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An Attempt to Calculate the Number of Energy Levels of a Heavy Nucleus
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Experiments on slow neutrons, and theoretical considera-
tions of Bohr have shown that heavy nuclei possess an
enormous number of energy levels which are very closely
spaced if the nucleus is highly excited. A crude method is
suggested for calculating the spacing between these
levels. The method is statistical: The individual nuclear
particles are supposed to move in a simple potential hole,
and the energy of the complete nucleus is supposed to be
the sum of the energies of the individual particles. A
critical discussion of these assumptions is given in section 5.
The problem then reduces itself to the calculation of the
"entropy" of a Fermi gas containing a given number of
particles A and having a given excitation energy Q above
the zero point energy of the Fermi gas (cf. section 2 and 3).
This calculation gives the total number of levels of the
complete nucleus in a given energy interval irrespective of
the angular momentum, which will, for most of the levels,
be very large. For the theory of neutron capture, it is
necessary to calculate the density of nuclear levels with a
given anf.ulur momentum I (section 4). The spacing of
nuclear levels is found to depend on the product of the

mass number A and the excitation energy Q of the nucleus,
and to be roughly given by

6=4.1 106x4e '/(2I+1) volts
x= (AQ) l/2. 20,

Q being expressed in MV and I being the nuclear spin. For
the capture of slow neutrons by nuclei of medium weight
(A around 100), 6 is of the order 50 to 500 volts. The spac-
ing between adjacent levels decreases rapidly with increas-
ing atomic weight. For given atomic weight, the spacing
of the nuclear levels responsible for neutron capture is
wider if the capture leads to the formation of a radioactive
nucleus than if a stable nucleus is formed. This explains
the experimental fact that only moderately large cross
sections are found for the capture of thermal neutrons
leading to radioactive nuclei while the very largest cross
sections are all connected with the formation of stable
nuclei. The dependence of the spacing on various factors is
discussed (section 6); the results seem to be in qualitative
agreement with experiment.

1. STATEMENT OF PROBLEM

OHR' has given strong reasons for the exist-
ence of a very great number of closely

spaced energy levels for a highly excited heavy
nucleus. Breit and Wigner' and Bohr' have shown
that the assumption of such levels leads auto-
matically to a completely satisfactory explana-
tion of all phenomena connected with slow

neutrons, in particular the selective absorption,
the high capture cross section and the large ratio
of capture to scattering. Various investigators'
have measured the position of the neutron reson-
ance levels for several substances. The reso-
nances are found to lie at neutron energies rang-
ing from about 0.1 volt (Cd) to about 50 volts
(I). These measurements indicate that the spac-
ing between adjacent energy levels of the nuclei
concerned in the energy region investigated is

very small, maybe of the order of 100 volts or
even less.

' Bohr, Nature 13'7 (1936).' Breit and Wigner, Phys. Rev. 49, 519 (1936).' Frisch and Placzek, Nature 137, 357 (1936); Weekes,
Livingston and Bethe, Phys. Rev. 49, 471 (1936); Rasetti,
Fink, Goldsmith and Mitchell, Phys. Rev. 49, 869 (1936);
Collie, Nature 13'7, 614 (1936);Fermi and Amaldi, Ricerca
scient. 1, No. 7—8 (1936).

It is the purpose of this paper to give some
fairly crude calculations leading to an estimate of
this spacing. We consider a nucleus containing N
neutrons and Z protons. The total number of
particles (mass number) will be denoted by
A =X+Z.The nucleus will have a certain ground
state of energy Uo. We are interested in the
energy levels of the nucleus which lie by a certain
amount Q higher than the ground state, and we
ask for the density of energy levels in this region,
i.e. , for the number of levels between Q and

Q+dQ which we may' call p(Q)dQ. 1/p(Q) will

then be the average spacing between neighboring
levels.

We shall be particularly interested in such
values of Q which are just sufficient to dissociate
the given nucleus A into a neutron and a residual
nucleus of atomic weight A —1. These energy
levels will be important for the capture of slow

neutrons by the nucleus A —1. In general, the
"dissociation energy" Q, i.e. , the energy set free
when a neutron is captured by the nucleus A —1,
will be of the order 8 MV. This figure applies if
the packing fractions of the nuclei A —1 and A
are about equal, and represents the excess of the
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neutron mass over one mass unit. In particular
cases, Q will be lower or higher than 8 1VIV, but it
will probably lie in the interval from 5 to 10 MV
for most cases (see section 6).

2. METHOD OF CALCULATION

In order to estimate the "density" p(Q) of the
levels of the nucleus as a whole, we shall start
from the statistical model of the nucleus; in other
words, from the individual-particle picture. We
are fully aware of the crudeness of this assump-
tion, but reasons will be given below (section S)
for the belief that the density of levels will come
out fairly correctly from this picture, although
the wave function of a particular state of the
nucleus will differ greatly from that obtained
by this picture.

