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Further results of an extensive study of trajectories asymptotic to a known family of unstable
periodic orbits in the earth's dipolar magnetic field, carried out by means of Bush's differential
analyzer, are presented in this paper. A detailed discussion is given of our methods of deter-
mining asymptotic trajectories by means of the differential analyzer and by numerical integra-
tion of a whole family at a time; comparison of the results obtained shows the absence of
systematic errors of any consequence in the mechanical integrations and exhibits the precision
attained with the differential analyzer. The families of asymptotic trajectories are then analyzed
systematically in order to determine the main cones for latitudes up to 30'. This leads to the
theory of the azimuthal effect and a study of the region in the vicinity of the zenith.

f "N a preceding paper' to which reference should
~- be made for a complete statement of the
problem treated here and of our methods of
attack, we gave results obtained from the
analysis of some three hundred asymptotic
trajectories to a known family of unstable
periodic orbits found by means of Bush's
differential analyzer' and discussed fully . the
sections of the main allowed cones of cosmic
radiation by the meridian plane, which in turn
led us to the theory of the north-south asym-
metry. Those results were presented at the time
with reservations as far as a critical. examination
of their precision was concerned. We have now
been able to complete the calculations announced
in our preceding paper, to which we shall return
below, with the result that suspected systematic
errors are so small that they can well be neg-
lected. Certain other points which were then
summarily sketched will now be developed in

'G. Lemaitre and M. S, Vallarta, Phys. Rev. 49, 719
(&936).

2 V. Bush, J. Frank. Inst. 212, 447 (1931.}.

detail; in particular we shall present here a full
discussion of our method of determination of
asymptotic trajectories by means of the differ-
ential analyzer and a fairly complete determina-
tion of the main allowed cones for geomagnetic
latitudes up to 30'. The last two sections will be
devoted to the analysis of the azimuthal effect
and to a study of the region in the vicinity of
the zenith.

1. THE DETERMINATION OF ASYMPTOTIC TRA-
JECTORIES BY MEANS OF BUSH S

DIFFERENTIAL ANALYZER

The differential equations of motion to be
integrated are (reference 1, Eqs. (4), (5))

d x/da =(1/(2yq)4)e" —e '+e 2*cos X,
(&)

d9/da'=e '*sin X cos X —(sin )/cos' X).

Our problem is to find the solutions of these
differential equations corresponding to tra-
jectories asymptotic to a known family of
unstable periodic orbits.
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Before asymptotic trajectories can be studied,
a full theory of the family of periodic orbits
mentioned above must be available. The family
in question was discovered by Stormer' who was
also. able to calculate two of its members by his
method of numerical integration. A complete
treatment of the family has been given by one
of us4 so that any one of its members can be
calculated without great trouble and with high
precision. While the details of these calculations
would be out of place here and consequently are
left for a separate paper, the results are repro-
duced in Fig. 1 where the small circles are the
points on the periodic orbits of phase 0', 15'
30', 90' which were computed. The equi-
phase line 90', i.e. , the locus of the vertices of
the periodic orbits which is important for our
purpose as further disc;ussed in a later section
of this paper, has also been drawn in the figure.

Solutions of the system (1) representing the
desired asymptotic trajectories and valid in the
vicinity of the periodic orbits have been given
by Bouckaert other methods which we have
recently developed and to which we return
below are now available. In order to extend
these solutions to the region of low energies and
high latitudes, however, recourse must be had
in general either to methods of numerical inte-
gration such as the one outlined in a later section
of this paper or to methods of mechanical
integration such as that developed by Bush, '
because in general the system (1) cannot be
integrated in terms of known functions. Since
the knowledge of several hundred asymptotic
trajectories is required for a satisfactory treat-
ment of our problem the erst line of attack
involves a very large amount of tedious labor
while the second can still be carried through in
1Tluch shorter time.

An outline of our method of determination of
asymptotic trajectories by means of Bush's
differential analyzer has already been published. '
Here we add only such details as are needed for
a full understanding of our line of attack and of
the results obtained. A first integration of the
system (1) yields

' C. Stormer, Zeits. f. Astrophys. .l, 237 (1930).
4 G. Lemaitre, Ann. de la Soc. Sci. de Bruxelles A54, 194

(1935).' L. Bouckaert, Ann. de la Soc. Sci. de Bruxelles AS4„174
(1935).

