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On the Continuous y-Radiation Accompanying the P-Decay

F. BLocH, Stanford University

(Received May 22, 1936)

Combining Fermi's theory of the P-decay with the
ordinary principles of quantum electrodynamics one can
treat the continuous radiation, to be expected from the
acceleration of charges during the nuclear decay. Formulae
for its spectral distribution and its total intensity are
developed, applicable to light elements, where the effect

of the nuclear Coulomb-field on the electrons can be
neglected. The relative amount of energy, liberated in the
form of radiation, increases monotonously with increasing
total energy; in the case of radioactive boron it amounts to
about 0.6 percent.

INTRQDUcTIoN

N his theory of the P-decay Fermi' has
& - introduced elementary processes where a
neutron in the nucleus is transformed into a
proton simultaneously with the creation of
a neutrino and an electron. The total energy D
liberated by the nuclear transformation in such
a process reappears in the sum of the energies of
the two created particles. One may think,
however, that the transformation could also
occur in such a way that besides the two particles
a light quantum will be emitted. This idea, that
part of the energy D can appear in form of
radiation, immediately suggests itself, if, for a
moment, one considers the P-decay from a
classical point of view: Of the two opposite
charges originally neutralizing each other in the
nucleus the positive one will remain there (and,
since attached to a heavy particle, practically
stay at rest) while the nega. tive charge will be
set into motion and appear as P-ray. Kherever
charges are accelerated, according to classical
electrodynamics, radiation will be emitted; al-

though the very process of the creation of an
electron is entirely beyond the possibility of a
classical description one should expect a corre-
sponding radiation in quantum theory.

In fact it is included in Fermi's theory if only
the interaction between the electron and the
electromagnetic field is taken into account, Of
course the most important part of this interaction
is already anticipated in the normal P-decay by
the fact that the electron is surrounded by a
Coulomb-field and has a mass, part of which
must be of electromagnetic origin. The well-
.known difficulties of relativistic quantum me-

' E. Fermi, Zeitg. f. Ppysik 88, 161 (1934).

chanics do not allow at present a consistent
account of this aspect and thus a rigorous
description of electromagnetic eA'ects must be
abandoned off-hand. Nevertheless one can obtain
unambiguous and reliable information about the
radiation effects to be expected, by restricting
the theory to the same approximation in which
also atomic radiation processes appear. The
total process here to be considered can then be
regarded as to happen in two stages:~

(1) The nuclear transformation, accompanied
by the creation of a neutrino in a state o- and an
electron in an "intermediate" state s'.

(2) The transition of the electron from the
state s' into a 6nal state s by simultaneous
emission of a light quantum.

It shall be the purpose of the next sections to
develop a quantitative study of the radiation,
thus to be expected, particularly for light nuclei.

It will be found that it forms a continuum,
extending from zero to a maximum circular
frequency

~,„„„=(D —mc') /fz

(mc'= rest-energy of the electron, 2~5, = Planck's
quantum of action). For D —nzc' of the order of
magnitude mc' the intensity is such that the
ratio of the probabilities of radiative and normal
P-decay will be given approximately by the value
of Sommerfeld's fine structure constant e'/kc
=1/137; i.e. , roughly one percent of the energy
of a P-active substance will appear in form of
radiation.
' Of course it is always possible that after the

'Similar to the radiation of particles, penetrating a
potential barrier, investigated by Heisenberg, Pauli and
Oppenheimer. W. Heisenberg and W. Pauli, Zeits. f.
Physik 56, 1 (1929); J. R. Oppenheimer, Phys. Rev. 35,
939 (1930).
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P-decay, the nucleus will be found in an excited
state and then emit another quantum. This
ordinary p-radiation is very different in character
and intensity from the radiation here discussed
and shall not be considered further.

58"IO I l—

2. PROBABILITY OF RADIATIVE P-DECAY

We consider a nucleus which in its initial state
contains a neutron in a state with eigenfunction
u and energy B .' After the decay we will
have instead of the neutron a proton in a state
with eigenfunction v„and energy E„. This
transformation shall be con'sidered under the
action of two perturbing energies H and X, the
former being the one introduced by Fermi in
his theory of the P-decay, the latter being the
interaction energy between electron and radia-
tion field.