In this model, we shall obtain, first of all, a
certain set of energy levels for the individual
neutrons and protons in the nucleus. The posi-
tions of these levels will depend on the potential
which we assume to act on the particles. The
ground level of the nucleus as a +hole is then
obtained by filling all the lowest "individual"
states with particles and leaving all the higher
individual states unoccupied. An excited level of
the nucleus will be obtained by taking one par-
ticle out of one of the low individual states and
putting it into one of the higher individual states,
or else by leaving two of the "low" individual
states empty and having two higher individual
states occupied instead, etc. In fact, for excited
levels about 8 MV above the ground level of the
nucleus, we shall in general have a fairly large
number (of the order ~A) of the individual
particles "excited. "Since there is a great variety
of "low" individual states which may be left
empty, and an equally great variety of "high"
states which may be occupied by a particle, it is
obvious that there will be a very large number of
different ways in which a certain excitation
energy of the nucleus as a whole may be realized,
particularly if the energy is sufficient to have
many particles excited.

The problem of finding the number of these
different modes of realization is identical with the
problem of finding the "probability number"
(entropy) of a Fermi gas whose energy is given
and has a value larger than the minimum possible

energy for the gas. The solution of this problem is
well-known in Fermi statistics, and it is only
necessary to go one step farther in the accuracy
than is usually done because usually only the
logarithm of p(Q), i.e., the entropy, is wanted
while we want to calculate p(Q) itself correctly
to quantities of the relative order 1/A or 1/~A
where A is the total number of particles.

Since we know that Fermi statistics is ap-
plicable to our problem, the probability that a
given individual par-ticle state of energy e is
occupied, will be

f(e) =1/(ee~' —r&+1)

where P and |are two constants which have to be
determined from the total number of particles N
and the total energy U of the nucleus. As regards
the number of particles, we have to consider
neutrons and protons separately because both
these numbers are given for a given nucleus. We
shall, for the present, refer to neutrons alone and
let U denote the total energy of the neutrons
alone; U is then, of course, not given, but we
must, later on, integrate over all possible distri-
butions of the total nuclear energy between
neutrons and protons.

The conditions determining P and I are then

&=Zf(&') U= 2&'f(&') (2)

the sums extending over all possible states of an
individual neutron. We now assume that the
neutrons and protons are contained in a box of
volume

ft = (4v/3)R', (3)

with C = (2'i'/97r) (MR'/fP) ' (4a)

Then (2) reduces to

N = (3/2) Cff(e) ~'*d e,

U = (3/2) Cff(e) e'd e

(s)

(Sa)

The number p(U)dU of energy levels of the
nucleus as a whole, between U and U+d U, is

where R is 'the nuclear radius. Then the number
of neutron levels of energy between e and &+dc is
given by the well-known formula

q (e)de = (2"'"/3v) (MR'/lt') &elde = (3/2) Celde (4)
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found very easily from Sommerfeld's4 derivation Inserting this into (7a), we find
of the Fermi statistics. We have

(10a)
log P JdU''p(U')e~r~' /'~' = P log (1+e«r '*~)

=(3/2)C J'e' de log (1+e/'&r '~) (.6)

The notation is the same as in Sommerfeld's
paper (Eqs. (3), (11)),except that his n has been
denoted by —p|'. The left hand side of (6) is
known to have a sharp maximum for N' =X and
U'= U. This fact makes it easy to determine
p(U) once the right hand side of (6) has been
evaluated. 1/p(U) gives directly the desired
spacing between the nuclear levels.

3. EVALUATION OF THE NUMBER OF LEVELS

Since the excitation Q of the nucleus is small
compared to the total kinetic energy U of all the
nuclear particles, the "Fermi gas" is highly de-
generate and the formulae known from the theory
of metals may be applied. We have

&=Ci'(1+( '/8)(Pf) '+ -)."
U= 5''"(1+(5~'/8)(pi) '+ ) (7a)

C may be regarded as a given constant, essen-
tially determined by the nuclear radius. There-
for g is practically determined by the number of
neutrons:

Therefore the excitation energy is

Q= U —U = 1~2' 1/2P-2

wherefrom

p '=4Q/vr'Ci'ol

or, by inserting (7)

(11a)

P-'=(2/ )(i..Q/&)-: (12)

P is the average excitation energy of the indi-
vidual particles (width of the "tail" of the Fermi
distribution).

Numerically, po turns out to be somewhat, but
not very much, larger than Q. Therefore p ' is of
the order QN **. In other words, the excitation
energy is, in our model, shared between Ã~

particles.
The right-hand side of (6) can be transformed

by partial integration; we obtain exactly (i.e. ,

not only for large p)

(3/2) CJ'e*'edlog (1+e//&r '&)

=PCJ'.'*de/(e«r +1-)= PU3. (13)

Therefore

C'=log P J'd U'p(U')e/'r' ' N' /" '

= (5/3) p U pi & —(14)

I- —(~/C)2/3(1 (~2/12) (p|)—u+. . .) (8) Inserting (7) (7a) we get

fo = (&IC)"' (9)

and the total kinetic energy of all neutrons (cf.
(7a), "zero-point energy")

U, = -,'Cg, '~'= -,'N|-, .