Fio. 1'. The family of periodic orbits.

dx/d~= J'((e'*/16m, ') e+c—os ),)e- d~,

dX/d~= J'(e '*—(1/cos' X)) sin X cos Ado.

When written in the above form, suggested by
S. H. Caldwell, the system (1) may be immedi-

ately set in the differential analyzer now available
at the Massachusetts Institute of Technology
and solved mechanically. This. differential ana-
lyzer has ordinarily four input tables and six
integrators, but an ingenious change in the
machine connections devised for the present
problem by S. H. Caldwell enables the use of
the output table simultaneously as an input
table so that in all 6ve input tables and six
integrators were available. Of these five input
tables, two are needed to introduce in the
machine the functions e4*/16', 4 —e* and e '~, and
three more to introduce cos' X, 1/cos' X and sin X

cos ). Of the six integrators, two are required to
integrate the product of the two functions under
the integral sign in each of the two equations (2),
and two more to integrate the derivatives dx/da
and dX/da so as to obtain x and X. The output
table is then controlled so as to plot x as abscissa
and X as ordinate.

The scale factors are determined from the
range of x and ) which it is desired to explore.
For the present investigation the scales were so
chosen that x could vary from —1.0 to 0.7, )
from —0.7 to 1.0, dx/do and dX/dg from —0.5
to 0.5. The limits of the last two functions were
found from a study of the energy integral
(reference 1, Eq. (5)).
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TABLE I. Data for some of the fundamental Points.

+1
x

0.075
0.100.
0.125
0.150
0.175
0.200
0.225
0.250
0.275
0.300

1
pp

3.1587
3.2127
3.2829
3.3670
3.4647
3.5790
3.7114
3.8608
4.0352
4.2342

0.87

1.166

1.211

1.281

1.371

0.90
yl

1,022

1.062

1.133

1,266

0.93

0.850

0.890

0.959

1.051

0.96

0.721
0.738

0,821

TABLE II. Values of the initial angle for p&
——0.91 for all

equatorial runs.

0.075
0.100
0.125
0.150
0.175
0.200
0.225
0.250
0.275
0.300

—0.753—0.531—0.252
0.084
0.380
0.760
1.276
1.914
2.745
3.650

3.2265
3.2605
3,3056
3.359
3.431
3.511
3.596
3.689
3,788
3.907

0.968
0.978
0.992
1,008
1.029
1.053
1.079
1.107
1.136
1.172

The initial conditions are introduced into the
machine knowing x, ) and the initial slope tan g.
The knowledge of x and ) is sufficient to set the
starting points on the input tables. To set the
starting points on each one of the six integrators
it is necessary to calculate the values of the
functions e ',
e4*/16yr4 e~+co—s' X, e '*—1/cos4 X,

sin ) cos X, dx/da. and dX/da.

The first four are computed from the known
values of x and X, the last two from the initial
inclination g by the relations

xd/d

anal

cos g. ; dX/da. =Pl sin g, (3)

where P is given by Eq. (5).'
For the efficient operation of the machine it

is important that the calculations described
above be carried out rapidly and accurately.
For this purpose master sheets were prepared in
advance giving the value of the required func-
tions from x= —0.125 to x=0.350 by intervals
of 0.025 along the equator where I' reduces to
e' /16'&' —(e *—1)' and for ev'ery degree of
latitude along the line 0=0 where P=e"/16'&4.

As already mentioned in our preceding paper, '
for convenience trajectories were always started
either from the equator or from the line 0=0.
Once the master sheets are ready it is easy to
calculate the initial conditions while the machine
is tracing a trajectory, i.e. , in the interval of a
few minutes.

As already mentioned in our preceding paper
one method for the determination of asymptotic
trajectories consists in choosing a point on the
equator within the periodic orbit and the initial
slope arbitrarily. The initial conditions having
been set on the machine, a trajectory is started
in the direction towards the periodic orbit; the
initial slope is then adjusted until the trajectory
neither intersects nor falls short of the periodic
orbit. More precisely let us suppose that the
initial slope has been estimated not too far from
the correct value, and assume for the sake of
exemplificatio that the trajectory cuts through
the .periodic orbit. The initial angle is then
increased by equal amounts, say of 0.008 radian
until the trajectory falls decidedly short of the
periodic orbit. The angle is then decreased by
steps of 0.004 radian until the trajectory again
cuts through, then increased by steps of 0.002
until the latter falls short, then again decreased

by steps of 0.001 until it cuts through. In this
way it is usually possible to determine the
critical angle for an asymptotic orbit within
around 0.001 radian by making from five to
ten trials, each one taking from four to six
minutes. That the critical angle is actually
determined by this method with a precision of a
few thousandths of a radian is confirmed by
independent calculations of asymptotic tra-
jectories to be more fully discussed in a later
section of this paper.

