The Photographic Infrared Absorption Spectrum of Gaseous Ammonia

SIU-HUNG CHAO,* Ryerson Physical Laboratory, University of Chicago (Received March 2, 1936)

The photographic infrared absorption bands of ammonia at about 10,000A, 7920A, and 6470A have been measured with greater dispersion and resolving power than hitherto. Several series have been established in the first two bands by combination principle methods, but most of the band lines have not been classified. The complexity of structure occurs probably because each observed band is a composite of several parallel-type and perpendicular-type bands; the observed series, or most of them, probably constitute parallel bands. In the pure gas, the band lines are very sensitive to pressure, and do not become at all sharp until

I. INTRODUCTION

HE absorption spectrum of the ammonia molecule, which belongs to the class of symmetrical top molecules, has been investigated in the infrared, visible and ultraviolet regions. The five bands in the photographic infrared and visible regions have been studied by the following investigators. Lueg and Hedfeld' reported having resolved 375 lines in the 10,230A band and 217 lines in the 8800A band, Badger and Mecke' reported 54 lines in the 7920A band and Badger' 57 lines in the 6470A band. The 5490A band has not been resolved. Because of the complexity of the structure, only partial analyses of these bands have been made. The present work4 was undertaken in the hope of increasing the resolution in these bands, by using high dispersion and the special Eastman spectroscopic plates, so as to get accurately the rotational energy levels of the normal state of ammonia by a rigorous analysis according to the combination principle method, and to identify the upper vibrational levels of these bands.

In the present work, a higher resolution of these bands than previously has been attained. As an aid to the analysis, the constants of the rotational energy levels of the normal state of ammonia, found from the pure rotation band and from the Raman spectrum, were used. How-

the latter is far below one atmosphere (cf. Fig, 1). In mixtures of ammonia and air, however, the air pressure produces very little broadening. The application of the combination principle to parallel, perpendicular, and Raman bands is discussed, taking into account the effects of unresolved but not negligible fine structure in the lines due to near-coincidence of lines of differing K values. Analysis of earlier data yields a rough value for a certain small rotational coupling coefficient and for the centrifugal deformation rotational coefficient, in the normal state of ammonia.

ever, an analysis according to the combination principle method did not succeed very well. The difficulties and resulting conclusions will be stated in Section III.

II. REVIEW OF THEORETICAL CONSIDERATIONS⁵

The symmetry of ammonia is such that in equilibrium the molecule is a regular pyramid with three hydrogen atoms at the corners of an equilateral triangle. Dennison' showed that there should be four fundamental vibration frequencies, two belonging to nondegenerate symmetrical modes of vibration ("parallel-type" frequencies), and two degenerate frequencies, each corresponding to an unsymmetrical pair of modes of vibration ("perpendicular-type" frequencies).

The vibration bands may be divided into two types. In the "parallel" type, the electric moment oscillates parallel to the axis of symmetry. In the "perpendicular" type, it oscillates perpendicular to the axis. In ammonia, there should be two fundamental bands of the parallel type, say ν_1 and ν_3 , and two fundamental bands of the perpendicular type, say ν_2 and ν_4 , corresponding to the four fundamental frequencies.

The ammonia molecule in its equilibrium configuration belongs to the symmetry group C_{3v} . By group theory, 7 there exist three irreducible representations of this group, which have been called A_1 , A_2 and E . Every vibrational wave

Now at St. John's University, Shanghai, China.

^{&#}x27; P. Lueg and K. Hedfeld, Zeits. f. Physik 75, 599 (1932). ' R. M. Badger and R. Mecke, Zeits. f. physik. Chem. $B5, 333 (1929).$

R. M. Badger, Phys. Rev. 35, 1038 (1930).

⁴ Preliminary account, S. H. Chao, Phys. Rev. 48, 569L (1935).

⁵ Cf. e.g., E. Teller, *Hand- und Jahrbuch der chemischen* Physik, Vol. 9–2 (1934).

 $\sum_{i=1}^{5} D_{i} M$. Dennison, Rev. Mod. Phys. 3, 280 (1931).

