Deep Terms in the Spectra of Pb V and Bi VI

G. K. SCHOEPFLE, Department of Physics, A. and M. College of Texas (Received March 7, 1936)

In earlier investigations the Pt I-like isoelectronic sequence was extended to Pb V and Bi VI, establishing terms due to the $5d^96s$, $5d^96p$, and, later, $5d^97s$ and $5d^{10}$ configurations. This paper extends further the previous results by Mack and by the author to include terms assigned as arising from $5d^98s$, $5d^97p$ and $5d^98p$ configurations. A total of 69 term values involving 205 lines are listed for Pb V, and 40 terms involving 94 lines for Bi VI. The wave-length measurements for the lines involved are those made by Arvidsson and range from 1400A to 200A, and in more than half the cases the discrepancies are not more than $\pm 1 \text{ cm}^{-1}$. The absolute values of the $5d^9_{5/2}6p_{3/2}$ J=3 terms are computed by a Ritz formula.

I NDEPENDENT extensions of the Pt I-like isoelectronic sequence to Pb V and Bi VI were made and announced almost simultaneously by Mack¹ and by the author.² As the results were not in complete agreement, a more detailed study has been made by Mack³ and also by the author,⁴ including a study of the spectra of Pb IV and Bi V.⁵ The results are now almost in agreement, differences being discussed in the comments to Tables I and III. The wave-length region concerned is from 1400A to 200A, the

¹A. T. Goble and J. E. Mack, Phys. Rev. **42**, 909 (1932).

² G. K. Schoepfle, Phys. Rev. **43**, 374 (1933). ³ J. E. Mack and M. Fromer, Phys. Rev. **48**, 357 (1935).

⁴ G. K. Schoepfle, Phys. Rev. 45, 747 (1934).
 ⁵ G. K. Schoepfle, Phys. Rev. 47, 232 (1935).

measurements used being those made on a grazing incidence spectrograph at Upsala by Arvidsson. 6

In Table I the 69 term values assigned to Pb V are given, which involve a total of 205 lines for over half of which the discrepancy is not more than ± 1 cm⁻¹. The wave-lengths of newly assigned lines are given in Table II. Similarly the 40 terms assigned to Bi VI, which involve a total of 94 lines for over three-quarters of which the discrepancy is not more than ± 1 cm⁻¹, are given in Table III. The wave-lengths of newly assigned lines are given in Table IV. The terms assigned as arising from $5d^{10}$, $5d^96s$, $5d^97s$, and $5d^96p$ configurations are as assigned by Mack. By a Ritz formula, the absolute value of the $5d^9_{5/2}6p_{3/2}J=3$ $\overline{}^{6}$ Gustaf Arvidsson, Ann. d. Physik 12, 1 (1932).

M indicates lines listed by Mack;³ a number locates the line in Table II. Terms 327433, 329572, 329935 (J = 4), 332358, and 332501 are listed by Mack with question marks and assigned as arising from $5d^9_{3/2}$ 65. Two of these terms, 329572 and 332501, were independently announced by the author.⁴