In order to be free from the need of finding
the critical angle for every equatorial point in
the manner outlined in the preceding paragraph
a method of interpolation was devised which
permits the calculation of critical angles at
intermediate points once the values at certain
fundamental points have been ascertained. Let
&=1—p~ and let

(4)

g being the initial critical angle for a given value
of x. The quantity po may be calculated from
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TABLE III. Initial conditions for various values of pI and
values of x (0.075 along the equator.

Pl 0.89 0.91
' =x

0.93 0.95

—0.100—0.075—0.050—0.025
0
0.025
0.050

1.160
1.155
1.163

1.050
1.050
1.055

0.981
0.965
0.957
0.956
0.960

0.890
0.866
0.852
0.840
0.840
0.842

0.780
0.747
0.721
0.707
0.703
0.705
0.711

Bouckaert's formulas' for values of x greater
than about 0.1 and is given in Table I above.
Let now p, be the corresponding quantity for
yI&1. We have

P= '0/~'~

where q is now determined by the trajectories
traced by the differential analyzer as outlined
above. Let us place

p =po —v6. (6)

Our process of interpolation consists in finding
for certain fundamental points and then

calculating v from it by the use of the formulas
written above; v is then plotted to an appropriate
scale as a function of y~ for each chosen value of
x through which we desire to have an asymptotic'
trajectory. For interpolated points v is deter-
mined from these plots knowing x and yI, p is
then calculated and finally q. Table I gives the
data for some of the fundamental points.

As an example of the use of the method of
interpolation we give in Table II the values of
the initial angle for y&

——0.91 for all equatorial
runs.

Similar tables were prepared for all other
values of yq which were studied (reference 1,
p. 722). In all over one hundred asymptotic
trajectories starting from equatorial points were
thus determined. In order to verify interpolated
values a few trajectories were continued as far
as the periodic orbit with very satisfactory
results. That the precision of interpolated tra-
jectories is as high as that of trajectories through
fundamental points will be shown in the next
section.

For points on the equator for .which po cannot
be calculated from Bouckaert's formulas, i.e. ,

for very small and for negative values of x, the
initial angle was determined from the condition

TABLE IV. Values of the critical angle for fundamenta/ points
for y1=0.85.

x (deg. )

—23—20
0
5

10
15
20
25
26
27
28
29

2.170

1.253
1.140
1.035
0.915
0.794
0.603
0.562
0.523
0.515

2.326
1.885

1.451
1.235
0.975
0.915
0.830
0.750
0.600

that an asymptotic trajectory must be tangent
to the envelope of the asymptotic family which
was known from those asymptotic trajectories
already found. As a further verification the
trajectories were continued in some cases as far
as the periodic orbit, but because of the sharpness
of the turns when such asymptotic orbits oscillate
in the vicinity of the periodic orbit the ordinary
condition for an asymptotic trajectory cannot
be ascertained with precision by means of the
differential analyzer. As an example we give in
Table III the initial conditions for a few of the
values of y~ we have studied and values of
x(0.075 along the equator.

As regards asymptotic trajectories starting
from the line 0=0 the procedure was similar to
that described above: the criterion determining
an asymptotic trajectory was that it must be
tangent to the envelope of the asymptotic family.
The interpolation was made directly on the
initial angle, the procedure being to plot to an
appropriate scale q as a function of X for each
value of y~ from a few fundamental points and
then to read off from the plot the value of q for
intermediate values of ) . Curves showing the
relation between the critical angle and the
latitude for all values of yI along the line 0=0
have already been published (Fig. 5, reference 1).
As an example the values of the critical angle
for fundamental points corresponding to yI ——0.85
are given in Table IV:

Examples of families of asymptotic trajectories
are given in Fig. 2. In this figure portions of
trajectories intercepted by the earth are shown
dotted, i.e. , for these portions a parallel to the
'A-axis cuts a preceding part of the trajectory.
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A few trajectories of the third kind and a self-

reversing doubly asymptotic trajectory with
self-reversal point r~ (cf. reference 1, sec. 4,
Fig. 4) are clearly seen.