We will have to consider three specified states
of the unperturbed system:

(I) The nucleus in its initial state and no neutrino,
electron, or light quantum present.

(II) The nucleus in its final state, together with a
neutrino in a state 0. with energy 8, and an electron in the
"intermediate" state s' with energy Z, but still without
light quantum.

(III) The nucleus in its final state, together with a
neutrino in the state 0., the electron in its "final" state s
with energy B, and a light quantum with circular fre-
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FIG. 1.Values of r and r1 as functions of 6—1, the maximum
kinetic energy of the electrons divided by mc'.

(7=1 ) p(s', o.) =y(s, o., co) =0.

Taking only the terms of lowest order in the
perturbation energies H and X, the variation of
constants gives for the change of p and y in
course of the time:

quency co, emitted in the positive s-direction and polarized
in the x-direction. (The last two restrictions about the
light quantum are obviously made without any loss of
generality. )

The amplitudes of probability of these three
states shall be designated by o., p(s', o.), y(s, o., co).

They are functions of the time and have to
satisfy the initial condition, that for t =0:

($/r)p(s ~) IIm, e(t/h)(/t, +E~ D)t—
—(II/f)j(s o. co) =+X "(co)P(s' o)e ' "

s'

and therefore after a time t with the initial condition mentioned before

(1a)

(1b)

e(&/It) (&s'+E0—D) t

P(s'o) =H"„,. (2a)

+s+ ~CO —+s'

Hm, It I'(co) -o(t//)) (Es+Eg+kra D) I e(t/ttt—) (/ts+/trs ss')t I—
y(s'oco) =P

s' Q t +g —Lt Q +Q +fg(A) —0 (2b)

In (1) and (2)
D=E —E

stands for the total energy, liberated in the transformation, 2~fi=h is Planck's quantum of action
and H „, , „X,"(co) are the matrix-elements of the perturbation energies H and X, which account
for the transitions from the states I to II and II to III respectively. They obtain a simple form if

' We consider here only the case of negative electron eInission. By interchanging the words "neutron" and
"proton" and writing "positron" instead of "electron" our considerations as well as the final results apply imme-
diately also to the case of positron emission.
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we neglect from now on the inHuence of the nuclear charge on the electron; for usual values of the
decay-energy we commit thus only an error of the relative order of magnitude Ze /kc; i.e. , for light
elements of a few percents. The eigenfunctions of the states s, s' of the electron and f7 of the neutrino
are then solutions of Dirac's wave equation for free particles, namely plane waves with amplitudes
having four components according to the four values of the spin variable. We obtain thus

II"-; ".= (gIIU)a"*n&.",
X,"(oo) = ek(27rc/ Up) la, *oo.,a, ,

g =4 10 "cm' erg is the constant, appearing in Fermi's theory,
I= J'v„*u dr the overlapping-integral of the eigenfunctions of neutron and proton. 4

(4)

(5)

c, , n, and b. are the amplitudes of the plane waves, representing the states s, s', and o- of the electron
and the neutrino with momenta p, , p„p„respectively. p=fioo/c is the absolute value of the mo-

mentum p of the light quahtum with components p, =p„=0; p, =k o/oc. It is connected with p, and

p, by the equation

g is the matrix

0 —1.

0
0 0
0 0

0
0
0

—1

Ps~ =P+Ps
0

introduced by Fermi. '

0

(6)

o o

0 1 0
is one of Dirac's

o o o/

matrices, which appears in the interaction energy between the electron and a light quantum, polarized
in the x-direction. e is the elementary charge, c the velocity of light and V is a large volume within
which the states of electron, neutrino, and light quantum are quantized and normalized. Further-
more, as in Fermi's theory, it is assumed that the wave-lengths p, /k, p, /h, p, /k of electron and
neutrino are large compared to nuclear dimensions.

