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The Optical Properties of Nonpolar Liquids
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A theory of the refraction, Kerr effect and light scattering
for liquids with nonpolar axially symmetric molecules is
developed. The molecules are assumed to possess a limited
freedom of rotation. This assumption alone does not alter
the classical equations. It is necessary to consider the
quasi-crystalline grouping of neighboring molecules which
produces an anisotropic polarization field. The anisotropy
of the Lorentz forces is calculated by combining the clas-
sical cavity method with Ewald's lattice theory. It is
shown that the procedure of Raman and Krishnan is not
justified. With a low potential barrier the quasi-crystalline
grouping gives an increase of the refraction, Kerr effect,
depolarization and intensity of the Rayleigh scattered
light. This is true also for an arbitrarily high potential
barrier, provided the anisotropy of the Lorentz force is
sufficiently large. These results agree with the observed
increase of the refraction in compressed gases and in
some solids, and with the observed increase of the de-
polarization in compressed gases and in liquids near the
critical temperature. The observations in liquids are ex-

plained by considering a moderate anisotropy of the
Lorentz force and a potential barrier of finite height. In
this case the molar refraction is slightly smaller than that of
the ideal gas. No large deviations from the Lorentz-
Lorenz equation can be expected even if the anisotropy is
considerable. The refraction changes with pressure and
temperature and its dispersion differs from that of the gas.
The depolarization and the intensity of the scattered light
are considerably smaller than, and the Kerr constant is
only a fraction of, the values derived from the classical
equation. The classical relations between depolarization
and intensity and between Kerr constant and depolariza-
tion are only approximate. The theory is applied to benzene.
It is assumed that the molecules have the same polariza-
bilities in the liquid and gaseous state. All observations
can be explained by assuming a potential barrier of about
8.8 kT and an anisotropy of the Lorentz force which is in

good accordance with the results of the x-ray analysis of the
liquid structure.

T is a well-established fact that the classical
- - theories of refraction, light scattering and the
electro-optical Kerr effect fail when applied to
liquids. In liquids the molecules appear to have a
slightly decreased polarizability and a much .

smaller optical anisotropy than in the gas. Since
for most substances the absorption-spectrum is
essentially the same in the gaseous, liquid and
solid phase, these changes cannot be due to a
change of the molecular structure. They must be
connected with the fact that in liquids the mole-
cules cannot rotate and translate as freely as in a
gas. In a qualitative way the apparent decrease
of the optical anisotropy can be understood by
considering the anisotropic Lorentz force. Raman
and Krishnan' have given a theory of this effect,
but Stuart. and Volkmann' have criticized their
assumptions and we shall point out the inade-
quacies of their arguments.

Recent work has shown that in a liquid the
positions and orientations of the molecules are
not random. The structure of a liquid can be de-
scribed by considering an arbitrarily chosen

' C. V. Raman and K. S, Krishnan, Proc. Roy. Soc. A11V,
589 (1928); Phil. Mag. 5, 498 (1928).

~ H. A. Stuart and H. Volkmann, Zeits. f. Physik 83, 461
(1933).

molecule. Due to the dense packing and the
intramolecular forces the nearest neighboring
molecules tend to assume definite preferred posi-
tions with respect to the molecule considered.
They form a quasi-crystalline or cybotactic
group. For anisotropic molecules these groups
are anisotropic. Hence the neighboring molecules
exert forces on the central molecule which pre-
vent its free rotation. Quasi-crystalline grouping
and hindered rotation are closely interrelated,
but the calculation is simplified by considering.
their effects separately.

THE INFLUENCE OF HINDERED ROTATION

We consider a molecule with axial symmetry.
bi, b2= b3 are its polarizabilities. If the molecule is
polar its permanent moment p, is parallel to the
axis of symmetry. Following the method of
Debye' we can assume that the axis of each mole-
cule has at every instant a definite preferred
direction. The energy U(O) is required to deRect
the axis by an angle 0 from its preferred position.
For nonpolar symmetric molecules, e.g. , CO&,

C6H6, the potential hill is symmetric with respect
to two minima at 0~=0 and 0~=+. For more

3 P. Debye, Physik. Zeits. 30, 100, 193 (1935).
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FIG. 1. The functions g2(Up/kT) and g4(Up/kT) for a sym-
metric potential barrier U= Up(1 —cos' 0).

g (U/kT) =
exp ( —V/kT) cos" 0 sin OdO

e P ——(2)

exp ( —V/kT) sin OdO

If V= Uo(1 —cos 0), g„can be expressed in terms
of Langevin's function L(x) = cotgh x —1/x,
gy=L(UO/kT); g2

——1 —2L(VO/kT)kT/V, . For a
symmetric potential hill g&„+&

——0. The simplest
example of a symmetric potential barrier is
V = Uo(1 —cos' 0~) which gives

t',
g2=

~
2x ' exp x/

I

X2

exp t'dt
~

——',x ",

x= Vo/kT, and g4 ——g2
—(3g2 —1)/2x.

The latter two functions are plotted in Fig. 1. g2

has the limiting values -', for free rotation and 1

for no rotation. g4 varies between 0.2 and 1.
In the classical theory it is assumed that the

field acting on any molecule is parallel to the ap-

complex molecules and probably for most polar
molecules 0~=0 gives the only minimum. Using
classical statistics one finds the average polariza-
bilities P of the molecule. If the field is acting
parallel to the preferred direction

pg
——by+ (by b2) g2—+ (g2 g, )tJ, '/k T —(1)

and for a field normal to the preferred direction

J32 = P3 =kL(b~+ b~) —(b~ —b2) g~

+ (1 —g,)p'/k T$. (1')

Here we have introduced a set of functions

plied field E and has the value K+4m I/3, where I
is the polarization. Since all angles between the
field and the preferred directions occur with equal
probability the average molar polarization P can
be calculated in the usual way, giving

I'= (c —1)cV/(&+2) p= (4x/3)A-', (Pg+2P2)
= (4m/9)A [(by+ 2bg) + (1 gP) p'—/k T]

Hence with the classical assumption the molar
refraction R = (4m./9)A (b&+2b2) will not be
changed whatever the form of the potential
barrier may be. Furthermore, if the potential hill
is symmetric, the dipole-contribution also will not
be altered. Hindered rotation reduces the dipole
term only if U(0) is asymmetric. We shall show
below that analogous conclusions hold also for
the Kerr constant and the scattering of light.