0.7

0,6

2. PRECISION OF ASYMPTOTIC TRAJECTORIES

In this section we present an outline of a
method of calculation of asymptotic trajectories
which we have developed recently in order to
investigate systematic errors in- the trajectories
found by means of the differential analyzer.
The details are reserved for a paper to appear
shortly in the Annales de la Societe Scientifique
de Bruxelles. It will be seen that systematic
errors in asymptotic trajectories determined by
means of the differential analyzer are small

enough that they can well be neglected, except
for very high latitudes, and that the precision
attained throughout is very satisfactory.

The family of asymptotic trajectories is
represented by a trigonometrical series in ~o.+p,
where 2'/co is the period and p the arbitrary
phase of the periodic orbit. We have

x= P[yi„.(0) sin k((uo. + q)

+eel.„(0.) cos k(&uo. +q)] (7)

and a similar expression for t with amplitudes
p, , v in which k takes even integral values in the
expansion for x and odd values in that for ).
The asymptotic behavior of y(o.) and e(0) is
exhibited by the expression for zI, .

e(,.(0) =e,+s~'e" +e,."e'" +, (8)

where z~, sA, ', s~,
" are numerical coefficients of

which the first corresponds to the periodic orbit.
The variational equation then yields a set of
linear and homogeneous equations the determi-
nant of which must vanish. This con.dition, i.e. ,

the "secular equation, " determines the real
characteristic exponent Q. We have thus com-
puted the first and second order terms in e" .
The second order term of zo is rather large, so
that a more convenient approximation had to
be derived. This approximation is suggested by
previous investigations of one of. us and of
Bouckaert' for the case where p& differs slightly
from 1. Writing

0.5

0.2

0./

-0.5 -0.$ -O.y -Og -aP -O. I 0 O.i 0.'2 0.'g g 0.$

Fro. 2. A family of asymptotic trajectories. p& =0.93.

we have taken as approximation a solution of
the equation

(g~/Qde. )2 = g2(1+$~+egP) (10)

2aP/ax= P[Y~(o)—sin k((oo+q)

+Z~, (o) cos k(sea+ y)g. (11)

where the constants 6 and c are determined more
or less empirically. By this means it was found
possible to use the expansion up to a distance
0.048 from the periodic orbit. Careful numerical
checks proved it to be correct to the sixth
decimal. Difference tables of the functions y(o.),
s(o.) and the corresponding functions p(0), v(a.)
in the expansion for 3 were then prepared for
the six preceding values of'0. with an interval
corresponding to coho- = 15', i.e. , 60.=0.293243.
While the functions y, s, etc. , vary very slowly
the corresponding trajectories perform many
very close oscillations in the vicinity of the
periodic orbit so that their calculation by the
usual methods of numerical integration would
be extremely difficult, in any case requiring a
much smaller interval 60-. For this reason instead
of integrating numerically the differential equa-
tions of motion in order to find the trajectories
we have preferred to integrate the differential
equations of the amplitudes y, s, etc.

The differential equations satisfied by these
functions can be found as follows: replacing x
and 'A by their series expressions and expanding
in a trigonometrical series we may write

e *'&'& =e "(1+u), (9) This defines 7 and Z as a function of y, e, p
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-0.4 -0 2 -0.2 -O.I 0 O. I 0,2 0g 0.4 0,5 0 f

0.5

which yields upon integration and elimination of
integration constants by taking second differ-
ences

p4t- 0.$
6'xe*'"'=6'JJ'Xe*" do' (14)

O. I-

0-.

-O.I-

-0.2-

04-

0,5-

al

«-. .0

.08

"0,$

When ~=0 we fall back on Stormer's method of
numerical integration. The question now is to
devise a suitable method of integration for the
present equation.