															-		-						-							-	-		r				-
s	64° bc	£	806948	129																										VCr	4				·	,	
c	otpc	τ	469924													53									121					000	3						
	6 5	ł	7859L 1													124									•		1	13									
		٤	249574	120								121					122	T																123			
	2 C C C C	7	296757		117					118) 탄									
•	659	٤	429264	111											112														113	1			115	116			
		ל '	271024									107		<u>5</u>																			109				3
ę	2 Epc	7	520195							<u>ð</u>		X										_	٤		٤		_								105		106
	- 6. 5	I	964098					6		ĝ		≯		۶						ğ	X	5		X	٤		_								102		<u>5</u>
		7	341595					_						_			_					ર્ક	?				26				QA	2	_				
ç	s, ² pç	τ	462966	Z	٤			\$				X				×	٤		٤				Z				_					_				95	
	2613	٤	044825	Z	٤										٤		٤																16	92		93	_
		Ŧ	516555							87	88							89					_	6													_
		7	105255		٤			65	86			W				Z	٤		٤					X							L						
		2	337328		۶											٤	z		٤					M2								_					
		7	647155										62					80			81	81	63		84												
		τ	784155																	2				75	76	7	_					78					
		٤	329935		z										z		Z			2						73				-							
		ε	272625	z	z										٤		٤															12					
		٤	462825	65	99												67				68										60	3,6					
		₽	972433		X		64								Z		z																				
		٤	326888						58	59			60			61	5														62	3					
		z	326216											54		55	56	57																			
		£	265715									51				52	53																				
		7	807992	45	46				47		48	49																		4	ຊ						
	1 - E	£	211262			6	4					42	43															_			44						
		£	283483			36		37																					38	£							
		τ	886141	[31			32					55	3			34	35										
	SOTOC	2	266561							ສ	47	Z		Å		٤	z	25	z	ຊ	27		X	z	٤	28	53			8							
	~ 6 ^{r - 3}	Ţ	112261								5	٤		X		٤		9	٤	5	<u>9</u> :	₹ļ	-	Z	٤	8	5			22							Ĺ
	so FDC	2	G07411	Z	٤	2	Ø	6	9	₽	3	M1		X		X	X						×	٤	٤	13		₹									
		£	892011	٤	z	-	7		e			٤	4		٤	z	X				5				X				0			_					
	PG	0	0											X					٤					٤								\perp		-1			
	1		enter	803	131	048	514	487	872	131	804	690	043	488	069	606	511	746	835	040	630	660 418	199	277	565.	588	674	605	122	928	410	070	440	267	616	526	1560
	1		· 44137	194	197	199	210	211	212	213	215	217	218	219	221	223	226	222	227	232	233	237	244	245	247	258	260	35C	358	355	397	427	554	571	575	57.	604
	1	12	└ <u>·</u> ···································	2	3	3	3	2	3	2	5	2	ę	-	4	2	e	5		5	2	- o		-	5	2	-	7	3	7	2 0	0 0	2 0	n m	2	e	7
ሪ		L		\mathbf{T}	1	-	I	l	L			-	[L			-			+-	+	1	L	l			l				-		<u> </u>	J	L
*0	2040.				д +/н							1d	7	1 di	7	b3	4		P3	4		<u>5</u> ,		Ed.	4						ç	ď.			şdί		
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			6	д 22 0						¢	d361	4 <	d 36	4	d 5 6	2	4	d5 0	7	۱ م	ロ ふて し		d3 6	N						) رہ	۲ و			d, ĉ		
	, jaj			0	ŭ							Š		Š		ñ			Ň					Ń	•						Ľ	n			5		
				1		1						1	1	1									1			1							1				

539

# G. K. SCHOEPFLE

z inc "Desig	TABLE II. Newly classified lines of Pb V. z indicates the classification according to the state of ionization by Arvidsson. ⁶ The number in the column labeled "Designation" refers to Table I. b = broad, d = diffuse, a = found in arc.														
z	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$														
V	2	284 320	351705	129	0	V	2	979 38	102105	3	-+1				

