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Calculation of the magnetic moment of the Li~ nucleus, using the experimental data of Fox
and Rabi and a wave function due to James and Coolidge, results in the value 3.33 nuclear
magnetons.

HE magnetic moment of a nucleus is at pres-
ent determined in a rather indirect way.

The hfs splitting of some atomic level is found
experimentally (either spectroscopically or by the
molecular beam method) and the computed
interaction of nucleus with the electron cloud is
then used to evaluate the magnetic moment. To
compute the interaction for many electrons, one
must make an assumption as to the interaction
operator, which is then averaged over configura-
tion space. The averaging process requires some
knowledge of the electronic wave function. One
usually assumes the form of this function, and
then determines its constants by the Ritz varia-
tional method.

Until quite recently, there has been no oppor-
tunity to obtain a fairly accurate check of the
hyperfine structure theory, since variational wave
functions were not available. The value of the

magnetic moment of the lithium nucleus as
calculated from the normal atom with a Fock
function was shown to be in disagreement with
the value calculated from. ionized lithium with a
Hylleraas-type function. ' ' If the latter type of
function be assumed to be the more accurate
(since there is closer agreement with the experi-
mental values of energy), and the theory of hfs

supposed to be correct, then one must conclude
that Fock functions are inadequate for calcula-
tion of nuclear moments.

However, the situation for lithium has been

changed considerably with the computation by
James and Coolidge' of a ground state wave

function involving the interelectronic distances.
It seemed, therefore, of some interest to see what
the corresponding value of the magnetic moment

would be.

.HYPERFINE STRUCTURE FORMULA

We have extended the theory of Breit and Doermann' to the three-electron case. For one electron,
the perturbing part of the Hamiltonian may be written as

(e/mc)(3II y) 1 hec/2m. (y a) 3(r a)(r p)II' = —+ +
1+(B— m+ceA )2amer' Z+mc'+eAa r' r'

(hec/27r)(e~g~) (p o) (r o.)(r p)+
2 2 2 4(8+me +eAo) r r

=(& ~)+(A a).

It is assumed that the perturbation for three electrons is simply the sum of three such terms, each
pertaining to a particular electron, i.e.

3 3

+II'=p QB;+PA; a;.
j—1 j—1

To find the hfs splitting for normal lithium, it is sufhcient to calculate the energy displacement m

for the state of highest f, and to apply the interval rule. The wave function. for this state may be

' Results on the basis of a Fock function were obtained by Bartlett and Gibbons, Phys. Rev. 49, 552 (1936).
2 Breit and Doermann, Phys. Rev. 36, 1732 (1930).' H. M. James and A. S. Coolidge, Phys. Rev. 49, 688 (1936).
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written p =¹C,where C is the electronic function for m, = -„andN is the nuclear function. Since p, is
the only component of p with diagonal elements, we may, for the present purpose, confine our atten-
tion to it. The perturbation is, effectively:

~. E (») *+2 (A ).(~ ) *

Now
(e/mc) 1 fz 8

(»).= ~ ~

1+[E mc—'+e(Ap);]/2mc' r,' p plpp;

The wave function of James and Coolidge is of the form:

C = F(123)S(123)+F(231)S(231)+F(312)S(312)

where the Ii's are space functions, the S's spin functions, and the bar denotes the electron with
P-spin. This is not a function of p&, p2 or p3, but only of the mutual distances. Therefore, there will
be no contribution from the 8 s. The above displacement is, then,

w= J'C*(Ai,p»+Ap, p»+Ap, ep, )cd'r

=3J'[F(123)]'{A i+A .pAp, }—dr
3 {J[F(123)]A i d+rf [F(2'13)]Ai 'dr f[F(321)]A gdir}

since the spin functions above are mutually orthogonal. Here,

hec/2p- ( 1 3e') (hec/2~)e
~

8
( p 1 s'y

(A), =
{

——+—}~.+
F+mc'+eA p ( r' r' J (F+mc'+eA )' 4 r' r4)

The first term involves Pp (cos 9), so that there is no contribution to the integral from this. Effectively,
then,

(hec/2~)e[dA p/dr] p, 2 s' 1
A, = since —=—(Pp+2Pp).

