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To obtain an estimate of the relativity correction in nuclear problems, the Klein-Gordon
theory is applied to the common forms of interaction between the neutron and the proton.
Because there is an appreciable region of space in which the zero-point energy is enormous, the
relativity effect is larger than would be supposed by mere inspection of binding energies. For the
deuteron, it amounts to several times the binding energy if the forces have a range around 1072
cm; for ranges about 3 X107 cm it decreases to a few percent of the binding energy.—The
calculations were based on two types of assumed interactions: the rectangular potential hole

and the error function potential.

CCORDING to the calculations of Wigner,*
Massey and Mohr,? Feenberg,® and others
the binding energy of light nuclei can be ac-
counted for with reasonable accuracy by sup-
posing the existence of interactions of various
types between the elementary particles. It is
common to these calculations that they represent
the total energies as differences between large
potential and slightly smaller kinetic energies,
thus involving zero-point energies which are
many times as great as the total energy of the
nucleus. This circumstance is responsible for the
fact that the binding energies are quite insensitive
to the form chosen for the interaction; it allows
the interaction to be specified very simply by two
parameters, of which one is the width and the
other the depth of the potential hole. But it also
raises a question as to the basic meaning of the
assumed interactions, whose precise form is
rendered practically unobservable by the large
amount of zero-point energy which they gener-
ate. Yet, while one- might wonder about the
ultimate satisfaction which the use of potential
functions in connection with nuclear particles is
likely to give, attention should be called to
another point which is not quite so trivial and a
little more definite.

It has to do with the extent to which one may
safely neglect relativity corrections in the cal-
culations mentioned. To make the argument
precise let us refer to the simplest, the ordinary
potential type of interaction, between a proton
and a neutron, and represent it first as a poten-
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tial well with vertical walls, of width ¢ and
depth D. The depth of this hole which will
produce the correct binding energy of the
deuteron (2.1 MEV) is easily calculated with the
use of Schrédinger’s equation for any given width
a. It is also easy to compute, in simple classical
fashion, the relative speed, », of proton and
neutron as a function of a. One then obtains the
set of values listed in the first column of Table I.
It is thus clear that the problem here under dis-
cussion invites inquiry.

There exists no rigorous relativistic theory for
the problem of several bodies. Even if spins are
entirely ignored, the two-body problem as it
presents itself here, is incapable of solution. For
the purpose of estimating the order of magnitude
of the error in a classical calculation it may be
adequate, however, to replace the two-body
problem by a one-body problem using the
relativistically incorrect procedure of introducing
the reduced mass and relative coordinates. The
results thus obtained are not to be trusted
numerically, but they lie within a range of un-
certainty peculiar to the nonrelativistic calcu-
lations. The one-body problem may then be
solved by use of a relativistic modification of the
Schrédinger equation. Since we do not know how
to deal with the spins anyway, the suggested
form is that of Klein-Gordon:

VY + (/B (E= V) = Ef=0. (1)

This, then, takes account of no other relativistic
effects than the change of mass with velocity.
If a well of width a and depth D is again chosen
for V, the solution is of the same form as that of
the ordinary Schrodinger equation, the energy
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TABLE 1. Binding energies of the deuteron computed under
various conditions.

v
- Declass —Drel.
a X101 (cm) 2 Declass (MEV) | Drel, (MEV) (MEV)
1 0.71 121.2 108.9 12.3
1.5 49 58.7 55.8 29
2.0 .38 35.7 34.8 0.9
2.5 31 24.93 24.37 0.56
3.0 .27 18.69 18.40 0.29

being determined by
tan (ka) = —«/k.

But « and % have slightly different meanings:
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where W is the binding energy.

Entries in the second and third columns of
Table I show how, for a given value of ¢ and the
experimental binding energy of the deuteron, D
is modified by the procedure here outlined. It is
to be observed that the two values of D differ by
more than 5 times the binding energy of the
deuteron for ¢ =10"" c¢m, but only by 13 percent
of the binding energy for a=3X 1071 cm.

To compare the differences between the second

and third columns of Table I with the binding -

energy of the deuteron (2.1 MEV) is not an
altogether fair test of the theories. One should
rather compute the effect of the decrease in D
upon W. This was done for a variety of values of
a, and it was found that the absolute error in W
is about one-half the difference between the
two D’s.

The potential functions used in the literature
(cf. in particular references 1, 2, 3) are not always
of the simple type we have chosen. We wish to
point out that there is no simple way of relating
the results obtained for a rectangular hole to
other potential functions. The average kinetic
energies for the same binding energy may be
widely different for two different potential
troughs having approximately equal half-widths.

Feenberg® has done considerable work with
potential functions of the type—Ae—2, He has,
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in particular, succeeded in fitting the constants
A4 and « to the observed binding energies for the
deuteron and the alpha-particle, and suggests the
values 4=165 Mc?, 1/a}=1.34X10"8 cm. It
was thought of interest to compute the mag-
nitude of relativity corrections for this case.