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	z	SITY	λ(vac.)	$\nu$ (vac.)	TION	ANCY	z	SITY	λ(vac.)	v(vac.)	TION	ANCY
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V	2	284 320	351705	120	0	V	2	070 38	102105	3	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	νī	5	358.636	278834	120	-5	l v	1	982.18	101814	115	+2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	vī	4	387.870	257818	111	-3	νī	$\hat{2}$	983.06	101723	67	ō
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ϋ́Ī	5	389.745	256578	121	+5	VI	0	988.94	101118	18	-1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		0	390.882	255832	117	-4	V	4	989.15	101097	12	-2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V	1	395.280	252985	126	0	V	0	996.23	100378	62	+1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V	3	395.770	252672	124	-1	V	1	996.73	100328	51	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V	2	403.217	248005	6	+2	VI	2	997.03	100298	44	0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	VI	3	404.644	247131	122	0		2	998.62	101138	03	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	v	1	409.728	244004	103	-3		$\frac{1}{2}$	1002.55	99745.0	56	4 4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V	2	416.703	243464	118	-3		6	1005.01	99099.9	50	+ 3.1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	v	ő	418 264	239083	03	-3	VI	1b	1005.50	99329 5	17	+.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V	1	419.650	238294	95	$+2^{\circ}$	VÎ	3	1008.82	99125.7	70	3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V	2	423.906	235901	14	+1	VI	0.	1012.23	98791.8	69	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V	1	428.99	233106	107	+2	VI	0	1015.53	98470.7	57	+.7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V.	2	429.51	232823	92	-4	V .	1	1015.97	98428.1	11	+2.1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V.	$\frac{2}{2}$	431.86	231557	112	+2	VI	2	1018.70	98164.3	10	-2.7
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	v	3	433.487	230687	108	+2	VI I	3	1019.74	98064.2	40	$+.2_{7}$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1	430.10	229303	127	+0 -1		ň	1021.20	07804 3	72	- 7
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Ô	446 56	227210	30	+3	V	4	1022.14	97834.0	27	+1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V	ŏ	462.97	215997	91	-3	νı	1	1022.57	97792.8	$\overline{71}$	+4.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V	1	464.20	215424	102	+1	V	0b	1023.47	97706.8	50	+4.8
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	IV	7	465.450	214846	105	0	V	3	1024.33	97624.8	123	2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		3	647.71	154390	110	+3	VI	3	1026.38	97429.8	33	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	670.70	149098	130	0		0	1033.23	96783.9	9	+1.9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	671.08	149014	99	+5		1	1041.21	96042.1	20	9
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		4	678 58	147942	104	0		3	1043.04	95875.0	. / 0	+.0 +4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\dot{0}$	695.02	143881	13	$-\frac{1}{2}$	IV	4	1052.25	95034.4	16	6
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V	5	749.46	133429	65	$-\tilde{2}$	V	Ō	1059.22	94409.1	68	+5.1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	VI	2	762.76	131103	66	0	VI	1	1065.44	93857.9	113	+4.9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	VI	1	778.50	128452	101	-4	VI	2	1069.67	93486.8	52	-1.2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	VI	2	781.48	127962	21	-1		0	1078.74	92600.7	114	+4.7
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	VI	3	782.79	127748	94	+1	VI	0	1083.10	92327.6	82	-3.4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1	793.79	125978	125	+1	VI	4	1089.93	91749.0	25	124
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2 5	794.41	125880	20	+3	VI	4	1100.25	90888.4	55 00	+2.4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ш	3. 4	812.60	123062	29	$^{+2}$	VI	3d	1132.76	88280.0	90 1	0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V I	1	814.45	122782	87	ŏ	v l	3	1140.00	07004.0	( 83	-2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V	0	815.70	122594	28	+3			1148.29	87086.0	(M2	+5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	VI	4	826.35	121014	85	0	VI	1	1151.63	86883.4	<b>`</b> 47	-2.6
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	IV	0	832.57	120110	88	+1		0	1154.71	86601.8	41	+3.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	835.89	119633	86	+4		0	1159.95	86210.6	75	+.6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	VI	0	842.57	118685	35			0	11/0.50	85429.2	98	-1.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	VI	1	855 31	116017	64	-2	VI	Ő	1184 34	84435 2	36	+2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	V I	7	857.65	116598	34	$-\overline{2}$		ŏ?	1185.63	84343.3	7	+.3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		0	877.06	114017	58	+1	V	0	1188.30	84153.8	84	2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V	1	879.08	113755	59	-2	IV	0	1191.83	83904.6	48	+.6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V	1	879.45	113707	79	+1		0	1192.08	83887.0	76	-5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	***	0	918.74	108845	60	0	IVar	6	1203.47	83093.1	15	+.1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		10	924.51	108105	89	-2	V	0	1210.07	82039.8	49	+.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V	10	932.10	10/2/3	54	0	VI	0	1233.77	80046 1	42	$\pm 3.1$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	v	3	937.16	106705	19	$-2^{-2}$	VI	0	1252.99	79809 1	24	+2.1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	v I	ŏ	953.30	104899	45	$-\tilde{6}$		ŏ	1258.12	79483.7	128	3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V	3	959.08	104267	109	Ō		0d	1264.72	79068.9	43	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	VI	2	960.98	104006	80	+3	V	0	1290.32	77500.2	31	+.2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V	0	971.07	102979	61	0	V	3	1296.43	77134.9	23	+.9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	V	0	974.91	102574	46	-3	IVa	6	1308.10	76446.8	39	+3.8
V     2     977.46     102306     55 $-1$ 111     0     1371.75     12899.0     77 $+.0$ V     2     977.46     102306     55 $-1$ IV     5     1388.97     71995.8     37 $2$	V?	5?	976.93	102362	1119 M 1	0	V	0	1328.21	7289.3	38	+1.3
	v	2	977.46	102306	55	-2	IV IV	5	1388.97	71995.8	37	2
$V \mid 1 \mid 978.69 \mid 102177 \mid 96 \mid 0 \mid \mid 0 \mid 1401.56 \mid 71349.1 \mid 73 \mid +2.1$	v I	ī	978.69	102177	96	ô		ŏ	1401.56	71349.1	73	+2.1

540

TABLE III. Energy levels and transitions in Bi VI.