From (8) and (9), we have

(9a)

f, in its turn, determines U except for a small
term of the relative order (Pi) '. There will,
therefore, be a large zero-point energy of the
nucleus, plus a small additional (excitation)
energy. The latter determines the constant P.

If the nucleus is in its ground state, P will be
infinity. In this case, the "Fermi energy" be-
comes (cf. (8))

C = PCS "/'-'~'(Pi)-'= -'~'Cp-'I-:

and with (11a) (9)

~= PQ/i. .)

(14a)

(15)

This formula contains the fundamental result of
our calculations. The following calculations,
down to the end of section 4, represent only
refinements.

In order to obtain p from (14), (15) we remark
that the argument of the logarithm on the left-
hand side in (14) is essentially p(U) because the
integrand has a sharp maximum for U'= U.
Therefore we put

I =~..(1-( ' »/)( Pi)-'+" ).

4 Sommerfeld, Zeits. f. Physik 47, 1 (192'7).

(10)
/(Q) =&O' Q)&"" (16)

where X is a slowly varying function of Q. We
shall determine X by carrying out the summation
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(5/3) U' —N'g'= —,'~2CP'-&g'~, (18a)

—:(U'-U) -N'(r'-|-) = --:C'~(r'-~)'
+!~'«':(P'-'-P-'), (»b)

leaving out some terms of the relative order (Pt) '. In-
serting into (18), we have

f= —C@'L-'(0'—f)'+-'~'(P' —P)'(PP') 'j (19)

The exponential in (17) behaves thus as e ~(t' t')' ~(P' P)

as should be expected. The differences f' —& and P' —P may
be expressed in terms of N' —N and Q' —Q, respectively,
using {9)and (12}.Neglecting again some small terms, we
get

N ~, , |- 1 (Q' —Q)2f= ——— —',(N' —N)'—+— . (19a)
2 goQ N 4 Q

This may be inserted into (17) and the integrations carried
out. Then

1 +no cc m N
dQ' dN' exp ————(N'- N)'

y(N, Q) — — 6 gQ

N (Q —Q)' ~ fQ

Therefore we find finally (cf. (16), (15))

p(Q)dQ=48 *'e &~&'r&'dg/Q (21)

for the number of states of the system composed
of all the neutrons, having a total excitation
energy between Q and Q+dQ. A similar expres-
sion holds for the protons, Therefore the total
number of levels of the nucleus as a whole per

1S

p(Q) = J'dgi exp (~Q'Qi/fi) '*

+~(Zgg/i 2) i) /48gig2, (22)

where Q2 ——Q —Qi is the excitation energy of the
protons.

The integration is facilitated by the fact that, for all
existing nuclei, practically N/t &

——Z/&2. The Fermi energies
t i/2 are given by (cf. 9}

in (14), regarding X as constant over the range of
N' and U' involved. We firid then from (14)

X(X, Q) J'dQ' exp [Pf(1P—N)
P-(&' &-)+C(g') C—(Q)3=1, (»)

having replaced the integration variable U' by Q'.

In order to evaluate (17), we consider the exponent

f (P', k') =N(N' —N) —P(U' —U)+(5/3)P'U'
—P'g'N' —(5/3)P U+PgN = ({5/3)U' —N't-') (P' —P)

+-.'P(&'- U)-N'P(~'-r), (»)
where P' and g' are the parameters corresponding to N'U'.
Using the formulae (7), (7a) repeatedly, we find by an
elementary calculation

so that
gi = (N/C) I, g2 ——(Z/C)',

. a = (N/gi)&= O'Ni«
a2 ——m-(Z/g, }& =~C&Z»'.

(23)

(24a)

The ratio c2/ai is, even for uranium, only (146/92)'«=1.08
and for other nuclei even closer to unity. We put therefore

and have
ai ——ag ——g =x C&(-,'A)'« (24)

a = 7r(A/21 o) '*, (27a)

where (0 is the average Fermi energy for protons
and neutrons. Then (26) reduces to

p(Q) —i v2i. -,'Q—5/4A —',ew(AQl to) * (27)

The value of fo follows from (9) and (4a):

i 0 = (A/2C) ' = (3 ~3'**/8) (ii A i/3M ) (28)

Now the nuclear volume is proportional to the
atomic weight A, so that

(29)

where ro may be calculated from the experimental
data on n-radioactivity. Assuming 8= 9 10 "cm
for the average radius of radioactive nuclei,
corresponding to A about 222, we have

ro ——1.48. 10 "cm (29a)

and i 0
——(3'~'~i/8)(l'i'/Afro ) =21.5 MV. (30)

Putting now

x = vr(AQ/fo)-: = (AQ/2. 20) *' (31)

(Q in MV), we have for the spacing between
neighboring levels

1/p(Q) = 12 (2~)-~gxie-'. (32)