Experiments, however, show that neither polar
nor nonpolar liquids satisfy the Lorentz-Lorenz
equation. According to Stuart and Volkmann' the
differences between the theoretical and the
measured values of the Kerr constant and the
depolarization are equally large for either type of
molecule. Hence Debye's theory of hindered rota-
tion, while it may explain the dielectric constant
and the Kerr effect of some special polar liquids,
is not sufficient to account for the optical prop-
erties of most liquids.

Our further considerations are confined to non-
polar liquids. For these the classical assumption
I =E+47rI/3 leads always to the Lorentz-
Lorenz equation. Hence it is necessary to abandon
this assumption and replace the isotropic by an
anisotropic Lorentz force.

TELE ANIsoTRoPIc LQRENTz FQRcE IN CRYsTALs

Inasmuch as the structure of a liquid has a
closer resemblance to that of a crystal than to
that of a gas, it is natural to approach the prob-
lem of the inner field by considering first an ideal
crystal. The theory of the Lorentz force in a
lattice was developed by Ewald4 and generalized
by Born. ' The writer' has given a simplified
derivation.

We consider an infinite lattice whose elemen-
tary cell contains only one atom situated at the

4 P. P, Ewald, Ann. d. Physik 49, 1, 117 (1916).' M. Born and M. Goeppert-Mayer, IIandbuch der
I'h,yak, Vol. 24, p. 770.' H. Mueller, Phys. Rev. 4'7, 948 (1935).
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origin of the cell. If x, y, s are the axes of the
optical index ellipsoid, the Lorentz force acting
on any atom can be written

The "Lorentz factors" L„L„,L, can be derived
from Ewald's lattice potential'

C/Q

Poisson's equation requires

L,+L„+L,= 1.

The Lorentz factors depend on the shape, but not
on the size of the elementary cell. Previously the
author' has given the values of L,=L„and L, for
tetragonal lattices. Fig. 2 gives these factors for
simple hexagonal lattices. They depend on the
ratio c/a, where c is the lattice spacing in the
direction of the hexagonal axis, and a is the
distance to the nearest neighbors normal to the
axis. The results are very similar to those for
tetragonal lattices.

We observe again that if c/o, is moderately
large L, =kc/a and I,=1—2kc/c. Since with
c/a) 1 we have a layer lattice, this result has the
following simple interpretation: In a layer lattice
the Lorentz force can be calculated by consider-
ing the atoms continuously distributed in all

layers except the layer in which the atom is
situated. For a field E, the continuous distribu-
tion gives the field 47rI, and hence contributes 1

to the factor L,. The dipoles in the same layer
give a negative field which can readily be calcu-
lated by direct summation. Thus one finds
&=0.359 for tetragonal and &=0.370 for hex-

agonal lattices. These factors agree with the
slope' of the I;curves if c/a) 1.5.

Similarly for small values of c/a one has
L,=k'(a/c)', which means that in a chain lattice
it is necessary to consider the discontinuous struc-
ture along only a single chain of atoms. k' is
therefore given by a simple infinite sum and has
the values 0.3826 and 0.3313 for tetragonal and

The lattice potential P is the electrostatic potential of
a charge distribution consisting of discrete unit positive
charges at the lattice points and a uniform constant nega-
tive charge density —1/6, where 6 is the volume of the
elementary cell. If the charge at the origin is missing the
potential is P=&—1/r and the derivative must be taken
for the values x=y=s=0-.

8 In the paper mentioned (reference 6) we estimated from
the graph for tetragonal lattices 2k =0.72. The direct sum-
mation gives 0.718.

Frc. 2. The Lorentz factors for simple hexagonal lattices
and the approximations for small and large values of c/e.
Dotted curve: Raman and Krishnan's approximation.

hexagonal lattices respectively. This is a good
approximation if c/a&0. 6. If c/a differs little
from unity one can use a similar approximation
by calculating the field of the dipoles within a
rectangular box. The validity of the latter
method was demonstrated in a previous paper. '

In evaluating the field of the dipoles in a single
layer or chain one again can consider the atoms at
a large distance as continuously distributed.
Hence the Lorentz factors are determined if we
know the distribution of the few nearest neigh-
bors only. Even in a crystal the atoms more than
a few atomic distances away can be looked upon
as forming a continuum.

This result justifies the well-known cavity
method for calculating the inner field' and fur-
nishes the basic principle for evaluating the
Lorentz force in liquids.

Fig. 2 illustrates another important point.
Following a suggestion of Havelock, "Raman and
Krishnan' assume that for an anisotropic struc-
ture an ellipsoidal cavity can be found which has
the property that the atoms within give no con-
tribution to the Lorentz force. This assumption
is incorrect because L can take negative values,
whereas the cavity method leads always to posi-
tive values. Without justifying themselves Ra-
man and Krishnan postulate furthermore that
the hypothetical ellipsoid has an axial ratio c/a.
Hence they assume a Lorentz factor

'This result shows also that in general it is advisable to
use an anisotropic cavity for an anisotropic crystal."T.H. Havelock, Proc. Roy. Soc. ASO, 31 (1908).
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1 —e2 (s=s, =
(

—,'~ ln
e'

1+a
)'

s, and s„are determined by the relations s, = s„
and s,+s,+s,=i. In Fig. 2 the dotted curve
gives the values of s, . Raman and Krishnan's
assumption s, =L, is obviously untenable.

The use of the s factors is however justified if
the cavity method is correctly applied. The
cavity can have any size as long as it includes at
least the nearest 20 or 30 neighboring atoms. We
find then F,=E,+47rs,I +F '. Comparison with
(3) gives

I'.' =4m (L, s.)I,=4—7ry.I., (6)

where y, +y„+y,=0, hence y = y, = —2y, =
2y&=L~ —sz.
F' is the field of the fini:te number of dipoles

within an ellipsoidal cavity, the axes of which are .

parallel to the optical axes of the crystal. The
field F' does not depend on the size of the ellip-
soid, but only on its eccentricity. Consequently
the field of the dipoles within a uniformly
polarized shell, bordered by two concentric
ellipsoids of equal eccentricities is zero at the
center.