*M* indicates lines listed by Mack;³ a number locates the line in Table IV. Mack's choice of 298862, J=0, is strengthened by the expected transition  $5d^9_{5/2}6p_{3/2}-5d^9_{3/2}7s$  designated as 26, apparently overlooked by him.

Ternassination -		→	5d ¹⁰	6.1	00 20 0 S	5d36s	-	5d36S			- 66-3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6.13	50 3 S			(0. 10. 14.	Ja 200	5d38s		5d 59 s	5d 5 10 5
	5		0	3	7		5	2	5.	2	ŝ	2		2	1	5	ŝ	5	2	2	ŝ	3
		rernie	0	149495	153737	175017	176585	178479	373679	401592	426587	427483	452280	452914	539649	580252	606519	606754	631304	644278	771313	773055?
	2	237881	1	1	3											30						
c.,9	2	244721		M	M				13		M	M					34				43	46
j sasopi	3	247165		M	M				14		M					31		37				
	2	250191		2		5		11	15	17					27							
c.,9 c	2	270603			M	M		M				M	M	M								
5030p1	1	274158	M		M	M		M	16					M	28	32						
	4	277866		M							M						35				44	
	2	280930		M	M			M				M										
5d 5 0p 3	1	284036	M		M		8	M		18		M			29	33				40		
	3	284058		M1	M		1				M	M							1			
······	0	298862		-		M							26									
.9.	3	305272			M		9	M						M					39			-
3d 3 6p 3	1	305903	M		M	M		M		19			M							41		
	2	308613		M?	M	M		M2						M?								
	1	315254	1		4	6.															1	
×	2	319159				7	10	12														
5 3 9 7 - 0	3	556721									20	23								42		
j su ipi	3	562057									21	24			1						45	
5.19.0.0	3	744960										25						38				••••••
sa 8p?	3	749193	1								22						36					

TABLE IV. Newly classified lines of Bi VI.

z indicates the classification according to the state of ionization by Arvidsson.⁶ The number in the column labeled "Designation" refers to Table III. b = broad, d = diffuse, a = found in arc.

2	Inten- sity	λ(vac.)	ν(vac.)	DESIGNA- TION	Discrep- ANCY	z	INTEN- SITY	λ(vac.)	ν(vac.)	Designa- tion	DISCREP- ANCY
	2	189.274	528334	46	0	VI	4	710.32	140782	12	+2
VI	2	214.318	466596	45	+4	VI	5	713.08	140237	6	. 0
	1	230.710	433445	44	-2	VI	2	723.56	138206	38	-1
VII	2	276.397	361798	34	. 0	V	10	738.17	135470	21	0
VI	1	277.591	360242	40	0	VI	104	742 12	121566	∫ 24	-8
VI	1	278.095	359589	39	0	VI	100	745.15	134500	1 M1	+3
VI	1	292.080	342372	30	+1	VI	Å	768 11	120124	20	0
VI	3	295.530	338375	41	· 0	V I	<b>'</b>	100.44	130134	M2	- 0
VII	0	300.225	333084	31	+3		1	773.76	129239	23	+1
VI	4	304.278	328647	35	+6	V	3	775.43	128961	13	-3
VI	6	306.718	326032	39	0	V	1	777.05	128692	9	-5
VI	5	309.976	322606	22	0	IV	2	790.425	126514	14	-2
VI	2	314.982	317478	25	+1		1	809.82	123484	15	+1
VI	3	326.695	306096	32	-2	V	3	850.66	117556	18	0
VI	3	337.590	296217	33	-1	IV	4	930.65	107452	8	-1
	1	345.479	289453	27	+5		1	993.10	100695	2	-1
IV	8	376.660	265491	28	. 0	VI	7b	1004.75	99527.2	16	-6.2
IV	8	391.215	255614	29	1	VI	4	1045.066	95687.7	19	+1.3
V	4	619.13	161517	4 .	0	IV	2	1131.39	88386.9	1	+.9
	1	651.82	153417	26	-1		0b	1142.11	87557.2	42	-1.2
V	3	660.52	151396	17	-5	IV	4	1188.45	84143.2	3	8
	2bd	669.99	149256	45	0	IV	0	1330.19	75177.2	5	+3.2
V	4	693.29	144240	. 7	-2	V	0	1394.46	71712.3	11	+.3
VI	5	700.90	142674	$ \begin{cases} 10 \\ 36 \end{cases} $	0 0						