From (2b) we find now in the usual way that the number of transitions per unit time, which lead
to the final state III, is given by

dP 2' II"„...X,"(oo) '
6(Acv+E. +—E. D) P—

dt +s' +s ~CO

(7)

where 6 is Dirac's singular 6-function. The summation over s' has to be performed over all inter-
mediate states s' of the electron; since for given values p and p, the matrix element E,"(oo) is only
different from zero if the momentum p, has the value given by (6), this summation extends only
over the four states, which, according to Dirac's equation, belong to the momentum p, . We designate
these four states by an index X and obtain thus from (4) and (7)

dP 4or2g'~ I~'eofgc o a,*~,ag ag "qb * '
= 6(A~+E,+E. D)—Z—

U'p ~=~ Eg, —fioo —E,

E(p, ) =E,=+c(p, '+ra'c')i, E(p,) =E,=+cp,p

Eg —E9 +c(p, '+m'c') '*, Eo, E4, —— c(p.——'+m'c') '.'—
' We assume this integral to be different from zero; the changes that have to be made otherwise are quite analogous

to the corresponding ones in Fermi's theory and do not essentially alter our considerations.
5 Fermi uses 6 instead of q.
6 Defined by

+1 for a&0&b,
b(x)dx =~

~0 otherwise.

' We assume the mass of the neutrino to be zero.
'Obviously, in this scheme both "positive" and "negative" intermediate states have to be taken into account. If,

instead, one assumes (with Dirac) all negative states to be filled, due to the exclusion principle only positive intermediate
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The summation over X in (8) can easily be carried out if one takes into account the relation of
completeness of the amplitudes a),. with respect to the spin-variable, and leads to

dI' 4ii'g'
~

I ~ 'e'Ac
= S(a~+E.+E, D) — —

~
a,*u.I ~b.*

~

'
dt V'p[E;2 (Iia—)+E,) ']'

with I'=k~+E, +c(ap, )+Pmc'

E,2 —g2p, 2+ iii2g4

the vector matrix e and the matrix P being the same as in Dirac's relativistic theory of the electron.
In formula (10) not only the momenta p, and p, of electron and neutrino but also their spin-directions
ate supposed to be given. For the total transition probability we have to sum over these spin di-
rections. Indicating this summation by Q we obtain

4ii'g'~ I~ 'e'Sc
= 6(kid+E. +E, D) — (Ma I'Ãgn, ).

V'p[P. . ' (Aco+E—.) 'g'
(12)

3I and N are the two matrices

M=1+Le(ep, )+P me'j/ E„N=1+c(ep.)/E. .

The bar over the last matrix product in (12) indicates the average value, i.e. , one-fourth of the sum
of its diagonal elements. It is

(c'(~.~, ) c'(p,~, ) —I'c'q
(~-.~»-.) =f(p., -., -.) ="(-"'+ "')+2(&-+E.) l

— +
E, )

"(p. .) &+V-+E.) ) 1+
' —I+ -I 2(-.-.)t:(p.-.)- "j-(p.-.)L-.'- "j i, (14)

E.E. ) E,E. & )
wllele JC, and 'Je, ~ a1e vectois with cofilpollelits p, —p~» —p«and p, ~» —p, ~ii,

—p, ~„ I'espectively.
Integrating (12) over the momentum-space of the neutrino and over the directions of the emitted
electron, we finally obtain the rate of transition (probability per unit time) of a process, in which
an electron is emitted with an energy between E and Z&+dB ' simultaneously with a light quantum
of circular frequency between ~ and o)+d~. The light quantum shall be emitted within an angle
between 8 and 0+de against the direction of the electron and be polarized in the plane, connecting
the momenta of electron and light quantum. "

With (6), (9), (12), and (14) this rate of transitions becoines:

dR =A(E+Sco D)'—
(1—u cos 8)' 2

de)
(1—u cos 0)+E(E+kco)u' sin'0 —dE sin Ode,

A=~ ~I~" /4 acr

and u=v/c= (1/E)(E' —m'c')i is the velocity of the electron in units of the velocity of light. If on

states of the electron have to be taken into account. In this case, however, one has to consider that the 6nal state III
can also be reached by a double process, in which erst an electron makes a transition from a negative state s' into the
positive state s by emission of a light quantum and where afterwards by the nuclear transition another e ectron is created
in such a way that it 611s the hole in the negative states, left by the transition of the 6rst electron. It is easy to shorn
that the net result will be the same as given by I,'8).