⁷ E. Wigner, Göttinger Nachr. Math.-Phys. Klasse (1930), p. 133; R. S. Mulliken, Phys. Rev. 43, 279 (1933).

function of ammonia (neglecting the tunnel effect) must belong to one of these three representations. Of the three types, A_1 and A_2 are nondegenerate, while E is doubly degenerate. Of the four fundamental frequencies, the two nondegenerate can be shown to belong to representation A_1 and the two degenerate to representation E . Tisza⁸ showed that the *n*-quantum overtones of frequencies of the types A_1 and E give vibrational states as follows:

$$
[A_1n] = A_1;
$$

\n
$$
[En] = \begin{cases} E & \text{when } n \text{ is 1,} \\ A_1 + E & \text{when } n \text{ is 2,} \\ A_1 + A_2 + E & \text{when } n \text{ is 3; etc.} \end{cases}
$$
 (1)

Parallel bands can be shown to occur for transitions $A_1 \leftrightarrow A_1$, $A_2 \leftrightarrow A_2$, or $E \leftrightarrow E$, perpendicular bands for $A_1 \leftrightarrow E$, $A_2 \leftrightarrow E$, or $E \leftrightarrow E$. Since the normal state of ammonia is of type A_1 , the four fundamental bands involving the normal state are $v_3(||) = (A_1 \leftarrow A_1), v_4(\perp) = (A_1 \leftarrow E), v_1(||)$ $=(A_1 \leftarrow A_1)$ and $\nu_2(\perp) = (A_1 \leftarrow E)$.

As a result of the tunnel effect, in which the nitrogen atom can penetrate the potential barrier in the hydrogen triangle according to the quantum mechanics, each vibrational level as above classified is really split into two, denoted by α and β (symmetrical and antisymmetrical with respect to a central plane). There are selection rules as follows: (1) for the parallel type of band, $\alpha \leftrightarrow \beta$; (2) for the perpendicular type, $\alpha \leftrightarrow \alpha$ and $\beta \leftrightarrow \beta$; (3) for the Raman spectrum, $\alpha \leftrightarrow \alpha$ and $\beta \leftrightarrow \beta$.

It is now fairly certain⁹ that the four fundamental bands of ammonia are as follows: 10.5μ , $\nu_3(||)$; 6.13 μ , $\nu_4(\perp)$; 3.0 μ (ν_1 , ||, overlapped by v_2, \perp). Calculations by J. B. Howard¹⁰ indicate that v_2 , \perp should be at about 3450 cm⁻¹. Since such a band would overlap ν_1 , $||$ at 3.0 μ , we have an explanation of the observed structure of the 3.0μ band which, although its strongest lines can be explained as ν_1 , ||, with center at 3335 $cm⁻¹$, contains also many other lines. Further, M. Migeotte¹¹ has found in ND_3 a band anal-

ogous to the 3.0μ band of NH₃. This consists of two overlapping bands, one of parallel and one of perpendicular type, with the latter of somewhat lower frequency than the former.

The rotational energy of the symmetrical top rotator is given by

$$
E_r = \frac{h^2}{8\pi^2} \left[\frac{J(J+1)}{I_A} + \left(\frac{1}{I_C} - \frac{1}{I_A} \right) K^2 \right] + \cdots, \quad (2)
$$

where $Jh/2\pi$ is the total angular momentum of the molecule and $Kh/2\pi$ is its component along the figure axis, I_c and I_A being the moments of inertia along and perpendicular to the symmetry axis. By substituting $B = h/8\pi^2 cI_A$ and $\beta = (I_A/I_C) - 1$, and assuming that the molecule is also deformed on account of rotation, the rotational energy in wave numbers is

$$
F(J, K) \equiv E_r / hc = BJ(J+1) + \beta BK^2 + DJ^2(J+1)^2 + \cdots, \quad (3)
$$

where $K \leq J$. When the vibrational state is of a degenerate type, there is an interaction between the angular momentum vector K and the angular momentum associated with the vibration, giving. rise to a correction term $\pm 2\beta' BK$ which must rise to a correction te
be added to Eq. $(3).¹²$

The selection rules for transitions between rotational energy levels are (1) for the parallel type of band, $\Delta J=0, \pm 1$ and $\Delta K=0$; (2) for the perpendicular type, $\Delta J=0, \pm 1$ and $\Delta K=\pm 1$; and (3) for the Raman spectrum, $\Delta J=0, \pm 1, \pm 2$ and $\Delta K = 0$.

Because of the nuclear spin of the hydrogen atoms, the quantum weights of those levels with quantum number K divisible by three (including 0) are doubled. Besides this, there is a weight factor 2J+1 for $K=0$, 2(2J+1) for $K>0$.

III. SEARCH FOR ΔF 's AND DIFFICULTIES IN ANALYsIs; NATURE oF BANDs

In order to analyze the photographic vibration-rotation bands by the combination principle method, it is desirable to know the ΔF 's of the normal state. Perhaps the most fundamental type of ΔF is the double difference between rotational energy levels of equal K , given by

^{&#}x27; L. Tisza, Zeits. f. Physik 82, 48 (1933).