For medium atomic weight, let us say A. = 11.0,
and for Q = 8 MV, we have x = 20 and the spacing
(32) becomes

5 8 10'4.5. 2 10 '= 0.4 volt. (32a)

p(Q) = J'dQ1e'(@1 +(@ @» )/48Q1(Q —Q1}. (25)

The exponential has a sharp maximum for Qi ——-', Q. We
may write

Q +(Q-Q)'=~2Q (1--(2Q -Q/Q}+ ) {25a)

while the denominator may simply be replaced by 12Q'. The
integration gives then.(Q) =-'(-/ ) 2 Q- ""-". (26)

From its definition (24a), the constant a may
be written
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This is obviously too small compared to the ex-
perimental spacing between neutron resonance
levels. The reasons will be explained in the follow-
ing section.

4. STATES WITH GIVEN ANGULAR M OMENTUM

Most of the nuclear energy levels calculated in
the preceding section will have very large angular
momenta. Already the angular momentum of an
individual particle in a heavy nucleus is apt to
run up to about 6 (see Eq. (44a), below), and if
the momenta of a fairly large number of particles
are added, extremely large momenta for the
nucleus as a whole may result. On the other hand,
only small momenta of the nucleus A are of any
importance for the capture of slow neutrons by
the nucleus A —1. The nucleus A —1 will, in its
ground state, have a certain total angular mo-
mentum ("nuclear spin"), say Io. The neutron
must have orbital momentum l =0 in order to be
captured by the nucleus A —1, and therefore
total momentum j=-'„considering its spin. The
resulting state of the "compound nucleus" A
must therefore have an angular momentum
Io~-,'. Of all the levels of the nucleus A, we should
therefore consider only those with angular
momenta Io+-', ; and Io will be small compared to
the "average angular momentum" of all possible
states of the nucleus A. Only a small fraction of
the levels considered in the preceding section will

fulfill this condition. '
We want to calculate the probability that a

nuclear level has a given angular momentum I.
In order to do this, we assume that each indi-
vidual particle in the nucleus has the same
angular momentum j. (The value of j will be
calculated later; also we shall then consider the
variation ofj among the particles. ) The resultant
of all individual particle momenta will be the
moment of the nucleus, I. Following the usual
procedure, we consider the componertts of the
angular momenta in a given direction z. Let riz;

be the z-component of the momentum of par-
ticle i, and 3f the z-component of the total
momentum. Then

M=gm;, (33)

' The importance of the angular momentum for the
number of nuclear states was first pointed out to me by Dr.
Placzek, to whom I am indebted for this suggestion.

We want to know the probability of a given re-
sultant M, each value of mi from —j to +j being
equally probable. Provided the number n of
particles is large, the probability for a given 3SI is
given by the "Gauss formula"

P(jtf) = (3~~i (i+1)) 'e '"'"""'+" (34)

p (~) —g,g~M2 jn {35a)

where a is a constant independent of n while c„depends
on n.

(2) The average of M', vis.

id' =p M'p„(M),

must be given by

~~=pm;m, =pm 2+pm;fm, =nm2
ik i f4=k

(36)

(36a)

since two diA'erent m's (mi and mq) are independent of each
other, and the average value of an individual m is zero.
Now

m'= Q m'/(2j+1) =-',j(j+1).
m= —j

On the other hand, we have from (35a)

i8' =fp„{M))II'dM/ fp„dM =n/2n.

Comparing (36a), (36b), (37), we find

=3/2j(i+1).

(3) The total probability must be unity:

f" p.(~)dX 1=
This fixes the constant c in (35a).

(36b)

(37}

(37a)

(38).

The number of states of given total angular
momentum I is, as is well known, equal to the
number of states with M =I, minus the number
of states with 3/I =I+1.Since p(Q)dQ is the total
number of nuclear states in the energy interval
dQ, the number of states with a given j(E is
p(Q)P(3E)dQ and the number of energy levels
with a given I therefore

p(Q) LP(I) —P(I+ &)]dQ (39)

To prove this, we make use of three facts:
(1) If p„(M) is the probability that n momenta have the'
resultant M in the s' direction, we must have the "addition
theorem"

p,~N(3f) = Qp„(My)p, (M—3fy)
Mg

=f p, (3IIi)p, (M Ply&)dM&.—(34a)

If this is to be generally true for arbitrary values of r, s and
M, then p must be of the form



ENERGY LEVELS OF NUCLEI 337

Since P varies slowly with its argument IV, this
gives

(Q I) = (Q)(dp/~~) +-:. (40)

Here we insert (34), carry out the differentiation
and then put the exponential equal to unity,
since for all cases of interest I2((nj(j+1). We
obtain thus

p(Q, I)=p(Q)(2I+1)(8~) '(3/Nj(j+1))"' (41)

We have now to compute nj(j+1) =n(j+-', )'.
We have therefore to know the average angular
momentum j of the individual par'ticles, and the
number e of the. particles which contribute to
the resultant angular momentum of the nucleus.
We know that in the ground state of a nucleus the
resultant momentum is almost zero, because the
momenta of the various individual particles
nearly cancel each other ("closed shells" ).There-
fore' the angular momentum of an, excited state
of a nucleus comes from the "tail of the Fermi
distribution, " i.e., from those particles whose
energy is larger than the Fermi energy f, and
from the empty states of energy smaller than g.