' We now omit the index s.
'0 We have thus chosen here this plane to be the x—s-plane of our coordinate system.
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the other hand the light quantum is polarized perpendicularly to the direction of electron, we obtain
similarly

I A' co . dG)

dR„=A (8+5~ D)—' (1—I cos 8) dB—sin 8d8,
(1 —u cos 8)' 2 M

and thus for the rate of transition without specifying the polarization

dR =dRg+dRy
Q dM

=A(E+Acu —D)' Pi'a&'(1 —u cos 8) +Z(Z+Acv) I' sin' 8$ dE s—in 8d8.
(1—u cos 8)' 6}

This result has been obtained by assuming I ermi's form for the interaction between nucleus and
electron-neutrino field. Konopinski and Uhlenbeck" have proposed another form, which contains
as a factor the energy of the neutrino. M/ith the exception of a few minor changes the calculation
remains practically the same, if we accept this second form of the interaction; we shall brieHy
indicate these changes:

Instead of (4), one has to take
gI Err

II „.„=— a, .*qPb.*
V nzc'

and thus finds instead of (12)
dI' 4ir'g'~I~'e'Sc t B.q

'
= 8(a~+Z, +Z.—D)

~ ( yr, rX,r~.)
df V'pLZ, ' —(Z, +Ace)'g' (mc'I

with Ni 1 —c(ny.)/E. .——Instead of (14) it is

(12a)

(Ma. I'NiI"n, ) =f(P„—ir. , 7r, .), (14a)

Q dM

, [fi'oP(1 —u cos 8) +Z(Z+ Ace) u' sin' 8j—dE sin 8d8. (18a)
(1—u cos 8)' M

where f is the same function as in (14). Finally instead of (18) one obtains for the rate of transition

(E+fi(o D)'—
kg ——A

ns'c'

3. DrscUssrow: SPEcTR&L DrsvRraUTrox AND ToTAr. AMovwx oF RADrATED ENERGv

Formulae (18} and (18a} show that there is to be expected an anisotropy of the intensity of
radiation with respect to the direction of the emitted electron very similar to that of the continuous
radiation, caused by the impact of electrons. In the non-relativistic case, i.e., if

the intensity per unit solid angle will be proportional to sin' 0 as one should expect it classically
from a dipole radiation. In the highly relativistic case, however, i.e. , for I—1 the anisotropy v ill

be essentially determined by the denominator (1 —u cos 8)' which then becomes very small for
small angles 0. In this case, therefore, most of the radiation will be emitted nearly parallel to the
direction of the electron.

While (18) and (18a) are ~alid for all velocities of the electron" they obviously break down for
very small values of the frequency ~. This can be seen from the fact that the frequency appears
once in the denominator so that by integrating over the frequency from zero to its maximum value
(D —8)/5 one would get an infinite result for the probability of radiative P-decay. The same situation
is found wherever not only the radiationless process is possible but also the same process, simul-

"E.J. Konopinski and G. E. Uhlenbeck, Phys. Rev. 47, 202 I', 1935).
"Except for the f'act that for very small velocities the Coulomb-6eld of the nucleus becomes important.
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taneous with the emission of an arbitrarily soft light quantum, "and has its origin in the treatment
of the electromagnetic held as a small perturbation. It is due to this treatment that there appears
(as in formula (7)) the denominator F, F.—, b—a&, which for sufficiently small values of a& becomes
arbitrarily small and ultimately leads to a divergent result for the probability of the radiative
process. Although strictly speaking incorrect, when applied to transition probabilities, our formulae
(18) and (18a) seem to give trustworthy results for the a~erage energy of the radiation. In this
case indeed we have to multiply them by another factor Aa&, thus avoiding the divergence, mentioned
before.

