
LETTERS TO THE ED ITOR

The Coulomb Energy of He'

The assumption' ' that, except for the Coulomb repul-
sion between protons, the neutron-neutron and proton-
proton attractions may be taken as equal leads to the con-
clusion that the difference in binding energies of H' and
He' should be due entirely to the Coulomb repulsion. This
statement is tested here by evaluating the Coulomb energy
of He' using the variational wave-function

the Azz being taken from Table I of reference 2. The 'A and
v were determined in (1) by varing t so that the best value
of the energy E was obtained using the method described
in the appendix of the above reference. Then
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The Coulomb energy is, after normalization of P,
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The Hamiltonian used was the symmetrical form
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where r23 is the distance between the two protons. The
integration gives
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in which v=ap. The Coulomb energy E,' given by the
wave-function (2) was also calculated, the v being chosen
in this case to make

E' = J'p pH& pdr idr23

a minimum. The results are summarized in Table I.
It is seen that Ecand E,'vary much more slowly than Qa.

This is because the wave-functions are forced out of the
potential well as the range of forces is decreased. Interpola-
tion gives E, =1.37mc~ for a=16(1/Qa 2.3&&10 '3 cm). .

The experimental difference in the binding energies of H'
and He3 is 1.58~0.18mc2. 3 It should also be mentioned that
at a=16, A„v((1—g/2)A„and thus the actual Hamil-
tonian is not quite completely symmetrical. Unlike particles
will on the average be a little closer together than like
particles and therefore the Coulomb energy calculated from
the correct slightly unsymmetrical Hamiltonian would
possibly be slightly smaller. This effect is probably negli-
gible at a=16. There may thus be a slight discrepancy
between the calculated Coulomb energy and the experi-
mental difference in the binding energies of H~ and He'
which is however very small compared to the Coulomb
energy itself. The results, then, support the view that aside
from the Coulombian interaction the proton-proton and
neutron-neutron forces are equal. Interpolation gives
E= —14.2mc' for the energy of H' (experimental value

—16.8mc'). The agreement is rather good and the wave-
function (1) may be considered as a fairly close approxima-
tion to the correct H3 normal state eigenfunction. The values
given in the last column of Table I are taken from Table I
of reference 2 and are given for comparison of the varia-
tional with the corrected "equivalent two-body" calcula-
tions of the H' binding energy.

Since the wave-functions (1) and (2) give practically the
same Coulomb energies it was thought desirable to plot,
Fig. 1, the expressions

f(r ) = J'Pd
fp(r23) = J'4 p'dry.

TABLE I. Calculated Coulomb energies. Energy units mc2 =O.610 MEV,
length units $jc(Mm)& =8.87 X10» cm.

Using Po

a A zz v —Eo Erco

Using P

v X —E

10 65 7.9 16.37
20 98 10.8 10.08
30 129 12.6 5.30

1.22 7.0 —0.0145 17.62
1.42 9.2 —0.00884 12.72
1.54 10.4 —0.00689 9.27

EI

1.25 17.9
1.44 14.3
1.55 11.6

FrG. 1. Functions f(r22) and fo(r28) plotted against r28.
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Frc. 2. Functions r~3fo(r~3) and r23f(F3) plotted against r23.

These functions represent the probability of various separa-
tions of the two protons in the two cases. Except for the
large r», which contribute only small amounts to the
Coulomb energy, the larger region of integration in which

fo(r») 0' f(f») is sufhcient to practically balance the bigger
contribution of f for small r». In Fig. 2 the quantity r» f(r»)
is plotted as a function of r». The areas under the curves are
proportional to the Coulomb energies since E,= J'1/r»
Xf(r»)d~» and the angle integrations merely introduce a
factor 4m. . (The curves for a = 10, 20, and 30 are very similar
and only those for 0|=20 are included. ) The writer wishes

to express his gratitude to Dr. Eugene Feenberg for sug-

gesting these calculations and for the advice and sugges-
tions which he gave while they were being made.

SIMON S. SHARE
University of Wisconsin,

August 4, 1936.

i Feenberg and Knipp, Phys. Rev. 48, 906 (1935).
~ Feenberg and Share, Phys. Rev. 50, 253 (1936).
~This value was given by Professor H. Bethe in a private com-

munication to Dr. Feenberg. Bethe and Bacher give the value 0.76
%0.14 MEV (1.49+0.27mc2) in Rev. Mod. Phys. 8, 147 (1936).

On the Intensity of X-Rays Reflected from Zinc

The senior author has recently investigated theoretically
the temperature dependence (usually represented by the
factor e '~) of the intensity of x-rays reflected from
anisotropic crystals. ' He found that in crystals with
hexagonal symmetry M has the form

M = (a cos' P+b sin' P) sin' 8/X', (1)

where P is the angle between the normal to the reflecting
plane and the principal axis. The constants for Zn and Cd
were calculated from the known elastic constants, using
the simple Debye model of a solid. The constants for Zn are

TABLE I. Constants at T=298'K.

given in the first row of Table I (the original calculations
must be corrected by factors of 1,27 and 1.30 for Zn and
Cd, respectively).

During the publication of this paper an article by
Brindley appeared on the intensity of x-rays reflected from
Zn. ' In a second paper' he has compared these and further
experimental results with formula (1). He finds that a
better fit with the experiments is obtained by using the
semi-empirical constants in the second row of Table I,

In this laboratory Jauncey and Bruce have investigated
Zn by the method of diffuse scattering of x-rays. 4 In the
third row of Table I are given the values of c and b which

they find best fit their experiments, and which also give
an excellent fit with Brindley's experiments. These dis-

agree still more with the theoretical constants of the
first row.

One possible source of this discrepancy has been sug-

gested by Brindley. In interpreting the experiments all

anisotropy of the atoms has been neglected. A second
possible source of error lies in the assumptions of the
simple Debye model. In this letter the authors report the
modifications introduced by partially taking into account
the discrete structure of a solid.

In a linear lattice with atoms of only one mass, the re-
lation between frequency and wave-length is given by'

v= (c/md) sin (md/X). (2)

Here d is the lattice spacing, and c is the velocity of
waves long compared with d. If this relation is used in

the three-dimension lattice in place of the usual relation

v=c/X, (3)

m/2
the factor (2/vr) (x/sin x)'dx=1.42 is introduced into

0

the expression for both a and b when T)O. It is interesting
to note that a decision between (2) and (3) cannot be made
from specific heat data. '

The values of the constants obtained by using (2) in

place of (3) are given in the last row'of Table I. A further
improvement was sought by taking the integration in wave
number space over the region appropriate to a hexagonal
close packed lattice, in place of over a spherical region.
This introduced no appreciable change in either a or b.

Although this change in the theoretical value of the con-

stants is in the right direction, it is not sufficient to obtain
agreement with the experiments as interpreted by the
assumption of isotropic atoms. The decision as to whether
the source of the remaining discrepancy lies in the assump-
tion of atomic isotropy or in the model for a solid used in

the theoretical calculations, can only be made by experi-
ments at different temperatures.

CLARENCE ZENER

S. BILINSKY

Wayman Crow Hall of Physics,
St. Louis, Missouri,

June 23, 1936.

Simple Debye Model
Brindley
Jauncey and Bruce
Modified Debye Model

0.75 A~
1.295
2.34
1.06

0.42 A2
0.51
0.68
0.595
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