For jwe have thus to take the average angular momen-
tum of an individual particle whose energy is near g. We
therefore calculate the number of quantum states (per
unit energy) of given orbital momentum / for an individual
particle of kinetic energy g which is enclosed in a deep
spherical potential well of radius R. This problem is
similar to the problem of the 6rst appearance of an electron
of orbital momentum l in the periodic system which was
treated by Fermi. ' The problem can be solved by separat-
ing the wave equation in polar coordinates, and then using
the WKB (Wentzel Kramers Brillouin) method for treating
the radial wave equation. This leads to the well known
"quantum condition"

J'~drI (235/k') a —(/+-,')'/r'1& = (n 1-,')m, (42)

where n is an integer and ~ the energy of the particle. Since
there is one quantum state for each integral value of n, the
number of states of orbital momentum l in the energy
interval dc is

d~ d ~ 2M (l+')' &

'R(e)de =—— df —e-
m de k' r2

3fde p~ fdic

~h2 ~ PZm. k-2r2 —(&+-')2)~
de=—L2m. e-2~ —(t+-'.)2)~. (43)

2' 6

The number of states with a given j is equal to the number
of states with l=j—,-'„plus the number of states with
l =j+-,'. Therefore it will be approximately proportional to

~'(j) =pm''Ii, "—(&+-',)g&,

' Fermi, Zeits. f. Physik 48, 73 (1928).

leaving out factors independent of j and putting the par-
ticle energy equal to f. The number of particles of angular
momentum j will be proportional to (2j+1)m'(j) because
each level j has the statistical weight 2j+1. Therefore the
average value of (j+-',)' is

U+ l)'= J'(2j+1)dj(j+ l}'~'(i)/ J'(2j+ 1)4~'(J)
= (2/5) .2M'R'k 'g. (44}

Inserting the value of |from (30} and R from (29), we
6nd

(j+-')' = (34~'~&/10)A & =0.932&. (44a}

There remains the computation of n, which is the number
of neutrons and protons having energies larger than f,
plus the number of unoccupied states of energy smaller
than f. Obviously, n is about four times the number of
neutrons with energy larger than f. According to the Fermi
distribution, this number is given by

e&de C|&
4'n = (3/2) C =3/2—(1——,'+ ~~ —~ ~ )

~ eP(»—3')+1 p

=3/2—log 2 (45)
p

or, inserting the value'of p from (11a), and of C from (9),
we have

n =—log2 —= —= 1.87 —~ (46)

For 2 =100, Q=8 MV and &=20 MV, this would be
about 12.

With this value for I, and (44a) for j(j+1),we
6nd for the number of nuclear levels with angular
momentum I:
p(Q I) =(2I+1)p(Q)(5/log 2)'

2 "'3 '(-i/Q)-"'A "' (4-7).

Inserting p(Q) from (27), we have

p(Q, I') =2—"i'3—'(5/log 2):(2I+1)i'0—'
~(i./QA)'s'"""" (48)

or

with

and

432 (log 2) '
x'e-'

24'& 5 ) 2I+1
6=Ao/(2I+1)

60=4.1 ~ 10'x4e volts

x= (AQ/2. 20) l, (Q in MV).

(50)

(50a)

(50b)

(50c)

or, introducing the abbreviation x=m(AQ/lo)'*
from (31):

vr4 2lp 5
p(Q, I) =

I I
(2I+1)i. 'x 's (-49)-.

432 Clog 2)

The spacing between two levels of spin I is the
reciprocal of this, vis.
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In applications to the capture of slow neutrons, it
should be remembered that levels with I=ID~-',
of the "final" nucleus are'effective if Io is the
"spin" of the capturing nucleus.

5. CRITICISM OF THE METHOD USED

We have assumed the energy levels of the
nucleus as a whole to be given by the sum of the
energies of the individual particles. In other
words, we have taken into account the interaction
between the particles only insofar as it can be
expressed in terms of a potential acting on each
particle (Hartree method). This method would,
of course, lead to a hopelessly wrong result if we
wanted to deduce the actual characteristics
(wave function) of each nuclear level from it. It
might, however, give fairly correct results for the
number of levels in a given energy interval.

The interaction between particles will thor-
oughly mix the wave functions of the various
nuclear levels obtained from the Hartree ap-
proximation. A group of levels which would have
approximately the same energy in the Hartree
approximation will, by the interaction between
the particles, be drawn out into a spectrum ex-
tending over a wide energy range, probably
several MV. Conversely, the wave functions of
the actus/ nuclear states in a given energy inter-
val will be linear combinations of Hartree wave
functions belonging to much lower as well as
much higher Hartree levels.