The above results hold also for molecular
lattices. In a forthcoming paper it will be shown
that they are also valid for "diffuse" lattices in
which the atoms or molecules oscillate about their
equilibrium positions.

where e is the eccentricity e'=1 —(u/c)'. lf a)c
one takes e'= (a/c)' —1 and obtains

1 e'(
s, =

~

1 —(1/~) tan-'e ~. (5')
)

analysis" points to a simple hexagonal lattice. "
The preferred orientation of the molecule con-
sidered and of its nearest neighbors will have the
direction of the symmetry axis of the lattice. The
position and orientation of any distant molecule
is arbitrary.

The environment of a molecule can be divided
into three regions:

I. The cybotoctic region, with a pronounced
lattice structure. Within it all molecules have the
same preferred orientation. The dimensions of
this zone must be much smaller than the wave-
length of' light. We assume that it includes at
least 20 to 30 molecules and that it has the shape
of an ellipsoid of rotation whose eccentricity e is
smaller than the eccentricity of the ellipsoid
representing the shape of the molecule.

Z. The continuous region. This includes all dis-
tant molecules whose positions and orientations
are independent of those of the molecule upon
which we fix our attention. As far as this molecule
is concerned the distant molecules. act as if
forming a continuous distribution of matter. This
region, extending to infinity, starts at a certain
bo'undary, which is assumed to be an ellipsoid,
larger but of the same eccentricity as the one
limiting' the cybotactic zone.

, 3. The intermediate region between 1 and Z. Here
the molecules are only slightly influenced by the
intramolecular forces exerted by the central
molecule. This region may be divided into a series
of concentric ellipsoidal shells of constant ec-
centricity e. Every molecule within one shell will
be influenced in the same manner by the central
molecule.

THE LQRENTz FQRcE IN LIgUIDs

From the work of Stewart" Warren" Bernal
and Fowler, " Debye, ' Frenkel" and others, the
following assumptions concerning the structure of
liquids seem reasonable. For rod- or disk-shaped
molecules the preferred positions of the nearest
neighboring molecules are arranged in a lattice
with axial symmetry. In many liquids the x-ray

The molecule upon which we fix our attention
may be any arbitrary molecule. The symmetry
axis of its cybotactic lattice can take on any
direction with equal probability. We assume that
no outer inHuence, not even that of a strong
electric field, can change the distribution of the
preferred directions to any marked degree. "The
preferred orientation of a molecule changes
slowly with time, but this change is assumed to

"G. K. Stewart, Trans. Faraday Soc. 29, 982 (1933)."B.E. Warren, Phys. Rev. 44, 969 (1933)."J.D. Bernal and R. H. Fowler, J. Chem. Phys. 1, 515
(1933).

'4 J. Frenkel, Acta phys. chem. 3, 663 (1936).

"This is the simplest possible assumption, but it is not
essential for our calculation.

"Investigations of the light scattering and the x-ray
diffraction of liquids in a strong electric field have furnished
no evidence to the contrary.
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be negligible during the period of a light wave. '~

Under the inHuence of an electric field E the
liquid acquires an average polarization I in the
direction of E. Within a cybotactic group, how-

ever, the polarization is not in the direction of the
field. Hence we introduce the concept of the
"local polarization J." J varies continuously
throughout the liquid. It depends on the local
preferred. direction.

The results of the preceding section give for the
Lorentz force in a liquid

Ii„=E,+4~s,I +47ry J,.

47rs,I, is the field of the distant molecules which

act as if they were a continuum. 4~p J, is accord-
ing to Eq. (6) the field of the dipoles in the cybo-
tactic group. The dipoles in the intermediate
range give no field, because, as we have seen, the
field of a uniformly polarized ellipsoidal shell is
zero at the center. The three equations (7) give
the components of F parallel and normal to the

preferred axis. Hence

F,= /, (F.+4/37r I)„
where, since I= (n' 1)—Z/4~,

(9)

I =l„=[1—3/2(s —-', )(n' —1)/(n'+2) j/
(1+2m.yNPg),

I.= [1+3(s——,')(e' —1)/(n'+2)]/
(1—4s.yNp, ). (10)

By combining Eqs. (9) and (7) one gets three
equations for J„J„and J,. Finally, since I is ob-
viously the average value of the local polarization
J, I=J, one can eliminate J and calculate the
molar refraction R& of the liquid.

J,=Np2F, ; J„=Np2Fy' , J.=NpgF. , (8)

where P~ and P~ are the average polarizabilities of
the molecule defined by Eq. (1).N= pA/M is the
number of molecules per cc, p, the density, A,
Avogadro's number and M the molecular weight.
Introducing Eq. (8) in Eq. (7) gives

3[pi/(1 4~vp~N—)+2p~/(1+2~~p2N) j
Rr. = (e' —1)3I/(m'+ 2) p =—7rA (11)

3 1 —(4/3) ~N(s —3) [P~/(1 —4m yPrN) P2/(1+ 2~p—P2N) j

This expression can be simplified. The denom-

-inator corresponds to the correction given by
Raman and Krishnan. "But since the boundary
of a cybotactic group has a smaller eccentricity
than the molecule, our value of (s —3) is much

smaller than theirs. In fact this correction is so
small that it can be neglected in most cases.
Therefore we take s= 3, which means that the
cybotactic groups are approximately spherical.
Even if they have elliposidal shape, the assump-
tion s = -', does not alter the results by more than a
fraction of one percent, because a change of s

"The characteristic frequencies of mutual vibration of
the molecules are in the far infrared. C. H. Cartwright,
Phys. Rev. 49, 470 {1936).