term is computed as 562,600 cm⁻¹ for Pb V and as 761,800 cm⁻¹ for Bi VI. The ionization potentials are 69.40 volts and 93.97 volts respectively, which values are 1.3 percent and 6.6 percent higher than those obtained by the extrapolation method by Mack. In Fig. 1 a Moseley diagram is given.

The author wishes to express his appreciation to Chairman R. C. Gibbs of the Physics Department of Cornell University, where most of this work was done, and particularly to thank Professor J. E. Mack and his associates of the University of Wisconsin for their friendly and helpful correspondence.

SEPTEMBER 15, 1936

## PHYSICAL REVIEW

VOLUME 50

# The Pressure Effect on the C Band of Strontium Hydride

R. F. HUMPHREYS AND W. R. FREDRICKSON, Syracuse University, Syracuse, N. Y. (Received June 6, 1936)

At low hydrogen pressures the emission spectrum of the 3808A band of SrH shows a sharp break-off at R(18), while at high pressures the lines extend to R(49). The presence of lines with high K values allows an accurate determination of the constants of the upper state. Analysis shows the presence of an uncoupling term -0.1415 (K-1) in the upper state. Perturbations due to resonance and predissociation are present. The electronic configurations and probable dissociation energies are considered.

F the known five band systems which the spectrum of SrH exhibits the C system at 3808A is particularly interesting, because its main band, the (0,0), has a line structure that is intense and well defined to a certain point and then abruptly breaks off, leaving no further trace of lines to be found. An analysis of this band has shown it to be a  $C^2\Sigma \rightarrow N^2\Sigma$  transition.¹ The only other band observed in the system is a weak (0,1) band, which permitted a sufficiently complete analysis to show the same kind of abrupt breaking-off in rotational structure. This phenomenon has been attributed¹ to predissociation of the upper ("C") state due to the influence of a neighboring electronic state (probably the Dstate).

An analogous situation had long been known to exist in the C system of CaH.² Later Grundström and Hulthén³ obtained its spectrum with the pressure of the hydrogen surrounding the calcium greatly increased. The bands were no longer predissociated, but were more or less normal in appearance. Bearing in mind the close analogy between the spectrum of CaH and SrH it was thought worth while to investigate the effect of pressure on the SrH C band.

#### EXPERIMENTAL PROCEDURE

The spectrum was obtained from an arc between a copper cathode and a copper cup containing metallic strontium as an anode. The arc burned in an atmosphere of hydrogen at pressures varying from a few mm of Hg to 700 mm of Hg. The cathode was water cooled, and a continuous stream of water was directed on the glass walls of the tube containing the arc. With this arrangement it was possible to operate the arc continuously for two or three hours.

A 120-cm concave grating with a dispersion of 5A/mm in the second order was used in a Rowland mounting. Exposure times were of the order of four hours for second-order plates.

### ANALYSIS

When the C band is photographed with a hydrogen pressure of a few mm of Hg its rotational structure breaks off at K' = 19. When the pressure is increased to 400 mm or more the band no longer exhibits this predissociation but displays a fairly normal structure. In addition to the (0,0) very weak traces of the (1,1) and (2,2)bands appear. The assignment of the K values is given in Table I. Combination differences permit these assignments up to K = 28, beyond which the P branch becomes too weak to observe. For K > 28 the R lines were fitted to a Fortrat para-

542

¹W. R. Fredrickson, M. E. Hogan, Jr., and W. W. Watson, Phys. Rev. 48, 602 (1935).
 ² Mulliken, Phys. Rev. 25, 509 (1925).
 ³ Grundström and Hulthén, Nature 125, 634 (1930).