From these considerations, it might seem that
the general behavior of the density of levels, as a
function of the energy, might in the average be not
very greatly changed by the interaction between
the particles. There is, however, one fact which

will somewhat invalidate this conclusion: The
lowest level of the nucleus lies certainly lower

than the corresponding Hartree level. It might
seem that Q should be taken as the energy of a
nuclear level as compared to that of the lowest
Hartree level. Then Q would be smaller than the
actual excitation energy counted from the true

ground state of the nucleus, which we may call
Q'. If we inserted Q' into our formulae we should

then obtain too small a spacing between the
nuclear levels.

However, we believe that this error is compen-

sated by the fact that we are considering only

nuclear levels of low angular momentum. From
experience, and from some calculations made
recently on light nuclei, ' we know that the nu-
clear levels of low angular momentum usually lie
lowest, those with high momentum highest
among the levels arising from a given configura-
tion. It may be expected that the levels of low
momentum arising from "excited configurations"
are depressed by the same amount, as compared
to their position in the Hartree approximation, as
the ground level. Thus we may expect our formu-
lae to give us about the correct density of levels
of low angular momentum if we insert for Q the
actual energy of excitation above the ground
state. Of course, the formulae would give us too
high a density of levels of high momenta.

Another reason why we believe our formulae to
be not too far wrong, is the fact that the actual
levels in a given energy interval will mostly arise
from Hartree levels of higher energy, simply
because there is a rapid increase of the density of
Hartree levels with increasing energy. Most of the
levels will therefore be related to the correspond-
ing Hartree levels in a similar way as the ground
state.

6. DISCUSSION OF THE SPACING OF

NUCLEAR LEVELS

The spacing of nuclear energy levels depends,
according to formula (50), only on the product of
the mass number A of the nucleus and the excita-
tion energy Q. Light nuclei, and heavy nuclei at
energies just above the ground level, should
possess very few quantum states while highly
excited heavy nuclei ought to have an enormous
number of closely spaced levels. '

Table I gives the spacing between the levels
with I=0 for various values of the product AQ.
E.g. , if a nucleus of atomic weight 112(Cd)
captures a neutron with the evolution of about

TABLE I. Spacing 60 of nuclear energy levels of sero angular
momentum in volts. *

QA (in MV) 100 200 400 600 800 1000 1200 1500 1800
ho (in Volts) 10' 2.4 10o 1.9-10' 2. 1 ~ 104 2800 450 85 8.5 1.0

*For angular momentum I, the spacing would be b, =ho/(2I+1).

' Bethe and Bacher, Rev. Mod. Phys. 8, 82 (1936)
(quoted as B), $36, Wigner and Feenberg, to appear
shortly in the Phys. Rev. , and unfinished calculations of
Bethe and Rose.
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9 MV energy, QA would be 1000 and the spacmg
of 5 levels of that nucleus only 450 volts. For
higher angular momenta, the spacing between
levels becomes even less, e.g. , for I= 3 it would be
only 1/7 of the previous value, i.e. , 60 volts.
Since two values of the angular momentum
(I= Io~-'„see section 4) lead to neutron capture,
the distance between neutron resonance levels
would be only one half of the values given. The
distance between the highly excited levels of
fairly heavy nuclei is thus very small indeed.

For smaller charge, the spacing between levels
becomes very much larger. If we let Q be again
of the order 9 MV, the spacing of levels for a
nucleus such as Fe(A = 55) will be of the order of
ten thousand volts, and for really light nuclei
such as O(A. = 16) of the order of a million volts.
This explains why simple capture of neutrons is
practically never found with any great intensity
for really light nuclei. It would also mean that the
lowest neutron resonance level for a nucleus of
atomic weight around 50 will, in the average, lie
at very much higher energy than for atomic
weights of the order 100.

Another cause for an increased spacing of levels
would be a smaller value of the excitation energy
Q. In connection with the capture of slow neu-
trons, this would mean that the energy set free in
the capture process would have to be smaller than
9 MV. This energy is given by

Q=Mg i+3II„Mz, — (51)

where 3E~ i, M„and M'z denote the (exact)
masses of the capturing nucleus, the neutron and
the product nucleus respectively, in energy units.
In the average, nuclei of medium atomic weight
have packing fractions of —1/1000, so that
3f~ —M~ ~ will be about 0.999 mass unit. The
neutron mass being almost 1.009, we find in the

average the above-mentioned figure Q=9 MV
(For details, see below).