"Raman and Krishnan's relation is obtained if we put
s=L„hence y=0 and p1=b1, p2=b2 ~ The latter relations
imply that the molecules have entirely lost their freedom
of rotation {g2 ——1) Raman and Krishnan's equation gives
results of the correct order of magnitude because it con-
tains two errors which partly compe'nsate each other.
The anisotropy of their Lorentz 6eld is too small {s&L„
see Fig. 1), whereas the effect of hindered rotation is taken
too large.

alters the value of p =L,—s in such a way, that
/„l, and Rl, remain almost unchanged.

If we introduce

P=bg/b2, b=-', (br+2bg),
B=[1—g2(1 —p)j/(p+2)
x= 12sNb(L, —-', ) =9(L, ', )pRO/M- ,

—

Ro 4/3w Ab——

Eq. (11) takes the simple form

(12)

Rr, /R p =B/(1 xB)—
+(1—B)/(1+-',x(1—B)). (13)

Ro is the molar refraction of the gas, x depends on
the anisotropy of the quasi-crystalline structure
and 8 on the freedom of rotation. Since b~, b2 and
Ro can be obtained from measurements in the
gaseous state, Eq. (13) contains only two un-

known parameters L, and g2. They are charac-
teristic of each liquid. g2 varies with the tem-
perature and the density. We do not expect a
temperature dependence of L„except near the
critical temperature of the liquid.
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FIG. 3. The molar refraction of liquids, The variable
&=9(L,—1/3)pR0/M depends on the anisotropy of the
Lorentz force, the parameter 8 on the potential barrier
and the optical anisotropy of the molecule. The dotted
curve gives the minima of the curves.

"The work of Fajans and Joos (Zeits. f. Physik 23, 1
(1924)) and the theory of photoelasticity (H. Mueller,
Phys. Rev. 4V, 947 (1935)) show that such changes must
occur in solids, but in liquids they cannot play an im-
portant part as shown by the fact that the molar polariza-
tion of CO& increases with pressure (F. G. Keyes and J. G.
Kirkwood, Phys. Rev. 30, 754 (1930))and that the polariza-
tion of solid benzene is larger than that of benzene vapor
(C. P. Smyth, J. Am. Chem. Soc. SS, 453 (1932)).

THE MOLAR REFRACTION OF LIQUIDS. BENZENE

The classical work of L. Lorenz led to the con-
clusion that the molar refraction is the same in
the liquid and gaseous state. This fact has fre-
quently been mentioned as an argument against
anisotropic Lorentz forces. But more accurate
measurements have shown that the refraction of
a liquid is usually slightly smaller than that of its
vapor, and that it varies with temperature and
pressure. In addition the dispersion of R~ is
larger than the dispersion of Ro.

Although these differences are relatively small,
they are nevertheless too large to be explained by
changes of the polarizabilities of the molecule. "
Our theory accounts for all these changes without
postulating any alteration in the polarizabilities.

In Fig. 3 Rl./Ro is plotted as a function of x
for various values of B. Since x is of the order of
magnitude of 9(L—3') (n' —1)/(m'+2) its absolute
value is probably never larger than 3. From Fig.
2 it follows that x is positive for disk-shaped and
negative for rod-shaped molecules. The param-.
eter 8 varies between —', for g2= 3, and p/(p+2)
for g2 ——1. Since for' most molecules -', &P &3 it is

sufficient to vary 8 between the limits 0.15 and
0.6. Rod-shaped molecules usually have p )1 and
hence B)—'„while for disk-shaped molecules
g(& 20

The curves in Fig. 3 have a minimum 98(1 8)/—
(38+1) for x=2(1—38)/38(1 8) an—d RI/Ro
is 1 for x=0 and for x= (8+1)(1 38)/8—(1 8). —
If the molecules can rotate freely or almost freely
the anisotropy of the Lorentz force demands
Rl, )RO. It is probable that this condition exists
in compressed gases, which would explain the
increase of the molar polarization of CO2 with
pressure. " If the anisotropy is very large we
always get RL, )RO, even if no rotation exists.
The Lorentz force reaches its largest anisotropy
in the crystalline state. Hence it is not surprising
that the molar polarization of solid benzene is
larger than that of its vapor. "

The case Rl, (RO occurs only if we have hind-
dered rotation together with a moderate ani-
sotropy of the Lorentz force. These are exactly
the conditions existing in liquids. We notice that
in all cases of practical importance Rl/Ro) 0.9.
Hence the approximate validity of the Lorentz-
Lorenz equation cannot be advanced as an
argument against anisotropic Lorentz forces.

Since we have no direct information concerning
the values of g2 and L, we are not able to predict
the refraction of a liquid. Inversely, however, we
can find approximate values of these parameters
from the observed values of Rl..

We will discuss the procedure for benzene.
According to Stuart" the polarizabilities are
b1=63.5 10 " b2 ——b3 ——123.1 10 'hence p=0.516.
In Fig. 4 Rl./Ro is given as a function of x for
various values of g2. Wasastjerna22 has deter-
mined R0=27.20 (D-line) and RL, =26.18 (room
temperature), hence Rr/Ro ——0.962. Fig. 4 shows
that this value can be understood only if g2

is larger than 0.775. If ~e assume a potential
Uo(1 —cos' 0) this indicates, according to Fig. 1,

' This is not true in some exceptional cases, e.g. , formic
acid and acetic acid. For these substances our theory
predicts Ri, )R0."H. A. Stuart, Molekulstruktur (Berlin 1934), p. 173.
These polarizabilities are determined from the Kerr effect
of the vapor. Cabannes' measurement of the depolarization
of the scattered light gives p=0.505 ~"J.A. Wasastjerna, Soc. Sc. Fennica, Comm. Math.
Phys. 2, No. 13 (1924). The corresponding values of the
molar polarization are PL ——26.61 P0=27.01, hence PL/P0=0.985.The ratio p0 of the static polarizabilities is probably
larger than p. P»j;p =28.5.
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that the potential barrier must be higher than
5.2 kT.

