
explicit calcu)@tion, which we extended t;g p and d func-
tions.
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The problem is thus reduced to that of a neutron
in the 6eld of a potential well, the depth of the
well being a function of the velocity of the neu-

tron on account of the appearance of k' in the
integral in Eq. (6).

Feenberg" has succeeded in 6tting the ob-
served binding energies of light nuclei by taking
J(r) and N(r) of the same functional form,
J(r) =A exp ( n—r'), N(r) =8 exp (—nr'). Inte-
gration of Eq. (6) with these gives

troos are not fast in the sense in which one
speaks of fast electrons in discussing their scat-
tering by atoms. The Borli approximation, " so
useful in many scattering problems, is inappli-
cable here. The problem may be solved in terms
of known functions by the method of partial
cross sections, which though tedious in its com-
putational application leads in our case to reson-
ances no simpler treatment could well be expected
to fit.

k" = k' —(8~'M/k') (A —38/8) [E(w+) —E(w )

+ (4n/mk")'(exp (—w+') —exp (—w ')) j,
(7)

w~ = (k'ak„)/2a'*,

B(m) = (2/ )f e'x*P ( —x')dx.
0

Calculation with (7) shows that the potential well

becomes gradually shallower as the neutron
velocity is increased, as would be expected from
the nature of exchange forces.

Before considering the scattering problem it
will be well to examine the numerical magnitudes
involved. Feenberg" gives as values of A, 8, and
o, best 6tting the binding energies of light nuclei

A = —744r4c' 38/4 = 26mc',
' = 2.17 ~ ]0 '3 cm.

We assume the Gamow value R= 7.8 10 "cm
for Pb and that R is proportional to Z'. The latter
assumption has an extremely important eRect;
namely, since Z and R enter the expression for k'

only in k„=(9~Z/4R') ' the depth of the well is inde-

pendent of Z, in line with the fact that the bind-

ing energy per particle is approximately constant
for heavy nuclei. (We neglect the slight variation
of reduced mass with Z.) Now from &=1.670

10 '4 g we find k =0.220 10" (W(MEV))' cm '

Also k„=1.069 10' cm ' With these values k'

has the value 1.060 10" cm ' for k=p. We see
that even for W as high as 7 MEV (million elec-
tron volts) k is considerably less than k', that is,
the depth of the potential well is very large (of
the order of 24 MEV) compared to the kinetic
energy of the neutron. Since 7 MEV is about the
upper limit of kinetic energy for the fast neu-

&rons from a beryllium-radon source, these neu-

THE METHQD oF PARTIAL CRoss SEcTIQNs

7'P+ (k' —U(r) ) (k =0. (9)

If U(r) vanishes not less rapidly than 1/r' for
large r and behaves no worse than 1/r at the
origin f((r) satisfying the boundary condition at
the origin exists and has the asymptotic form

(1/kr) sin (kr l7rl2+q4) for —large r. The plane
wave exp (iks) =exp (ikr cos 8) is an asymptotic
solution of Eq. (9) and has the asymptotic
expansion

exp (ikr cos 0)

=' (1/kr) P(i) '(2l+1) sin (kr l7r/2)P4(cos 0)—
L=O

for large r. We write therefore

"See, e.g. , Mott and Massey, The Theory of Atomic
CoLlisions, Chapter VII.

"Cf. Mott and Massey, reference 14, Chapter II,

The method of partial cross sections" depends
on the fact that the wave equation for the motion
of a particle in a central field is separable in polar
coordinates, possessing particular solutions which
are products of functions of the radius and spher-
ical harmonics, in which more complicated solu-
tions may conveniently be expanded. We wish to
express a function representing an incoming
monochromatic plane wave plus an outgoing

. radial wave, a reasonable idealization of the
usual experimental arrangement for the study of
scattering, in terms of these particular so1utions.
On account of the axial symmetry we shall need
only the particular solutions of the form f((r)P(
(cos 0). Our wave equation is of the form



CHARLES H. FAY

exp (ikr cos 8)+f(8) exp (ikr)/r

=' (1/kr) P (i) '(21+1) sin (kr l7r/—2)Pi(cos 0)
L=O

+QAi(21+1)Pi(cos 0) exp (ikr)/kr (10)
L=-0

=(1/kr)+Bi(21+1) sin (kr —fir/2+pi)Pi(cos 0)
L=O.