However, deviations from this figure are to be
expected if either of the nuclei A —1 or A is
exceptionally stable or unstable. The greatest
variations will in general come in through the
product nucleus A. If this nucleus is radioactive,
it is obviously less stable than if it is not. Thus
it is to be expected that the energy evolution Q
is smaller (in the average) if a radioactive nucleus
A is produced, than otherwise. Therefore the

spacing of neutron energy levels will be larger in
the case of the production of a radioactive nu-
cleus, and the first resonance level will lie at a
higher neutron energy. Now it is known from the
Breit-Wigner theory' of neutron capture that the
capture probability for thermal neutrons is, cet.
par. , the larger the lower the energy of the first
resonance level. The probability of capture of
thermal neutrons will, therefore, in the average be

smaller if the capture leads to a radioactive nucleus
than if it leads to a stable nucleus

This fact has been known for some time experi-
mentally and has puzzled investigators to some
extent. All the very large cross sections (of the
order 10 " cm' and more, e.g. , Cd, Sm) for the
absorption of slow neutrons are connected with
the formation of stable nuclei whereas the cross
section for the formation of radioactive nuclei are
in general only moderately large (about 10 "cm'
or smaller). Even more marked differences should
be found in the positions of the lowest resonance
level for neutrons: This level should lie, in the
average, at higher neutron energies for the
formation of radioactive nuclei than for capture
processes leading to stable nuclei.

Apart from irregularities for the individual
nuclei, the value of the "dissociation energy" Q
will depend on charge and mass number of the
nuclei A and A —1. We know that generally
nuclei with even charge and even mass are most
stable, such with odd mass number less stable,
and nuclei of odd charge and even mass number
unstable to the extent of being radioactive. '
Therefore we have to distinguish three cases:

(1) The capturing nucleus A —1 has odd charge. Its mass
must then be also odd. Then the capture of a neutron will

certainly lead to a radioactive nucleus of odd charge and
even mass. The energy Q evolved will be comparatively
small, the spacing between the neutron levels fairly large
and the capture cross section for temperature neutrons
only moderately large.

(2) The capturing nucleus. 4 —1 has even charge and even

mass. The nucleus produced will then have even charge and
odd mass. It may be radioactive or stable. But in any case,
it will have relatively higher energy in its ground state
than the capturing nucleus. Therefore the energy evolved
will again be comparatively small, and probably of the
same order as in case (1), irrespective of whether the
nucleus A is radioactive or not.

(3) The capturing nucleus A —1 has even charge and odd

mass. The nucleus produced will then be of the most stable

' For a discussion and explanation of this fact, see 8, $10
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type, i.e. even charge arid even mass. The energy Q evolved
will be exceptionally large, the lowest resonance level will
lie at very low neutron energy and the cross section for
temperature neutrons will be exceedingly large.

~ From these considerations it would seem that
very strong capture of temperature neutrons can
only be due to nuclei of even charge and odd mass
number. We suggest that the neutron absorption
levels at very low neutron energies which have
been observed' for Cd, Sm and Hg are due to the
abundant, "odd isotopes" Cd' ~ or Cd", Sm'47 or
Sm', and Hg' or Hg'" respectively.

Another factor which will also increase the'
capture in case 3 is the factor 2I+1 in the
number of energy levels per unit energy (cf. 49).
The spin Iof the "resonance level" of the product
nucleus A may be either Io —

2 or ID+2 if Io
is the angular momentum of the original nucleus
A —1 (cf. beginning of section 4). The number of
levels of the nucleus A suitable for the capture of
neutrons will therefore be propor tional to
2(2IO+1), i.e. , the larger the greater the spin of
the original nucleus. Now all nuclei with even
charge and even mass (class 2 above) seem to
have spin Io ——0, while nuclei with odd mass
(classes 1 and 3) have spins different from zero
and therefore are more likely to capture slow
neutrons.

We shall now try to compute roughly the
actual values of Q to be expected and the differ-
ences in the Q values between the above-men-
tioned cases 1, 2 and 3. An estimate of the latter
may perhaps be based on the average energy of
the P-particles obtained from neutron captures of
class 1. The lifetimes of the radioactive nuclei
obtained from neutron capture vary from about
20 sec. to some hours or days, at least for the
radioactivities known at present. According to
the Sarment rule, this corresponds to energies
from about 1 to 3 MV. In the average, we 6nd
therefore that nuclei of even mass number and
odd nuclear charge have energies by 2 MV greater
than their neighboring isobars of even charge
into which they transform by emitting a P-ray.
Now we may safely assume that the average
packing fraction of nuclei of odd mass number is
independent of whether their nuclear charge is

' Rasetti, Fink, Goldsmith and Mitchell, Phys. Rev. 49,
869, 1936. Placzek and Frisch (private communication).
Amaldi and Fermi, Ricerca Scientifica 1, 11—12 (1936).

even or odd, because 6rstly there seems to be
experimentally no difference between the number
of species and the abundance of these two types
of nuclei, and secondly there is no theoretical
reason for assuming any difference (cf. B, (10).
Consequently, the energy Q evolved in the cap-
ture of neutrons by nuclei of odd weight and even
charge (class 3 above) ought to be about 2 MV
more than for nuclei of odd weight and odd
charge (class 1). For nuclei of class 2 (even
weight, even charge) we may expect about the
same Q's as for class 1, because in both cases the
transition goes from a more stable to a less stable
type of nucleus.