Writing oto =w(Io+t), (15)

where I, is the ordinal number of the integration
points and m is the interval of integration, and
supposing that the values of x„, X are known
up to n= —1, the question is to compute the
value of xp as a function of x ~, x 2, X ~, 8X ~

=X ~
—x ~, 8'x ~

——bx ~
—bx 2, etc. The left-hand

member of the equation

"O.tt! -OJ -OP -Gl 0 O.l O.Z O.J OA 0.$ Q6

tt'xe t=w'fJ'Xe tdt, (16)

FIG. 3. Calculated family of asymptotic trajectories.
y1 =0.929898.

and v because of the equations of motion (1).
For practical use of this equation we may take
advantage of the fact that with the exception of
sp, p~ and v~ all the other terms are small and
powers higher than the second may be neglected.
In any- case v& can be made to vanish by a
suitable change of the phase angle. Once the
phase has been shifted explicit expansion can
be derived with coefficients depending on s'p and
the new p~', and included in a convenient
computation schedule. Finally the phase must
be shifted back to its original value.

The equations to be integrated are of the form

where o, =icon is xp —2e x &+e ' x 2. X may be
expressed as a function of X ~ and its successive
differences by

X(t) =P(1/k!) (I+1)((+2) (t'+k) tt'Xo. (17)

If D =8/Btv. we have

ff Ine«tdp —DnfJ'e«tdp —D«(e«t/ )tt2

and the final relation is

xo ——2e «x t —e '«x 2+Qw'(1/k!)(D+1)(D+2)

~ ~ ~ (D+.k)(1 —2e «+e 2«/tt ) $"X

=2e x t —e ' x 2+pat„b'X t.
tfe

Returning to real variables and writing aI, ——bl,

+ic& we have finally the working formulas
(d'yt/do') 2kto(dzt, /do) ——kco'yt, ——Yt„

(12)
(d'zt, /do')+2kto(dyt, /do) kto'zt, Zt„— ——

(d'/do')(xe' ) =Xe'" (13)

and similar equations for p& and vt, . Ordinary
methods of integration such as Adams' would
have been impracticable as they would be
tantamount to an attempt to calculate a sine
from its second order differential equation using
intervals of 15', 30', 90' according to the
value of k. Introducing the complex notation
x=y+iz, X= I'+iZ and taking the case 0=1
as typical, the above equations may be written

yp=2 cos (o'w y y
—y 2 cos 2coQJ

+2s' ~ sin ~m —s' 2 sin 2~m

+w'(P bt, ft'F, Pct, tt "Z—t) (20)

and

s'p=2s y cos 0)'K —8'
g cos 2(d'R

—2y ~ ssn com+y ~ sin 2com

+w'(Qbt, .f't'Z t+Q ct, !!"+F g). (21)
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The coefficients bI„cI„.have been computed up to
& =4, i.e. , up to and including the fourth differ-
ence and for coho. =15', 30', 90' correspond-
ing up to the sixth harmonic.

The integration has been actually carried out
for twenty steps until the region was finally
reached where the change of the integrated
functions became so large that the integration
could no longer be continued without splitting
the interval of integration. The family of twenty-
four trajectories, symmetrical in pairs, has been
computed and is shown in Fig. 3. For a table of
the computed points reference must be made to

0$-

0.8-

02-

0/-

OJ O,I

E5

3. DETERMINATION OF THE ALLOWED MAIN CONE

The theory of the main cone, or region of full

light, has already been outlined in our previous
papers. A sketch of our method for its determi-
nation and its representation, once the families

TABLE V. Calculated values of the inclination g of three
fundamental traj ectories at the equator.

0.150
0.225
0.300

g (mach. )

0.890
0.959
1.053

7/ (calc.)

0.887
0.953
1.045

Diff.

0.003
0.006
0.008

the complete paper. The small circles shown in
the figure are calculated points for which the
phase is 0', 15', 90' and correspond with
those shown on the periodic orbits (Fig. 1).

The comparison with the asymptotic tra-
jectories found by means of the differential
analyzer is shown in Fig. 4. It is seen that the
agreement is excellent particularly as regards
the position of the cusp Co. One of the machine
trajectories starting from x=0.275 and X=O'
happens to have a value of po equal to that of
the calculated trajectory and both coincide, the
others have di:fferent values of yo but that they
all belong to the same family can be tested by
analyzing their general shape and proved by
the fact that they all are tangent to the same
envelope. As a matter of fact the consistency
between calculated and machine trajectories is
as good as that found among the machine
traj ectories themselves. A more precise com-
parison may be made by calculating the value
of the inclination g of three fundamental tra-
jectories at the equator. The result is shown in
Table V.