A value for x and a closer estimate of g~ can be
obtained if we consider the dispersion. A change
of wave-length does not affect g~ and I.„since
they depend only on the liquid structure, but it
does change the value of Ro and hence of x. The
slope of the curves Rc/Ro for g&

——const. is related
to the difference between the dispersions of RL,
and Ro. According to Wasastjerna" R& —R&
=0.74 for liquid benzene, and Rp —Rz ——0.68 for
the vapor. From these data one estimates
d(R J /Ro) /dx = 0.12/x. Lines corresponding to
these plopes are shown in Fig. 4. We see that there
is only one solution for which Rc/Ro=0. 962 and
for which the slope suits the observed difference
of dispersions, namely x = 1.8 and g& ——0.875. This-

corresponds to a potential hill of about 8.8 kT, a
value of the same order of magnitude as those
given by Debye' and Andrade. "

With p=0.881, Ro ——27.2, 3' = 78.05, we calcu-
late from x=9(L, ,')pRo/—3I (—Eq.12) I., =0.98.
If we assume a simple hexagonal structure of the
cybotactic group we find from Fig. 2 that this
corresponds to c/a=0. 56. According to the con-
siderations of de Boer" a hexagonal structure
seems a good approximation. He reports that
recent x-ray work gives c=3.5 to 3.6A. To ac-
count for the observed density we must have
M/Ap=ca'3l/2 or c/a, =0.50 to 0.53, which is a
surprisingly good verification of our result.

j
g8

.8

.9

In view of the fact that the value of p is
accurate to only about 3 percent and that a small
part of the change of dispersion may be due to the
shift of the absorption lines, " the above results
are somewhat inaccurate. The true solution prob-
ably lies within the ranges 1.4 &x & 1.8 and
0.82 &g~ &0.9.

With this solution we can now estimate the
order of magnitude of the temperature —and the
pressure variation of RL, . If we assume I.,=const.
and abbreviate Rc/Ro r, oo = Vo(p)/kT w——e have

FK'. 4. The molar refraction of benzene. The dotted line
gives the observed value. The short lines indicate the slopes
d(&J,/R0)/dx required by the observed dispersions.

8Rg 1
1/Ro—=—

dT p

BRL, 1
1/Ro————

8P p

t3f .
ding rp

dp Br Br dgg dV() p
x—+

dp Bx Bgq dp dp Vo I

dp Br Br dg& dVO p
x +

dT Bx Bg9 dp dp Vo Bgg dp T
(14)

With the values (1/p) (dp/d T) = —1.21 10 ',
(1/p)(dp/dP) =9.5 10 ", xBr/Ox=0. 12, Br/Bgo
= —0.44 (the latter value estimated from Fig. 4)
dgo/dip=0. 018 (from Fig. 1), y=8.8, T=290 we
get roughly (1/Ro)BR&/flT =2 to 3 10 '. The ex-
perimental value is 1.22 10 4. The theoretical
value of (1/Ro)BRc/Bp depends largely on Vo(p).
If we assume" Vo=cp' close agreement with the
observed value —0.98 10 " is obtained for t=3.

"E.N. da C. Andrade, Phil. Mag. 17, 497 (1934).
'4 J. H. de Boer, Trans. Faraday Soc. 32, 13 (1936).

But this result depends very much on the value of
dgo/doo and hence on the choice of the potential
barrier. At any rate the order of magnitude of
BRr/BT and BRc/Bp is correct.

To sum up, the value of the molar refraction of
liquid benzene, its dispersion, and its pressure
and temperature dependence can be explained by
assuming hindered rotation and cybotactic
grouping. The characteristic quantities of COH6

"P. Pringsheim, Handbgch der Physi k, Vol. 23/1, p. 246.



HANS MUELLER

are g~ ——0.88 and x=1.8 or L,=0.98 approxi-
mately. These quantities can be determined with-
out making any special assumptions concerning
the type of grouping or the form of the potential
barrier. The assumptions are introduced only to
correlate the parameters with quantities which
have a simple physical meaning, and to show that
their values are reasonable.

THE INTENSITY AND DEPOLARIZATION OF

THE SCATTERED LIGHT

The theory of the unmodified scattered light
for liquids was developed independently by
King, "Gans" and Ramanathan. "Free rotation
and isotropy of the Lorentz force were assumed.
In their original forms the three theories gave
different results, but the later papers of Ramana-
than and Didlaukies" have eliminated these dis-
crepancies. However, the large amount of experi-
mental data available do not verify the theory. "

We will follow Ramanathan's general formula-
tion of the theory, but correct it by taking into
account the inHuence of hindered rotation and
the anisotropic polarization field. If the incident
light of intensity 1 is plane polarized with an
electric vector E, the intensity of the light
scattered by a unit volume at a distance 1 cm in
the direction normal to the plane of E is given by

I.=4(2~/&)'Nh(p') -'+ (~.')-—(~.) -'7
I.= —,

' (2~/X) 'N(p. '), .
(16)

I„and I„are the scattered light components hav-
ing electric vectors parallel and normal to E,
respectively. ) is the wave-length in vacuum, N
the number of molecules per cc, y=NkTP, k

Boltzmann's constant and P the isothermal com-
pressibility at the absolute temperature T. p~ is
the component of the induced dipole moment in
the direction of E and p is its component normal
to E. Q), ' is the square of the average and (p'),„
the average of the square. To find these averages
we introduce three Cartesian systems of co-
ordinates (Fig. 5):A fixed system p, nz, n2 whose
directions coincide, respectively, with E, with
the direction of propagation of the incident, beam
and with the direction of observation. The second
system x, y, s' has the s axis parallel to the pre-
ferred direction of a molecule with the x axis in
the plane (ps). The position of this system is
given by the angles 8, p. Since the preferred
directions are distributed at random the prob-
ability of finding a molecule with the preferred
axis in the range d8, dp is sin 8d8d&p/4s. The
third system of coordinates 1, 2, 3 coincides with
the axes of the ellipsoid of polarization of the
molecule. The orientation of the symmetry axis 1

with respect to the axis 2' is given by the polar
coordinates 0~, P, the axis 2 being in the plane (s1).
The probability that the molecule has this
orientation is exp (—V/kT) sin 8d8dg/ J" exp
(—V/kT) sin 8d8d1b. The fiel acting on a mole-
cule is given by (9). By calculating successively
Eg~ Eyq Ez q ~3 y ~2y ~3 q pl~ JM2~ p3 q p~~ py~ p z

finds

p„= (E+4/3TI) «

l, [(br sin' 8+b2 cos' 8) cos' P sin' 8+(b, —b, ) cos 8 sin 8 cos 8 sin 8 cos P

+b~ sin"- P sin' 87+i,[(b, cos' 8+b2 sin' 8) cos' 8

+(bq —b~) cos 8 sin 8 cos 8 sin 8 cos P7, (17)

l, [(bz —b2) sin 8 sin 8 cos P(cos 8 sin 8 cos y —sin 8 cos 8 cos p cos P

+sin 8 sin p sin P) b~ sin 8 cos 8 c—os p7
(18)p„, = (E+4/37rI).