A rough estimate of the average value of Q, i.e.
the mean between the cases (2) and (3) above,
may be obtained from an empirical formula for
the average nuclear mass defects as a function
of mass number A and charge Z, such as that
derived by Weizsacker" or by the author (B, fl30).
The energy (excess of the exact mass value over
the mass number) of the most stable nucleus of
atomic weight A is approximately given by (B,
Eq. (186))

Z(A) = —6.65A+14.2A"'
+0.156A"'135/(134+A"'), (52)

the unit of energy being a thousandth of a mass
unit. The difference in energy between the nuclei
A and A —1 is therefore (cf. B (186b))

B(A) —Z(A —1)= —6.6g+9.5A —'~'

+0.156A'~'135(223+A'~')/(134+A ~')' (52a)

The mass of the neutron may be calculated from
the following data:

(1) The mass spectroscopic comparison of the
deuteron and the proton by Bainbridge and
Jordan, "giving

2II—D =0.00153~0.00004 mass unit.

(2) The binding energy of the deuteron as
measured by Feather"

II+n —D=2.22~0.06 MV=0.00238.

(3) The mass of the deuteron as derived from

"Weizsacker, Zeits. f. Physik 96, 431 (1935).
"Bainbridge and Jordan, Bull. Am. Phys. Soc., 1936,

Washington meeting, report 123.
"Feather, Nature 136, 467 (1935). A correction of

40,000 volts has been applied to Feather's value because
of the range energy relation (B, p. 123):
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TABLE II. Mass excesses of nuclei and energy evolved in
neutron capture.

A 20 50 100
E(A) —E(A —1)

(mass units) —1.45 —1.0 0
Q(MV) 9.5 9.1 8.2

150

0.75
7.5

200 240

1.4 1.9
6.9 6.4

disintegration data'3

D =2.01445.

A combination of these three data gives

I=H+0.00085 = -',a+0.00161= 1.00884. (53)

Thus the energy Q evolved in the neutron capture
will be 8.84 thousandths of a mass unit, minus the
energy difference (52a). Converted into MV,
this gives

Q=14.4 —8.8A "'—0 145A'" 135(223
+A"')/(134+A"')'. (54)

Table II gives the average difference between
the mass excess of neighboring isotopes, Z(A)
—E(A —1), according to the semi-empirical
formula (52a), in thousandths of a mass unit, and
the average energy evolved in the capture of a
neutron, Q, in MV. The values in the table are of
course only averages, and in individual cases
large deviations ought to be expected. Moreover,
it seems from the observed energies of radioactive
O.-particles that the mass excess of heavy nuclei
increases actually somewhat faster with increas-
ing A, so that Q for A = 200 or more may actually
be about 0.5 MV smaller than indicated in the
table.

Accepting the energies given in the table for
the average energy evolved in neutron capture,
we should expect values by about 1 MV higher for
the capture by nuclei of even charge and odd
ma, ss number (class 3 above) and about 1 MV
lover than the values of the table for the other
cases (classes 1 and 2 above). Thus the odd iso-
topes of Cd would probably correspond to Q
values slightly over 9 MV, giving for AQ a value
somewhat over 1000. With a spin of Io ———', (B,

Table 19) for both the "odd" isotopes of Cd, we
should thus expect a spacing of the nuclear levels
of about 50 volts (cf. Table f, divide by 2(2Ip
+1)). For Ag, we would expect Q=7 MV, ap-
proximately, A Q = 800, and, with Io 3/2, ——a
spacing of about 300 volts between neighboring
levels. These figures seem reasonable, although
perhaps a little high.

Turning now to the very heavy nuclei (A
around 200), we should expect very many very
closely spaced levels. The increase in the density
of levels due to the increased number of particles
A in the nucleus is, however, partly oftset by the
decrease in the energy evolved in the neutron
capture, '4 as shown in Table II. Even so, we
should expect values of QA of the order 1400 for
A =200 (Hg, cf. Table II).This would correspond
to a spacing of about 20 volts between levels with
I=O. Now Hg"" has a spin of 3/2; therefore the
average spacing between the resonance levels of
neutrons captured by Hg'" ought to be about
two volts. A,n element of such ' high atomic
number should have an almost continuous ab-
sorption spectrum for slow neutrons if the ele-
ment belongs to class 3, i.e. , has even charge and
odd mass.

For elements of odd charge (or of even charge
and even mass), the increase in the density of
levels for high mass number should be less
marked. Suppose the Q value is 1 MV less than
the "average" given in Table II; which may
easily happen. Then AQ is reduced to 1200 for
A =200, i.e. , not much more than for elements
of medium atomic weight such as Cd. The
distance between adjacent levels would, ac-
cordingly, be of the order of 10 volts. This is

compatible with the observed resonance level

of Au (2.5 volts. )
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»Cockcroft and Lewis, Proc. Roy. . Soc. A154, 261
(1936).

'4 The importance of this factor was 6rst pointed out to
me by Dr. Nordheim.