[~] The writer is greatly indebted to Professor D. M. Dennison for correspondence (also to M. Migeotte for information on ND_3) relating to this point. "
¹⁰ J. B. Howard, J. Chem. Phys. 3, 207 (1935); see this

paper also for earlier literature. " Private communication to Professor Mulliken.

¹² E. Teller and L. Tisza, Zeits. f. Physik 73, 791 (1933);
M. Johnson and D. M. Dennison, Phys. Rev. 48, 868 (1935) .

$$
\Delta_2 F_K(J) \equiv F_K(J+1) - F_K(J-1). \tag{4}
$$

For ammonia these quantities can be obtained approximately from the pure rotation band and the Raman spectrum. Another type of ΔF of some importance is the single difference for fixed X, given by

$$
\Delta_1 F_K(J) \equiv F_K(J+1) - F_K(J). \tag{5}
$$

Still other types of ΔF 's can be given, e.g.,

$$
\Delta_2 F_J(K) = F_J(K+1) - F_J(K-1), \tag{6}
$$

with J fixed.

th J fixed.
According to the combination principle,¹³ in a given vibration-rotation band, if $\Delta K = 0$, the difference of the wave numbers of a P and an R line involving a common upper rotational (and vibrational) level is

$$
\Delta_2 F_K''(J) = R_K(J-1) - P_K(J+1), \qquad (7)
$$

where $\Delta_2 F_K''(J)$ is a difference between two lower rotational energy levels. Assuming the lower rotational levels given by Eq. (3), Eq. (4) now yields

$$
\Delta_2 F_K''(J) = 2(2J+1)[B''+2D''(J^2+J+1)]. \quad (8)
$$

From a study of observed $\Delta_2F_{K}''(J)$'s, B'' and D'' could be evaluated.

From two lines with a common lower level, one finds for the upper rotational levels

$$
\Delta_2 F_K'(J) = R_K(J) - P_K(J). \tag{9}
$$

In the type of band where $\Delta K = 0$ and $\Delta J = 0$, ± 1 (parallel type infrared bands), each line is composed of several, usually superposed, components due to lines with the same J' and J'' but different values of K. Since $K \leq J$, the number of superposed lines depends upon the value of J . A similar superposition of components exists also for Raman bands ($\Delta K = 0$, $\Delta J = 0$, $\pm 1, \pm 2$.

In attempting to apply Eqs. $(7)-(9)$ to parallel type infrared bands (which includes the "pure rotation" bands as a special case), the compositeness of the lines, just mentioned, causes difficulty. Thus the $\Delta_2 F$'s obtained by applying Eqs. $(7)-(9)$ represent some sort of averages over several K values. These average ΔF 's for parallel bands may be called ΔF_{Pa} 's, and are defined, e.g., by

$$
\Delta_2 F_{Pa}^{\prime\prime}(J) = R_{Pa}(J-1) - P_{Pa}(J+1)
$$

= $F_{Pa}(J+1) - F_{Pa}(J-1)$, (10)

where the symbol R_{Pa} or P_{Pa} refers to the measured frequency of a composite line.

To be sure, the quantities $R_K(J)$, $P_K(J)$, $\Delta_2 F_K(J)$ would be independent of K, and all components of a P or R line would coincide exactly, if Eqs. (3) and (8) were exact, but in practice, as we shall find, this is not quite true. The frequency which is measured for a line, corresponding evidently to the maximum of intensity of the observed composite line, obviously depends somewhat on the distribution of intensity among the different unresolved components (different K values) which make up the observed line. It is clear that, in general, any observed $\Delta_2 F_{Pa}$ "(*J*) value obtained from Eq. (10) should lie somewhere between the $\Delta_2 F_K(J)$ values with $K=0$ and with $K=J$. Wright and Randall¹⁴ and Barnes¹⁵ in measuring the pure rotation band of ammonia, have obtained data allowing the evaluation of $\Delta_2 F_{Pa}''(J)$'s.

A similar situation exists for Raman effect ΔF 's. In the pure rotation Raman effect, the observed Raman shifts are precisely $\Delta_1 F(J)$'s for $\Delta J = \pm 1$, and $\Delta_2 F(J)$'s for $\Delta J = \pm 2$. We may define

$$
(\Delta J = \pm 1): \Delta_1 F_{Rm}(J) = \nu_{Rm}(J)_{\Delta J = 1}
$$

= $F_{Rm}(J+1) - F(J)$, (11)

$$
(\Delta J = \pm 2): \Delta_2 F_{Rm}(J) = \nu_{Rm}(J-1)_{\Delta J=2}
$$

= $F_{Rm}(J+1) - F_{Rm}(J-1)$. (12)

Here again each ΔF is an average over several K values. The measured ν_{Rm} depends somewhat on the intensity distribution over the different K values. This can be shown to be different for the cases $\Delta J = \pm 1$ and ± 2 in the Raman effect, while $R(J-1) - P(J+1)$ in parallel type infrared bands is still different. Hence, unless the $\Delta_1 F_K(J)$'s and $\Delta_2 F_K(J)$'s are independent of K, one should find slight discrepancies between $\Delta_2 F_{Rm}(J)$ and $\Delta_2 F_{Pa}(J)$, and between $\Delta_2 F_{Rm}(J)$ and $\Delta_1 F_{Rm}(J-1)+\Delta_1 F_{Rm}(J)$.