Equating the coe%cients of exp (ikr) and of
exp ( ikr) —gives

so that

A i= exp (2ipi) —1,

f(8) = (1/k)P(2l+1)(exp (2ipi) —1)Pi(cos 0). (11)
L=O

From (11}we have

I(e) = lf(0) I'=(1/O')2 2 (»+1)(21'+1)
L=O L'=O (12)

Xsin pi sin pr cos (pi —
q i )Pi(cos 0)Pi (cos 0),

the scattered current per unit solid angle when the
incoming wave is normalized to unit current
density. It is seen to be determined by the pL's,

the so-called phase shifts of the radial functions.
The total cross section Q is obtained by inte-

grating I(8) over all directions, and is

Physically Qi may be regarded as the partial
cross section due to particles of angular momen-
tum about (1+-', )k/27r. On this basis one would
expect Qi to be imports. nt only when the classical
distance of closest approach for particles of the
corresponding angular momentum is such that
the particle classically traverses regions where

U(r) is appreciable. This is not quite true, how-

ever; in the case of an attractive potential, such
as we must consider, there may be three classical
turning points (radii), with virtual states similar
to those met with in the theory of radioactive
decay and corresponding sharp high resonances
which we may refer to as anomalous for want of a
better term. These anomalous resonances compli-
cate our problem, but on account of their sharp-
ness contribute little to the cross section for a
neutron beam having a broad distribution of
velocities.

SoLUTIoN oF PRoBLEM oF ScATTERING BY A

PQTENTIAL WELL

We now proceed to obtain an expression for
the phase shifts of the radial solutions of (5).
Inside the well the /th radial function is

fi(r) =&ir 'Jr+i(k'r);

outside we have

fi(r) =c,r i[cos &piJi+;(kr)

+(—1)' sin rriiJ i;(kr) j.

Q = P Qi ——(4s-/k') P (2l+1) sin' p, (13)
L=O L=O

From the continuity of fi(r) and of its first deriva-
tive at r=R we find

O' J'i~, (k'R) Ji+;(kR) kJ' ~, (OiR) Ji+—,(k'R)
tan pi ———( —1)'

O'J'&p;(O' R)J i i(kR) —kJ' i i(kR) Ji+i(k'R)
(14)

This may be reduced to a more convenient form by eliminating the derivatives by means of the
recurrence formulas satisfied by the Bessel functions, with the final result

Ji i(kR) Ji~3r2(k R) Ji+grm(OR) Ji i(k R)
tan pL

——

( —1) 'LJ i+i(kR) Ji+gg(k'R) —J i arm(OR) Ji i(k'R)]
(15)

a formula convenient for computation. From
Eqs. (13}and (15) it is evident that here Q/R' is
a function of but two parameters OR and O' R.
We have computed tables for the evaluation of
phase shifts and Q/R' for a range of values of

these parameters sufficient to cover the values
met with in our problem. These tables will be
loaned to anyone who desires to use them.

We wish to make an estimate of the area under
an anomalous resonance peak of a Qi/R' versus
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kR curve (we do not need to consider the manner
of variation of k'R with kR, assuming it constant
over the small range involved); this we may do
by using the first term of the power series expan-
sions for J~+;(kR) and J &;(kR) in Eq. '

(15),
since kR is small in comparison to l for anomalous
resonance. It can be shown that

tan q ( ——'(fR)"+'/[(2l+1)(1.3 5 (2l —3))'
X ((f%)'—(kR)')g, (16)

where f% is the value of kR for resonance. Thus
for tan y~= +1, the points at which the curve has
half its peak value,

(kR)' =' (fR)'~ (f%)"+'/[(2l+1)
X(1 3 5 (2l —3))'7,

and the peak breadth at half value is

h(kR) ='(f%)"/[(21+1)(1 3 5 (2l —3))'],
l~1.

Since the curve is like a sin' curve the area under
it is approximately this half value breadth times
the peak height, or

(Q(/R') . t1(kR)
='4v(f%)" '/[1 3 5 (2l —3)]' (17)

a result which should be reasonably accurate for
f% small in comparison with l. We see that in
spite of the increase of peak height with increas-
ing anomaly (decreasing fQ) the breadth de-
creases more rapidly, so that the area under the
peak, that is, the effective contribution to the
cross section for a broad distribution of velocities,
decreases. It is evident that experimental detec-

tion of these anomalous resonances will require a
source of neutrons of quite homogeneous velocity.

RESULTS

It was found that the best fit with the ex-
perimental data was obtained by increasing
~A —3B/8~ of Eq. (8) by five percent; a suitable
adjustment in R would have served about as well.
k' is raised from 1.060 10' cm to 1.074 10'3

cm ' for &=0, or less than two percent, by this
change.

Behavior of cross section uritk velocity Fig. .
illustrates the variation of cross section with
neutron velocity for several elements. Although
the constants are such for these elements that
no highly anomalous peaks appear, the curves do
show important resonances. The cross section
varies so much with velocity that the effect ought
to be experimentally detectable by the use of
some other source than beryllium-radon, having
a sufficiently different velocity distribution to
lead to a measurably different cross section. It is
hoped that such work will soon be undertaken by
those having the necessary facilities. Of course a
homogeneous source would be ideal, but its
experimental realization involves difficulties not
readily surmounted. It is possible that the neu-
tron beam from beryllium bombarded with
deuterons or from deuterium bombarded with
deuterons may prove sufficiently homogeneous to
allow the detection of narrow resonances.