(8+me'+eAp)' r' 3 r' 3

We have to evaluate integrals such as J'f'A, dt, where f is a known function.

&heep 2(d 1
f'A*«= 4x f'{- }dr ,

4 2x) 3 (dr 2+me'+eAp)

8p. (hec/2p. )=+—p 2ff' dr
3 2mc

8p hec/2pr 8x
=—p— f'(0) = pppf'(0)—

3 282c 3

The function F(123) is antisymmetric in electrons 1 and 2, hence

ui= (87r/3)sup 3J [2F'(00'0, xp, y&, sp, xp, yp, sp) —F'(xpypsp, xpypzp, 000)]drpdrp

This represents the energy referred to the center of gravity of the hfs multiplet. [For comparison with
the simple theory (wave function separable), put F(123)=(1/6)l{1s(1)2s(2)—2s(1)1s(2)}1s(3),etc.

Then J'F(023)'d r&dr p 1/6 {[1s(0)]'+ [——2s(0)]'}.
Combining, one finds that w = ip8~ppp[2s(0) ]', which is the ordinary formula. ]The doublet separation
is, according to the interval rule, As =w(2I+1)/I. (I denotes the nuclear spin. )
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WxvE FUNcxroN
The wave function to be used is

C = F(123)5(128)+F(231)S(231)+F(312)5(312),
F(123)= (1/)r) i{+Ak „fk„„(123)+QBk„„„gk„„„(123)+QCk„„„kk„„„(123)I,

fk„„„(123)=Pk „.„(123)—Pk„„,(213),

gk „(123)= q ), „(123)—Pk„„„(213),
hk .„(123)= Xk .„(123)—Xk„.„(213),

(l 23}—e—() r&+irk+t) ra)r kr mr nr

(l 23) —e—(yrg+br2+kr3)r kr mr nr y

(123)—e
—(yr&+6n+ht3)r kr mr nr
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Here ri refers to the 2s electron, rs to the 1s electron with the same spin as the 2s electron, r3 to the
other 1s electron. James and Coolidge give the following coefficients for the approximate function
F(123) '

B]000= 1.088500,

8yoio =0.058054,

&1100=0.058054,

&»so =&isoo =0.468163,

& iiio = —0.281807,

+1001—0.583191~

&coos = —0.075465,

&0*000= —0.970781,

+0 010 ~0 100 0 232377,

~ 0001 =0.'196518,

Coooi =0.241624.

The coef6cients marked by the asterisk belong to terms in which the constant y is to be replaced by
y*. For example, —0.970781 is the coefFicient of gokooo which is Le &)'*"+'"'+'"')—e '&'"'+'"'+'""j. The
values of the constants in the exponentials are: b =3, y =0.65, y*= 1.5.

For brevity, write F(123)„o——F(023), etc. , and e &&"'+'"'+'"» = (123).

Then F(203) = (1/)r)')2{ (—1.285018r, —0.641245 r&rk —0.392698 r&rk2) (203) —0.970781 {(0*23)
—(2*03)I +0.232377 rk(2*03) +0.009247 rk(023) —0.241624 rkk(203)
—0.035859 rk(023) ],

F(23o) =f(23) —f(32)

where f(23) = (1/)r)')2{(230)L1.330124 r&+0.641245 r&rk+0. 392698 r&rkk+0. 196518 r»g
—(2*30){ 0.970781+0.232377 rk] I.

ImEGRALS

Since J'f (23)drkdrk ——J'p(32)drkdrk, the calculation simplifies. For purposes of checking, we present
the results in tabular form. Table I contains the contributions to J'F(023)'drmdrk, Table IIa the
contributions to J'f (23)drmdrk, and Table IIb those to J'f(32)f(23}drkdrk (except for a factor (16/7r),
which multiphes everything). The entry at the head of a column gives the mu'Itiplicand, that at the
left of a row the multiplier. The integral of thei'r product is the entry in the table itself. The square

TABLE I. Contribltions to J'F(OZ3)'d72d78.