FrG. 4. CalcUlated asymptotic trajectories compared with
trajectories obtained with differential analyzer. y& ——0.93.

of asymptotic trajectories have been found, has
also been given in our preceding paper (reference
1, p. 724). The coordinates of a representative
point are sin 0 and cos 0 in g, for positive
particles 0 and g are counted positively eastwards
and northwards, respectively. Let us assume an
asymptotic trajectory passing through a point
of coordinates x and ); g is then the angle with
the zenith direction, i.e. , with a parallel to the
x axis and 0 the angle between the trajectory
and the meridian plane which can be immediately
calculated from Stormer's formula (reference 1,
Eq. (1)).The energy r in Stormer's corresponding
to the given x is then given by Eq. (2).' We thus
obtain a point of the representation of the cone
for the given values of the energy and the
latitude.

For the systematic utilization of the asymp-
totic trajectories traced by the differential
analyzer two lines of attack are open. Either
one may. first calculate from Stormer's formula
the lines 0=const. for all values of p~ for which

asymptotic trajectories were studied and then
measure the values of the angle g along these
lines noting at the same time the value of x.
This is equivalent to determining sections of the
cones of different energies and at different lati-
tudes by planes parallel to the meridian plane.
Suppose that the lines tII=O', 5', 10', have
been computed for y~ ——1.00, 0.99, 0.98, 0.78,
and the angles g measured along each. Then
plots may be readily constructed giving the
angle g as a function ) for each value of y~ and,
besides, the energy r as a function of x for each
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value of y~. This is the method used for 0=0'
in our preceding paper' where diagrams giving q

as a function of ) for each value of yj are given
(Fig. 5, reference 1). It has not been used for
other values of 8 because the computation of the
lines 0= const. is laborious. Once these have
been found, however, the calculation of the cone
is immediate.

An alternative line of attack is to measure the
inclination q along the lines A=const. for each
value of y~ which was studied, noting at the
same time the value of x where the intersection
between the asymptotic trajectory and the
chosen line A=const. takes place. Graphs may
then be drawn showing g as a function of r for
each chosen value of X, for example ) =0', 5',
10' and different values of y~. ' An envelope
is characterized on these qr-diagrams by a point
of tangency of. g as a function of r with a line

parallel to the g-axis, i.e. , by a turning point for
a maximum or minimum value of r. A cusp is
characterized by the coalescence of two such

points; it is a point of inflection with a tangent
parallel to the g-axis. These peculiarities of the
gr-diagrams are reflected in the representation of
the cone; their significance has already been
taken up fully in our preceding paper. ' If on the
gr-diagrams a value r =const. is picked out it is

readily seen that the boundary of the cone
progresses eastwards (for positive particles) as

y~ increases.
The main cones for ) =0', 20' and 30' are

reproduced in Figs. 5, 6 and 7. The small circles
are the points calculated by Bouckaert. ' It is
seen that except for high zenith angles and low

energies the agreement is again quite satis-
factory. The extreme northern part of the main
cone where the shadow of the earth makes itself
felt is given with reservations as a detailed
analysis of the trajectories of the second and
third kinds outside of the meridian plane still
remains to be made.

4. THE AZIMUTHAL EFFECT

We begin by recalling that in addition to the
main cones determined as described in the

' This laborious piece:of work was carried out by Mr. L.
de Borman and forms part of his master's thesis at the
University of Louvain, 1936, from which Figs. 5, 6 and 7
are taken.

Fir. . 5. The main cones. Energies in millistormers. Positive
particles, northern hemisphere.

previous paragraph there is also the region of
penumbra. While the full analysis of the latter
must be left to another occasion prelimioary
results obtained v ith the differential analyzer
and earlier by one of us7 show that there are
bands of light of complicated structure running
alongside the boundary of the main cone alter-
nating with bands of darkness and extending
eastwards (for positive particles) clear over to
Stormer's limiting cone' of total darkness at the
value of 0 corresponding to the given latitude
and energy and to y&

——1. While the chief contri-
bution to the azimuthal effect as described later
in this paragraph undoubtedly comes from the
main cones the theory here presented must be
improved later, particularly as regards the east-
west asymmetry, so as to take the penumbra
into account. Another correction must also be
made to take care of the eccentricity of the
earth's magnetic center. This correction at a
given point on the earth affects only the energy
scale and can readily be computed by methods
already given in a previous paper. '

A consideration of the main cones drawn in
Figs. 5 to 7 shows immediately that the range of