Variation of cross section witk atomic number

Fig. 2 indicates the behavior of the cross section
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as a function of atomic number for neutron ener-

gies of 1, 3, and 6 MEV. Here of course anomalous
resonances appear. The partial cross sections
giving rise to the more prominent resonances are
indicated, as are the heights of those peaks lying
off the scale.

The most promising sources of homogeneous
neutron beams give neutrons of kinetic energy
around 2 MEV. Fig. 3 shows cross section as a
function of atomic number for 1.86 MEV and
for 2.39 MEV neutrons. It indicates what is to be
expected on the basis of this theory for experi-
mentally obtainable sources of homogeneous
neutron beams, such as deuterium bombarded by
deuterons.

It is evident from Figs. 2 and 3 that the cross
section does not even begin to approximate a Z&

law for any single value of neutron velocity. It
would be desirable to attempt to locate some of
the more anomalous peaks with a highly homo-

geneous neutron beam, as from their relative
locations one could infer much concerning the
importance of edge effects. Consideration of these
in the theory would not change the nature of the
resonances, but would alter their relative posi-
tions.

Results for Dunning's exPerimental velocity

dhstribgtion. Dunning, by measuring the ranges
of protons projected by neutrons from his source,
has given us a fair idea of the velocity distribution
of berylliium-radon neutrons. He suggests" a
"I am indebted to Professor Dunning for an interesting

conversation on this point.

distribution of the general nature shown in
Fig. 4. With this distribution we find a behavior
of cross section with atomic number shown by
Fig. 5. It is seen that the broader resonances indi-
cated in Figs. 2 and 3 persist in the averaging
process. The peak around Z =34 can be identified
with resonance in the first partial cross section.
The low at Z=45 is near the vanishing of the
first partial cross section. Resonances in the first
and second partial cross sections give the peak
at Z=60. On the high velocity end the fourth
partial cross section contributes somewhat to the
peak at Z =34 and the fifth to the peak at Z = 60,

The crosses on Fig. 5 indicate Dunning's ex-
perimental results for Cu, Zn, Sn, I, W, Hg, and
Pb, the only elements in the range given for
which he has made measurements with fast
neutrons. Except fear Cu, the agreement is within
the possible experimental error, which he esti-
mates to be about ten percent. However, his
relative values are perhaps better than this, so
that we are disappointed not to find the decline
from Hg to Pb indicated by. his results. As may
be seen from the 6 MEV curve of Fig. 2, however,
the rise we get comes from the high energy end of
the distribution, and changes in the assumed
distribution curve might reduce or eliminate the
discrepancy. We cannot expect good agreement
at low Z, so that the bad agreement for Cu should
not be taken too seriously. It is unfortunate that
Dunning has measured cross sections for slow
neutrons for many elements lying at the interest-
ing portions of our curve without investigating
their cross sections for fast neutrons.

Comparison with constant depth wel/. It is of
some interest to inquire how the scattering by
the well of depth a function of the velocity com-

Fio. 4.
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pares with a constant depth potential well. The
essential difference between the two lies in the
fact that k' varies more slowly with k for our
well than for the constant depth well. This has
the effect of making the cross section vary more
slowly with velocity; resonances are broader for
the well of varying depth. For this reason the
results given by the constant depth well for our
velocity distribution will show less oscillation
with atomic number than our curve. At present
there is no experimentaJ reason for choosing one
as preferable to the other, as the experimental
points can be fitted equally well with the constant
depth hole.

Importance of small angle scattering The experi. -

mental work of Dunning does not measure scat-
tering through angles of less than about 7'. The
question suggested itself that possibly the theory
might give such a large small angle scattering,
particularly near resonances in the higher partial
cross sections, that it would be necessary to take
this into account in making comparisons with

the experimental results. Calculation in a special
case revealed that while the small angle scatter-
ing was of the order of four times the average,
the contribution to the total cross section could
be neglected on account of the small solid angle
of the 7' cone, about 0.3 percent of the total solid

angle.
Xatttre of polarization corrections The .experi-

mental cross sections for fast neutron scattering
are in no case much larger than those given by
our theory. We may be justified in concluding
from this that polarization effects are small.
Contributions to the cross section from polariza-
tion may be expected simply to add to the total
cross section, although it is possible that inter-
ference (nonorthogonality) is important.

It is possible to see in a general way the effect
of quasi-stationary levels of the nucleus-neutron
system. We should expect sharp resonances in

the cross section corresponding to these levels,
so that the behavior of the cross section as a
function of velocity or as a function of atomic
number for a homogeneous beam would be con-

siderably more compjicated. On the other hand,
it is possible that the cross section as a function
of atomic number for a broad velocity distribu-
tion might vary more smoothly than our result
indicates, on account of the great number of
resonances to be averaged over. In any event we

believe that further experimental work on fast
neutron scattering, a field somewhat neglected

. since the discovery of the exciting properties of
slow neutrons, should yield results both interest-

ing and important.
In conclusion I wish to thank Professor Van

Vleck for his helpful interest in the problem.