—1.285018
(203)rg

—0.641245
(203)r2r3

—0.392698
(203)r2rP

—0.970781
(2*03)

0,970781
(2'%3}

0.232377
(2+03)r3

—0.035859
(023)rg

0.009247 —0.241624
(023)r3 (203}r»

(203)rg
(203}rara
(203}rgrg
(0*23)
(2803)
(203)r3
(023}r2
(023}r3
(023)rpa

—1.285018—0.641245—0.392698—0.970781
0.970781
0.232377—0.035859
0,009247—0.241624

0.0988301
0.0246589
0.0100674
0.0003905-0.0032434—0.0003882
0.0000158—0.0000019
0.018887 1

0.0082035
0.0041865
0.0000974—0.0008093—0.0001291
0.0000039—0.0000006
0.0047559

0.0025638
. 0.0000398—0.0003304—0.0000659

0.0000016—0.0000003
0.0019656

0.0000808-0.0001915-0.0000229
0.0000015—0.0000004
0.0000881

0.0006438
0.0000774 0.0000123-0.0000047 —0.0000006
0.0000009 0.0000002—0.000657 1 —0.000082 1

0.0000000
0.0000000 0.0000000
0.0000033 —0.0000005 0.0036583
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TABLE IIa. Contributions to Jf(Z3)'dr&dr 3.

1.330124 (230)r» r —0.970781 (2+30) —0.232377 (2+30)r3230 r»r3' 0.196518 (230)ra30.641245 (230)r2r3 0.392698 (230)r.r3

1.330124 (230)r2
0.641245 (230)r2r3
0.392698 (230)r2rg'
0.196518 (230)r23—0.970781 (2+30)—0.232377 (2*30)r3

0.1058900
0.0255445
0.0104208
0.0158872—0.0033573—0.0004018

0.0082035
0.0041865
0.0038371—0.0008093—0.0001291

0.0025638
0.0015987—0.0003304—0.0000659

0.0024199—0.0005344—0.0000668
0.0006464

+0.0000774 +0.0000123

TABLE IIb. Contributions to Jf(Z3)f(3Z)d'rmd'r8.

1.330124 (230)r» 30 r2rs2 0, 196518 (230)r230.641245 (230)r2r3 0.392698 (230)r2rq —0.970781 (2*30) —0.232377 (2*30)r3

1.330124 (320)r3
0.641245 (320)r3rg
0.392698 (320)r3r22
0.196518 (320)r32—0.970781 (3+20)—0.232377 (3*20)r2

+0.00202 18
+0.0010682
+0.0008961
+0.0005082—0.000958 1—0.00025 13

+0.0005643
+0.0004734
+0,0002263—0.0003079—0.0000808

+0.0003972
+0.0001709 '

—0.0001676—0.0000440

+0.0001177—0.0001877—0.0000442
+0.0004540
+0.0000724 +0.0000116

o that only a out ay b h lf of the total number ofetrical about the main diagonal, so th yarrays are symmetrica a ou e

t a
'

. le the
entries need be give .

'
htforward for terms not invo

'
gt orwa lvin r23. For examp e, t eThe integration of J'(123), etc. was straig t orwa

2 ~ isfirst term m J'F(023) drgdr

00

r2 r siil O2 sill O3dO2 O d 2dg3d 2

d r . e r
' '

alls into two parts,d r . The range of integration fa s in o wow er ' =, ' = n + is the angle between r2 and r3. e r
ncel out when one integrates

2' "
f dth t ti t 1

o r = . '
ion in Table IIa the entry 0.~ -7.=0 to r = ~. For illustration, in a6rst from r3 —— o r3 ——

factor 16/n, the val ue of,
r2+r3

e '&"'rgdr2 I e ""'radr3 I r2Pdr23.(o )( o ))

16/s ) .09883008.

s 0, sin 02 sin 88 cos (@2—43) the angular parts'=r '+r '+2rmrs (cos Oi cos Oa+ sm 2 sin 8

e inte rated most easily'f ' .'). Th
een the

integrate to zero, ea g" g
4 '

h h r appears as varia ewith a transformed volume clem ent'in w ic
limits Ir2 r31 and (r—2+ra .