+l.-[(bq cos' 8+b2 sin' 8) sin 8 cos 0 cos p

+(b~ —b2) sin 8cos 8 cos 8(sin q sin P —cos 8 cos y cos P)7.
These expressions must be introduced in

fIJ,„'exp ( —V/kT) sin 8 sin Pd8d8d pdP
(~.')-= (19)J' exp ( —U/kT) sin 8 sin Bd8d8d&pdg

' L. V. King, Proc. Roy. Soc. A104, 333 (1923). "M. .Didlaukies, Ann. d, Physik 5, 205 (1930)."R. Gans, Zeits. f. Physik 17, 353 (1923), ' The difficulties have been discussed by J. Cabannes:"K.R. Ramanathan, Proc. ind. Assoc. f. cult. sc. 8, 181 La diffusion moleculaire de la lumiere (Paris, 1929), pp.(1923); Indian J. Phys. 1, 413 (1927). 204—300.
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and the analogous expression for (p„), . (ii„), is of course identical with the a~erage polarization
per molecule I/N and (p„), =0. The integration of (19) gives

"1*'[bi'(2g2+g4)+b~'(3 —5gm+2a4)+4bib2{gm —g4) 3

{i.")-=[(&+«I/3)'/15j-

(~.')- =- [(&+4xI/3)'/153-

+4'[bP(3 —5g2+2g4) +bi'{3+3gm+2g4)+2blbm(1+g2 —2R4) 3

+241.[2bi'(g2 —g4)+b2'(1+a. —2gi)+bib2(1 —3g2+4g4) j (2o)

&.'[bi'(2gm —g4)+b2'(1 —g4)+2bib2(a4 —a2)j
+t*'[bi'(1 —g4)+b2'(1+gi+g4)+bib~( —1 —a2+2g4) 3

+41.[bi'(2a» —2g~)+bm'( —1 —ai+g4)+bib2( —1+3'~—4a4) 3 (20')

where g2 and g4 are the functions of the potential
barrier defined in Eq. (2). If we take again s = 3,
the definitions (10) give

/, = 1/(1+x(1 —B)/4), l, = 1/(1 xB), —

where x and B are defined in (12).
If there is no anisotropy of the I.orentz force,

x =0, 1,=/, = 1, we get the classical relations

(p„'). = [(8+4irI/3)'/15$[3bi2+Sbp+4bibm],
(u.'),= [{&+4xI/3)'/15](b, —b,)'.

This is true for any value of g2 and g4. Hence
hindered rotation alone does not alter the
classical theory.

If the incident light is not polarized, one has
I„'=I„+I„,I„'=2I„and hence the total inten-
sity of the scattered light is Io ——I„+3I„,and its
depolarization 6=2I„/(I„+I„) By introduc. ing
(20) in (16) and using the definitions (12) we get

Io -'(ir/) ')'((n' ———1)'/Iir) i;
i = [y —1+(iVi+3M2) 3/Sg; (21)

6= 6&2/[5(y —1)+3(&i+Mm) ], (22)

where

cVi = {l.2mi+ l,'m2

+2l,l,m, )(R()/Ri)'/(p+2)',
Mm= (llama

+l.'m4 —l.l.m5) (Ro/Ri)'/(p+2)'

m, =3+g,(P'+ 4P —5)+2g, (P —1)',
m2= {3p'+2p+3)+g2( —5p'+2p+3)

+2g4(p 1)'—
ms = 1+2ga(p' —p) —g4(p —1)'
m =(p -p+1)+g (1-p) -g {p-1)'.
m, = (],+ p) +g, {2p'-3p+1)—284(p —1)',

For x=0 we obtain the classical relations

6 =6b2/(Sy+ /b')

where b'= (p —1)'/(p+2)'= (bi bm)—'/(bi+2b2)'

i =y+ 138'/5,

which lead to

~ = 6y(1+6)/(6 —7A). (25)

For the case of an anisotropic Lorentz held it is
not possible to retain these relations by intro-
ducing for example a quantity analogous to the
anisotropy factor 8. In particular Eq. (25) is not
justihed. "

The signihcance and use of the results can best
be illustrated by applying them to benzene.
Since P=0,516 is given, one constructs 6rst a
table of 8 and I; for a. series of values of gg. We
assume again a potential Vo(1 —cosm 8) and ob-
tain for each g2 the corresponding" value of g4

from Fig. 1. Next one tabulates l„ l, and
(Rr./Ro)' as functions of x and g2 and using (23)
gets Id i(x, gm) and Mg(x, gg). Finally (21) and
(22) serve to find the intensity factor i(x, g~) and
the depolarization D(x, g2). The results are
plotted in Figs. 6 and 7. They are constructed

"The determinations of Avogadro's number from the
light scattering in liquids presupposes the validity of Eq.
(25). This relation is true only if 33fr —4&2=5. In our
theory (3&1—4&2)j5 is a function of g2 and x. The calcu-
lation for ben'zene shows that this function is very similar
to RL,jR0 shown in Fig. 4. Its value never deviates much
from 1. The fact that the light scattering method has
furnished approximate, but not accurate values of Avo-
gadro's number is therefore not an argument against but
rather for the anisotropy of the Lorentz force.