A simple method for determining the effect on
the binding energy is the following. We write Eq.
(1) in the form

(H+W+F)e=0. )

Here W=M¢?—E, the binding energy, and
(H+W)y=0 is the Schrodinger equation. The
“perturbing”’ function F is then seen to be

F=—1/2M)(W+V)~ 3)

If the integral over this function, weighted by
¥?, is small, we may apply ordinary perturbation
theory to compute the effect of F on W, and we
may substitute the empirical value for W in (3).
Thus

AW=—(1/2Mc*) S (W+ V)42 dr. (4)

This expression was evaluated for Feenberg’s
potential function with the values of 4 and «
cited above, ¢ having been found by numerical
integration of the Schrodinger equation. The
result obtained was AW = —1.17Mc*=0.6 MEV.
It amounts to an error of 28 percent of the
binding energy. While this seems large, it must
of course be remembered that a much smaller
relative change in the constants of the potential
function would annul it.

Relativity effects are evidently not serious as
long as the range of the nuclear forces is as large
as or larger than 3X 107 cm. It may be that
relativity corrections are of greater importance
in heavy than in light nuclei.

Unfortunately, an attempt to make a correct
relativistic calculation of the binding energies is
blocked, chiefly by the following facts:

1. The use of simultaneous potentials is incon-
sistent with the relativistic point of view. For
interactions between electrical charges this dif-
ficulty can be circumvented by the use of re-
tarded potentials. Can this be done for nuclear
constituents? Formally it is possible. The Hamil-
tonian for a group of particles then contains,
besides the classical terms, an infinite sequence
of terms in negative powers of ¢, the velocity of
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light, that in ¢ being absent. But such pro-
cedure is, strictly speaking, not permissible. In-
classical electrodynamics, the retarded potentials
which one encounters are solutions of Maxwell’s
equations; they appear as necessary generaliza-
tions of Coulomb’s law. In nuclear physics,
where the potential functions used hitherto are
entirely arbitrary, the use of retarded functions
has no meaning whatever.

2. Even if, following the classical analogy,

MOORE

retarded potentials are introduced, no exact
calculation can be made. For there will then
appear damping terms corresponding to the
classical radiation reaction, permitting no sta-
tionary solution. The first of these terms is of the
order ¢3. To avoid them, the sequence must
therefore be broken off after the term in ¢2. But
in that case, the approximation would hardly be
satisfactory and the calculation of doubtful
utility.
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The relation between contact e.m.f. and the impulsive potential necessary to initiate a
vacuum spark has been studied for a liquid mercury cathode. The magnitude and time of
application of the impulsive potential were determined by a cathode-ray oscillograph so that
possible distortion of the mercury surface produced by the electric field could be evaluated. For
impure mercury no definite relation could be found. However, for carefully distilled mercury the
relation between the work function and breakdown field was in qualitative but not in quanti-

tative agreement with theory.

HE impulsive potential necessary to produce
a vacuum spark has been studied by Beams!
and Quarles.? Beams has investigated the field
emission from a liquid mercury cathode using
impulsive potentials of approximately 10~¢ sec.
- duration and, by means of a rotating mirror, has
shown that the luminosity appears at the anode
before the cathode which suggested that the
breakdown was initiated by field emission from
the cathode. Quarles has measured the breakdown
fields between a mercury cathode and a molyb-
denum  anode along with the accompanying
variation in the work function of the mercury.
His results, although qualitative, were not in
quantitative agreement with the theoretical
predictions of Fowler and Nordheim.?

The present investigation was undertaken to
extend the work of Quarles over a wider range
and to find, if possible, the effect of impurities on
the relation between field emission and the work
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function. Also the applied impulses were in-
vestigated with a high speed cathode-ray oscil-
lograph in order that the effect of possible
distortion of the mercury surface on the field
measurements, as suggested by Tonks,* could be
evaluated.

OUTLINE OF PROCEDURE

The method consisted in measuring both the
contact. potential difference between a hot
platinum filament and the mercury surface also
the potential necessary to cause a vacuum spark
between the mercury and a molybdenum sphere.
The contact potential is a measure of the
difference between the work functions of the two
surfaces.> ¢ The work function of platinum
is assumed constant. Moreover, Cassel and
Gliickauf” have found that mercury vapor does
not affect the work function of platinum. There-

¢ Tonks, Phys. Rev. 48, 562 (1935).

5 Monch, Zeits. f. Physik 65, 233 (1930).

6 Eckart, Zeits. f. Physik 47, 38 (1929).

7 Cassel and Gliickauf, Zeits. f. physik. Chemie 18 Abt.
B 4-5, 347 (1932).