' G. Lemaitre, Ann. de la Soc. Sci. de Bruxelles AS4, 162
(193S).' C. Stormer, University Observatory, Oslo, Publication
No. 10 (1934).' M. S. Vallarta, Phys. Rev. 4'7, 647 (1935).
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F)G. 8. The azimuthal effect for a=45'.

that it has been studied practically to the
exclusion of all other azimuths. Fig. 9 shows a
comparison of the energy ranges involved in the
east-west and north-south asymmetries, where
the former refers to positive particles and the
latter to particles of either sign. It is immediately
apparent that for purposes of gaining informa-
tion as to the energy distribution of the primary
radiation the study of the north-south asym-
metry is superior to that of the east-west, first
because the penumbra acts mainly on the east-
west asymmetry but hardly on the north-south,
second because the energy range is smaller and
third because the north-south is independent of
the particles' sign, Except that the interpretation
of the east-west asymmetry is made difficult
because of the penumbra, a comparison between
the east-west and north-south asymmetries fur-
nishes a means, already pointed out in a previous
paper, of determining the percentage of particles
of either sign. A consideration of the curves in

Fig. 9 shows that if the primary cosmic radiation
is made up entirely of particles of one sign the

Fto. 9. The east-west and north-south asymmetries. Posi-
tive particles, northern hemisphere.

north-south asymmetry must be considerably
smaller than the east-west. A mixture of positive
and negatives on the other hand, decreases the
east-west asymmetry but leaves the north-south
unaffected, provided the energy ranges covered
by positives and negatives are not the same.
Thus Johnson's measurements in Mexico of the
north-south and east-west asymmetries would
seem to leave room for positive and negative
primaries. "

It should also be noted that once the cones
have been calculated it is quite feasible to take
the finite aperture of a multiple coincidence
counter system into account. Failure to consider
this point may easily lead into error when
interpreting experimental results.

5. THE MAIN CONE IN THE VICINITY OF

THE ZENITH

A particularly interesting region from the
point of view of intensity measurements is the
region around the zenith to which Zanstra" has
already called attention. We intend to devote
this section to the study of this region.

~ T. H. Johnson, Phys. Rev. 47, 91 (1935);48, 290 (1935).
"H. Zanstra, Naturwiss. 22, 171 (1934).



ALLOWED CONE OF COSM I C RADIATION 503

/.00

900

800

700

tLj ~
E LU~ IK;~ lQ

w
l/l 0
&w

ClK
2.00

600

5'00 /.00

$00

$00

20

LATITUDE

Fto. 11.The angle between the main cone and the meridian
plane and the energy gradient at the zenith.

/00

In the vicinity of the zenith the boundaries of
the main cones run almost parallel to one another
and intersect the meridian plane at a small

angle P which increases with latitude. The value
of the energy r for which the boundary of the
main cone goes through the zenith gives the
minimum energy that a particle must have to
reach the earth in the vertical direction at a
given latitude. This can be readily found by
interpolation from the data contained in Figs. 5

to 7 or from the equation of the line 0 =0

e*=2y~r = cos' ), (22)

where the dependence of y~ on longitude in the
zenith direction is given by Fig. 5 of our pre-
ceding paper. ' This minimum energy is given in

Fig. 40 together with other curves the signifi-

cance of which will be taken up later. The angle

f is plotted as a function of latitude in Fig. 11
together with the gradient dr/ds at the zenith.
It is seen that the gradient varies slowly with
the latitude, nevertheless it is of importance
when interpreting vertical in tensity measure-
ments made with triple coincidence counter
systems of large aperture. The orientation of the
counter system with respect to the direction P
is also a significant datum of the experiment.

/0 20 $0 $0 $0 60 70 80 90
L R T'I T LI D E

Frr. 10. Minimum energies in the region near the zenith.

The importance of the knowledge of the least
vertical energy, emphasized by Zanstra, arises
from the fact that, if the spectrum of the cosmic
radiation is a continuous function of the energy,
then interisity measurements in the vertical
direction made beginning at the equator and
extending sufficiently far north or south give a
ready means of estimating with fair accuracy
the energy lost by a cosmic-ray particle while

traversing the atmosphere. It is sufficient to
find the latitude beyond which the vertical in-

tensity remains constant. Unfortunately neither
the vertical intensity measurements of Auger
and Leprince-Rin guet' nor those of Clay"
between X=10' and ) =20' under 20 cm of
lead extend sufficiently far north or south to
make this estimate possible.