"Fig. 1 shows that (g2 —g4) remains almost constant for
V0jkT&5 and decreases very slowly for higher potential
barriers. We have verified the same behavior for other
forms of the potential, Hence for small values of g2 and
also for g2

——1 our curves do not depend on the choice of V.
Between g2

——0.8 and go=0.95, however, the results vary
for different potential barriers,
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Fir.. 5. The 3 coordinate systems used in calculating light
scattering and Kerr effect. p, n1, n2 is fixed in space; n1
direction of propagation of incident light z direction of
preferred orientation; 1 momentary direction of symmetry
axis of molecule.

with p=0.026, which corresponds to the density
and the compressibility of benzene at 18'.

If there were no anisotropy of the Lorentz
force we should find ip ——12.0 10 ' and Ap ——0.57
whereas the observations at 15' give" i = 8.2 10 '
and 6=0.42. . These observed values can be
completely understood if g&)0.8, as Figs. 6 and
7 show. Our previous results from the refraction,
that g2 is about 0.88 and that x is between 1.4
and 1.8 are thereby given considerable added
support. '4

Recently Turner" has shown for benzene that
the variation of the intensity of the scattered
light with the wave-length is not strictly pro-
portionai to (n' —1)'jX'. Our theory does not
require this proportionality, because i depends
on x and hence on Rp and the wave-length.
From X=5460A to ) =4350A Rp increases by
about 3 percent, hence x changes by 0.054. For
x=1.8, g2

——0.88 the slope of the curve is about
iti/Ox=0. 2, hence hi = (Bi/Ox)Ax=0. 011 or an
increase of i of about 14 percent. Turner's data
"Calculated from Cabannes' value R = 10,7 10 '.

Cabannes' remark, that C6H6 scatters more than it should,
is based on the implication that (25) is correct. (25) gives
i=7.3 10 '. Actually benzene scatters much less than it
should according to the classical theory. Hence we do not
think that Rocard's theory can be accepted. See J. Caban-
nes, Lc dhgusi on molecular re de lu lumi ere, pp. 237 and 296.

'4 Figs. 4 and 6 are not appreciably altered if one takes
p=0.500 or if a, different form of the potential barrier is
chosen. The.curves in Fig. 7 however are very sensitive to
such changes and a better agreement for 6 could not be
expected.

"A.F.Turner, Diss. University of Berlin (1934), Physik.
Ber. 16, 1860 (1935).The observed increase of i for wave-
lengths X)5460A could only be explained if our curves
had a large curvature at their minima or if p changes
with ).

give between these wave-lengths an increase of i
of about 20 percent.

From the slope of the curves in Fig. 7 it
follows that the depolarization should vary by
less than 0.01 in the range of the visible spectrum.
Within experimental errors of this magnitude
the observations have shown no dispersion of
the depolarization.

If the potential barrier is low the anisotropy
of the Lorentz force gives a larger depolarization
than the classical theory. Hence the "apparent"
optical anisotropy" of the molecules can be
larger than for the gas. This will occur in liquids
at high temperatures and in gases at high
pressures. In fact Rao'~ has shown that near the
critical temperature the apparent anisotropy is
from 3 to 4 times larger than for the gas, and in
gases Volkmann" has found an increase of 6'

with pressure.
Summing up, the theory accounts for all

anomalies of the intensity and the depolarization
of the scattered light. It is perhaps surprising
that the theory of Gans, " which is based on
statistical considerations, does not lead to our
results. This is due to the fact that Gans assumes
that the isotropic micro-distribution corresponds
to a state of minimum energy. In liquids it
seems more natural to assume that in small
volume-elements the optical anisotropy Huctu-
ates around a finite value.

THE KERR EFFECT IN LIQUIDS

The measurements of the electro-optical Kerr
eff'ect demonstrate the failure of the classical
theory of Langevin and Born in the most
impressive manner. "The Kerr constant KL, of
liquids is always much smaller than its theo-
retical value Xp. The work of Briegleb, " and

"The "apparent" optical anisotropy is the value of 8'
which is obtained from the relation 6 =68'/(Sy+76').

37 R. S. Rao, Ind. J. Phys. 2, 7 (1924). Rao, Stuart and
Volkmann, reference 2, believe that the large increase is
not real but caused by experimental difficulties. In view
of Volkmann's latest results, reference 38, 5 must have a
maximum where 52) 50'.

3' H. Volkmann, Ann. d. Physik 24, 457 (1935).
3' C. V. Raman and K. S. Krishnan, Phil. Mag. 3, 713

(1927) claim the validity of the classical theory for liquids.
But they compare the Kerr constants with the "apparent"
anisotropy determined from the depolarization in liquids.
Hence their considerations are not a verification of Lange-
vin's theory. They only demonstrate the approximate
validity of the relation of Gans between XJ„and d."G. Briegleb, Zeits. f. physik. Chemic 14, 97 (1931);
16, 249 (1932).
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Fio. 7. The depolarization of the scattered light for benzene.
The dotted line gives the observed depolarization.

FiG. 6. The intensity factor i for the scattered light for„ben-
zene. The dotted line corresponds to the observed value.

Stuart and Volkmann' makes it seem almost
impossible to correlate the Kerr constants of
liquids with the optical properties of the mole-
cule.

There exist two possibilities for the formulation
of a new theory. One might assume that the
cybotactic groups behave like small anisotropic
crystals. Even if they are spherical they will be
oriented by an electric field, and this orientation
produces uniaxial birefringence of the liquid.
However it can easily be seen that this assump-
tion gives much too large values of the Kerr
constant. "Although the groups have a smaller
optical anisotropy than the molecules, they
would orient themselves much more easily,
because the energy of orientation is proportional
to their volume, while the temperature energy
kT is the same as for a single molecule. Supposing
the groups contain only 50 molecules and are
spherical a calculation carried out on this basis
gives for benzene Xl,)10Xp, while the experi-
ment gives XL, (-',Kp.

Hence we conclude that the molecules in a
quasi-crystalline group are not held together
rigidly. Even if the potential barrier is so high
that rotation is practically impossible the mole-

cules still have a considerable freedom of trans-
lation. They can travel from one preferred
position to another. The cybotactic lattice is a
rather diffuse structure and does not act like a
solid. 4' It is of course possible that the electric
field changes somewhat the distribution of the
preferred orientations, but we have no experi-
mental data to estimate this effect." It must be
small and we shall neglect it altogether.