'dO'd@'dpdr2dr3,r dr3 ——r2r3r23dr23 sin

2 3 r2'if r2(r3. Integratingssion is 2r22r~+(2/3)r3' if ra(rm, and 2r2r, +The last integral in this expression is 2r2 r3
as above, we obtain tn the result

M f" 2sf —2 /r2r ~ 2r22 I g
—25r8 'dr3+(2/3) e ""'r34dri+2r~ e ""'r3 r&

rgr2

8
00

ithin the parenthesis are o t ee formThe integrals appearing within e p

n. r} n—vr

e »"r"dr = (n!/a "+'-) —P—
n —v. a0

and
n n. rf n—v

~

~e arr»dr-
=0 (n —v)! a"r

Let us write
n~

I
b]„= = e '"r"dr. -

$n+1

4 Cf. E. A. Hylleraas, Zeits. f. Physih sik 48, 475 (1928).
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Then all the integrals in question which involve r23 can be evaluated as:

[u]-+~[&]-+2+(1/3)[~1-+i[&]-+i—(2/&') [ii+t ]-+-+2—(8/&') (m+1) [~i+&]-+-+i
—(20/b')(n+1)m[a+5] ~.—(40/b'){m+1)(n){m —1)[a+9] ~. i

—{70/b') (n+ 1)n(n —1)(e—2) [a+b]~+„2—~ ~ ~

where m and n are the powers, less one, of r2 and ri appearing in the first two integrands of (B).For
our integrals, this seven term formula suffices. In the example above; a=2', 6=25, m=1, n=0. We
have then,

16/m. (0.196518)}(1.330124)[27]&[2&]2+(1/3) [2v]2[2&]i —}2/(2~) '}[27+2&]3
—8(25) '"[2y+28]g}= (16/ir)(0. 0158872).

The values of the two integrals are:

J'F(023)'dr2dr3 (16/7r)——0.232590, J'F(230)'dr2drl (16/ir)——0.450318.

If the second be subtracted from twice the first, the result is (16/w) 0.014862.

THE M&GNETrc MoMENT

Let us substitute in Eq. (A), and use As=0.0267 as determined by Fox and Rabi. '

0.0267 = [8ir(8/3) (g/1838) po'(16/ir) 0.014862]/[(0.528 X 10 ')'(19.662 X 10 ")]; @0=0.9174X 10 ".
This gives g =3.33 nuclear magnetons for the value of the magnetic moment. This is to be compared
with that of 3.29 given by Granath' (from measurements of hfs in Li+ and the theory of Breit and
Doermann).

DISCUSSION

The excellent agreement between the two
values of the magnetic moment, one determined
from measurements on Li+ and the other from
normal Li data, would ordinarily be acceptable as
strong evidence that the true value is in the im-

mediate neighborhood. However, there are cer-
tain factors which require one to be rather cau-
tious in drawing such a conclusion.

In the 6rst place, our calculation involves the
subtraction of two large, approximately equal,
quantities. The contribution of the r23 terms to
J'[F(023)]'drmdrs is (16/ir)0. 049889; that to
J'[F(230)]'d72drg is (16/~r)0. 080317. Subtracting
the second from twice the 6rst, one obtains
(16/m)0. 019461, which is larger than the cor-
responding result for all the terms i.e. (16/ir)
0.014862. This indicates the sensitiveness of the

calculation to terms involving the interelectronic
distances. It is quite possible that such terms
could be modi6ed in such a way that their inHu-

ence on the energy would be small, but so that the
nuclear moment would be changed appreciably.

Secondly, it is not known how good either the
Breit-Doermann function or the James and
Coolidge function is. A function may give good
energy values, but yet be considerably in error
near the singularities of the wave equation.

For these reasons, we prefer for the present to
regard the value of the magnetic moment of the
lithium nucleus as a quantity which has not been
determined with great accuracy. If it should
prove feasible to measure this moment in a more
direct manner, then such a procedure would be
much to be preferred, and it would give us more
information about electronic wave functions
as well.

5 Fox anal Rabi, Phys. - Rev. 48, 746 (193S).
~ Granath, Phys. Rev. 42, 44 (j.932).