Integrating (18) over the angle 8 from 0 to m. and over the energy of the electron F from mc' to
D —hx we obtain

dR = 2(N)dM

as the radiation. energy emitted into the frequency range d~ per unit time. It is

with
i(co) =A 5(mc')'F((D —Ace) /mc') (19)

$2 $ ( 1$ 7 3
F(x) = ~2( -x~+x

[ -~] x+x~-- [+—x"—x lg (x+(x2-1)-:)
&3 )' I 8) 15 8

4 p7 1 i 689 1021 8-
—~' —"+- -~i -"+-.I+

E4 8 ) 900 1800 75

and 6=D/mc'. Similarly from (18a)

ii(co)

=Ah�

(mc')'Fi((D —k(u)/mc')

with

p2 3 y /2 3 1 q 32 1 5
F,(x) = S'~ -x+2x3y-x

~

—Z( -x+3x+-x' ——~+ x'+x' —-x'—x log (x+ (x' —1)-:)
&5 4 i E3 4 24i 105 2 24

t'137 607 16' /'3 17 1 q 2449 9413—~'( —x'+ x'+—
)
—~( -x"+—x+—x )+ x+ x'—

(150 300 75i k2 6 24 i 3675 14700
x' — (x' —1) '*.

29400 735

The intensity distribution of the emitted radiation, as given by (19) and (19a), shows a rather rapid
decrease from its maximum at co = 0 to the zero value at the high frequency limit co, = (D mc')/5—
In the limiting case D))mc' about 50 percent of the total radiation according to (19), 60 percent
according to (19a) will be found at a frequency less than one-fourth of the high frequency limit.

Finally, we find for the total intensity of the radiation from (19)

With

i (a&)dko = —(mc')'p(A).
2

44 27 103
g(A) = 36+ 44 log (6+—(6' ——1)l)——— 6'"+ 6' — 6 (6'—1)l

i 45 3 72 225 100 1800

(20)

and from (19a)

(1~.~) i = ii(a)) d(o = (A/2) (mc')'@i(A) (20a}

"It also appears for example in the theory of radiative impacts. I,'Bethe aIId Heitler. )
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with

2 2
P, (A) = As+ —66 ——6' —— log (6+ (6' —1)l)

105 15 12 192

691 171 9589
+7+ gG g3

14700 1176 117600

11063—6 (6' —1) i.
235200

In order to get a convenient measure for the total intensity, we will divide (20) and (20a) by the
average kinetic energy Ek;„——(E—mc ) given to the electrons per unit time. According to Fermi's
theory this is'4

Ei,;.=A (mc')" (kc/e') P(A)

3 49 2
w, th P(Z) = —Z ——~4 ——~~+ —~2+—~+—(~2 —1)-: — a~+ a+ —log (~-+ (~—' —1)-:),

60 30 30 20 240 15 8 4 16

according to Uhlenbeck and Konopinski

Zk;„——2 (mc')'(ho/e') Pi(A)

with

1 1 5 2 1913 247 3571 8
tpi(h) = —lV — 6' 6""+ LV+ —L—V+ A—2+ 6—+ (5' —1) '

, 280 105 336 21 6720 420 13440 105,

(21)

1 3 1 5
—LV+ —5'+—6'+—6+ Ig (6+(6' —1) ') .
8 2 8 4 128.

Dividing (20) by (21) and (20a) by (21a) we find now the percentage of energy liberated in form
of y-radiation by the P-decay in the form

with

and

r(~) = li.i/~"- = (s'/2&&) (0 (~)/4 (~)) = 5 81.1o 'x(~)

x(~) = 4(~)/4(~)

ri(A) =5.82 10 4gi(A) with xi(A) = gi(h)/Pq(A), respectively.

(22)

(22a)

In the nonrelativistic case, i.e. , for 6=1+&with e((1, we have x(A) = (32/33)c and yi(h) = (32/45) e.
On the other hand for A&&1, we obtain the asymptotic formulae

16 j' 11' 16 ) N1q
x(A) =—

I log 2A ——
I

and xi(d) =—
I

log 2d, —
5) 280)

The two values r and ri are plotted in Fig. 1 as functions of 6—1, i.e. , of the maximum kinetic
energy of the electrons, divided by mc'."

While for example for radiophosphorus (6=5) the radiation contains only about 0.17 percent
of the total average energy, liberated in the decay, it amounts to about 0.6 percent in the case of
the radioactive boron isotope 8" (6 =26).

Note added in proof: While this paper was in press an article on the same problem has appeared in
Physica 3, 425 (1936).J. K. Knipp and G. E. Uhlenbeck reach essentially the. same conclusions as
obtained in this paper.

"Neglecting again the Coulomb-field around the nucleus.
15 I am indebted to Mr. R. D. Gordon for valuable help in computation.