We calculate therefore the Kerr effect in the
usual manner4' by considering the orienting
action of the field on the single molecules. We
introduce again the three systems of coordinates
(Fig. 5). The axis p is in the direction of the
static field Ep between the plates of the Kerr
condenser, n~ is in the direction of the light beam.
The two other systems are defined as in the
preceding section. Due to the field Ep the
molecules have an additional potential energy

U 2[+1+01 ++2+02 ++2+02 ] (26)

where a~, u2, a3 are the static polarizabilities of
the molecule, Fp~, Fpm, Fp3 the components of the
Lorentz force. of Ep. In the system x, y, s' the
COmpOnentS Of thiS field are I'0, f,(E0+42rI0/3——)„
where we place f,=1/(1+x(1—Bo)/4), f,=1/
(1 —20B0), Bo= I 1 —g2(1 —po)]/(po+2)~ po=r21/&2,
in analogy to the definitions of l„, /„B and p.

For a light wave whose electric vector E„ is
parallel to the field Ep the average polarizability is

p~ exp- —. V+V k 1 sin csin Bd&d6dyd E„+ 4 3 7rI„' exp —U+ V kT

&&sin 8 sin 8d8d@d @de. (27)
' If the groups are large and not spherical the Kerr effect

turns out to be exceedingly large and has a large relaxation
time. This is the case in liquid crystals and in colloids.

4'This statement does not invalidate our calculation of

the Lorentz force, because it can be shown that Ewald's
theory is applicable to "diffuse" lattices, in which every
atom oscillates about a preferred position.

4' P. Debye, IIandbgck der Radiologic, Vol. 6.
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p~ is given by Eq. (17).For a light wave whose electric vector E„is normal to the field E2 the average
polarizability of a molecule is also given by (27) if we replace p„by p where

l, [(b1—b2) sin 8 cos 8 sin P cos q (sin y sin 1P
—cos 0 cos p cos 1P)

+ (b1 sin' 8+b2 cos' 8) (cos' 8 cos' p cos' /+sin' 22 sin' p

(E-+(4/3) I-)
—cos 6 sin y cos 22 sin p(1+cos p))+b2(cos2 6 cos' 22 sin' p+sin2 22 cos' 1l

+2 cos 8 sin 22 cos p sin P cos P)]+1,[(b1 cos2 8+b2 sin' 0) sin' 6 cos' y

+(b1—b2) sin 8 cos 8 sin 0 cos 22(sin p sin 1P
—cos 8 cos 22 cos P)].

The rest of the calculation follows the usual method. 4' One uses exp (—U/kT) =1—U/kT, finds
the term proportional to Eo, and from p„=y +dy„one determines the indices of refraction n„=n
+dna, 22„=22+dn„, where dm„= (4/3)2rX(n2+2)2dy„/622 44 T. he resulting Kerr constant can be
written in the usual form

Xr, ——(N1, n„)/n—E22 ——(4/3)2rN[(n2+2)/2n]2[(2+2)/3]'01

but the value of 0& is now given by

l.f4 [a1b12g4+2a2b2(1 —2g2+g4)+a»22(g2 g4)+2a2b1(g2 g4)]

0~1= 1/45k T.

Lf [albl(g2 g4) +a2b2(1 g4) +alb2(g2 g4) +a2bl(1 2g2+g4)]

—l*f*'[ »a(1g—2 g )+a b (1 —
g )+a b2(1 —2g2+g )+a2»(g2 —g.)]

+le, '[a»12 (1 —2g2+g4) +a2b2(1 —g2+g4)+a1b2( —1+3g2 —2g4)+a2b1( —1+3g2—2g4]

+3l~f~f2[a1b1(g2 —g4) +a2b2(g2 —g4) —a1b2(g2 —g4) —a2b1(g2 —g4)]

+312f*f2[a1b1(g2 g4)+a—2b2(g2 g4) a—1b2(g2—g4) a—2b1(g.——g4)] (»)

n is the index of refraction of the liquid, e its
dielectric constant and N the number of mole-

cules per cc. g2 and g4 are again the functions of
the potential V defined in Eq. (2). If there is
no anisotropy of the Lorentz force x=0, l, =l,
=f,=f,=1 and Eq. (29) reduces to the classical
result 81 ——(a1—a2) (b1 —b2) 2kT/45. This is true
independent of the values of g2 and g4. Hence
the hindered rotation alone does not alter the
classical equation.

For most nonpolar molecules the difference
between molar polarization and refraction is
small, hence a~+ 2a2 ——b~+ 2b2. If we assume
furthermore42 P=P2, then f,=l, and f,=l, and
the Kerr constant can be written

4 (222+.2)2 (2+2)2 (b b )1
El, ———m.E (30)

3 9 15kT6n'

where

"Our expressions for dn„and dn„do not satisfy the
relation dn„/dn„= —2, but the deviations are probably too
small to be measurable.

4'This assumption may introduce a quite appreciable
error in our results.

X=&i/&2 ——[l,'X1+i.'X2

+l*l*(l*+l.) x2/2]/(p —1)', (31)
&1

——1+2 (P —1)g2+ (P —1)'g4,

y2 = (P' —P+ 1)—(2P' —3P+ 1)g2+ (P —1)'g4, (32)

X2
———(p+ 1)+ (2p' —Sp+ 3)g2 —2 (p —1)'g4.

Xp is the value of the Kerr constant calculated
from the classical equation by using the observed
values of E; n and e of the liquid and the polar-
izabilities b~, b2 of the molecule as found from
measurements in the gas. The theoretical value
of y is a function of x and g2. This function is
plotted in Fig. 8 for benzene, p=0.516.

Fig. 8 shows that the Kerr constant depends
on the structure of the liquid to a much higher
degree than any of the other optical properties.
If the potential barrier is small the Kerr constant
rapidly increases" with the anisotropy of the
Lorentz force.

The curves indicate that in liquids the Kerr
"No data on compressed gases or liquids near the critical

temperature seem. to be available. Such measurements
would be very valuable. They would furnish the proper'
interpretation of Rao's results. See reference 37.
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