Another interesting question which can now
be answered is as to the energy range which can
reach a point of the earth of latitude ) coming
from directions at a zenith angle s. For latitudes
up to 30' the energy range involved can be read
off directly from Figs. 5 to 7. The corresponding
curves are plotted in Fig. 10. Their significance
will be clear from the following example. Suppose
we take ),=30' and ask what is the energy range
which may arrive within the cone bounded by
the directions at 45' with the zenith. The lower
curve - for s =45' then shows that 362 milli-

stormers is the minimum energy that a particle
'4 P. Auger and L. Leprince-Ringuet, Nature 133, 138

(1934).
""J. Clay, Physica 2, 308 (1935).



504 HAFSTAD, HEYDENBURG AND TUVE

must have to arrive at 45' from the zenith (and
in a certain azimuth) while the upper curve.
gives that if it has a minimum energy of 540
millistormers it may arrive from any direction
within 45' of the zenith. Similarly 408 milli-
stormers is the least energy a particle must have
to arrive at 30' from the zenith, while 510
millistormers is the least energy required to
arrive from any direction within 30' of the
zenith. In addition the limiting energies for
which the main cone is completely open is
given by the uppermost curve. This curve
consists of two parts: first, the locus of the
vertices of the periodic orbits (cf. Fig. 1) and
then the limiting energy for the limit p&

——0.78856
for which periodic orbits disappear. This curve
takes into account only the trajectories of the

first kind. " Finally the lowest curve gives the
limiting energy for Stormer's limit p&

——1 for
which all directions are forbidden.

It is a pleasure to renew the expression of our
gratitude to the various*persons, mentioned in
our preceding paper, who have helped us to carry
out the research of which this paper is another
fruit. One of us is indebted to the Massachusetts
Institute of Technology for continued support
while this investigation was being completed at
Louvain, and to the University of Louvain for
providing numerous facilities during the period
of his residence there.

"For trajectories of the second kind a somewhat higher
energy limit can be readily found from the relation
e ~2 cos A, above which the acceleration d'x/do-' is neces-
sarily positive. For the same reason negative values of y& are
of no interest.
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Excitation-Curves for Fluorine and Lithium

L. R. HAFsTAD, N. P. HEYDENBURG AND M. A. TUvE, Department of Terrestrial 3fagnetisrn, Carnegie Institution of
8'ashington
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Observations on the alpha-particles emitted by lithium
and the gamma-rays emitted by lithium and fluorine when
bombarded with protons of energies up to 1000 kv have
been improved by the use of a corona-free, 10,000-megohm
voltmeter-resistor for voltage-measurements. By this means
the accuracy of our measurements has been brought to
two percent on an absolute scale and about one percent on a
relative scale. Oscillograph-studies of voltage. -fluctuations
have shown that up to 1000 kv the voltage is constant to
~1.4 percent "peak-ripple. " For the distribution-curve
for voltage versus time the "half-maximum" width is about
one percent at 1000 kv. Results thus far obtained for the

gamma-ray resonances are as follows:

Voltage

328 kv
440 kv
892 kv
942 kv

Element

F
Ll
F
F

Half-width

& 4kv
11 kv.

(12 kv
(15 kv

There is an indication of a weak multiplet structure in
fluorine in the region between 500 and 700 kv with a broad
but fairly prominent "resonance" at 650 to 700 kv. The
existence of a resonance in lithium at 850 kv was not
confirmed.

INTR oDUcTIQN

~ UR work on proton-disintegrations last
year' demonstrated the existence of sharp

resonance-effects in nuclear disintegrations which
called for voltage-control considerably more
refined than that given by any apparatus then in
existence. Such work depends essentially on the
accurate reproducibility of specified voltages,
and this requirement is not su%.ciently well

'Hafstad and Tuve, Phys. Rev. 48, 306 {1935);also
Tuve, Hafstad and Dahl, Phys. Rev. 48, 315 {1935).

satisfied even by rectifier and condenser installa-
tions, unless means for voltage-measurements
more accurate than spark-gap or particle-range
determinations are provided. Unless very special
precautions are taken, sphere-gap measurements
are rarely reproducible to better than five per-
cent. Even the official calibration-curves for
sphere-gaps have been changed by more than
ten percent during the past two years. The
absence of reliable information on the range-
energy relation for protons would prevent the