In the Raman spectrum of ammonia, Lewis and Houston¹⁶ found accurately not only $\Delta_2F_{Rm}(J)$'s

¹³ Cf. e.g., W. Jevons, *Band Spectra of Diatomic Molecule*

(The Physical Society, London, 1932), p. 47.

¹⁴ N. Wright and H. M. Randall, Phys. Rev. 44, 391 $(1933).$

¹⁶ R. B. Barnes, Phys. Rev. **47**, 658 (1935). ¹⁶ C. M. Lewis and W. V. Houston, Phys. Rev. **44**, 903 (1933).

but also $\Delta_1 F_{R_m}(J)$'s. For the changes $\Delta J = \pm 2$, assuming $\Delta_2 F_{Rm}(J)$ to be given by the equation

$$
\Delta_2 F_{Rm}(J) = 2(2J+1)[B_0 + 2D_0(J^2 + J + 1)], \quad (13)
$$

they found $B_0 = 9.92$ and $D_0 = -0.00052$. If Eqs. (3) and (8) were exactly valid, the coefficients B_0 , D_0 thus obtained should coincide with B'' , D'' of Eqs. (3) and (8) as applied to the normal state of the molecule. However, the Raman shifts with $\Delta J = \pm 1$ calculated from these constants deviate systematically from the observed Raman shifts. The discrepancy may be accounted for in the following way.

As already noted, each line observed in the Raman spectrum is really composed of several components of differing K value, the number of which depends upon the value of J. From the formulas for calculating the theoretical intensiformulas for calculating the theoretical intensi
ties of the lines,¹⁶ one finds that for a giver observed line with $\Delta J = \pm 1$ the intensity of the components should be highest for the higher values of K. When $\Delta J = \pm 2$, however, the intensity of the components is highest for the smaller values of K .

Now suppose a small correction in the form $\alpha K^2 J(J+1)$ is added to Eq. (3). A correction of this form is to be expected theoretically. Eq. (3) then becomes

$$
F(J, K) = (B + \alpha K^2)J(J+1) + \beta B K^2 + DJ^2(J+1)^2.
$$
 (14)

When K varies from 0 to J , there is now a slight difference in frequency between the different X components of an observed line, although in practice these differences have been too small to resolve. Since the corrections are small, each observed line will correspond to the maximum intensity of the resultant of the different components. In order to determine the position of maximum intensity for this resultant, the intensity-frequency curve of each component was assumed to have a simple triangular form, whose base was made approximately twice the half-intensity breadth of the line, in such a way that the curves would overlap each other. The position of maximum intensity was then obtained by summing the individual intensities due to the different components, and should correspond to the frequency of the measured

TABLE I. Values of $\overline{K_1}^2$ and $\overline{K_2}^2$.

		$K_1^2(\Delta J = 1)$ $K_2^2(\Delta J = 2)$	1 : 7		$K_1^2(\Delta J = 1)$ $K_2^2(\Delta J = 2)$
				16.9	3.4
		ი		24.0	70
	3.2	ገ.4		33.0	8.0
3	6.2	0.6		44.0	10.0
	10.9	1.3		57.5	11.0

line in the Raman spectrum. Then the double difference for $\Delta J=2$ is

$$
\Delta_2 F_{Rm}(J)
$$

= 2(2J+1)[B''+2D''(J²+J+1)+\alpha''\overline{K_2}^2], (15)

I and the difference between consecutive levels for $\Delta J=1$ is

$$
\Delta_1 F_{Rm}(J)
$$

= 2(J+1)[B''+2D''(J+1)² + α ''\overline{K}_1^2], (16)

where the bars denote averages. Values of $\overline{K_1^2}$ and of $\overline{K_2}^2$ obtained according to the procedure outlined above are given in Table I.

If these values of $\overline{K_1^2}$ and $\overline{K_2^2}$ are plotted against J^2 , it is found that the $\overline{K^2}$'s are approximately proportional to J^2 , although there are some irregularities in the plot on account of doubling of the quantum weights of those levels for which K is a multiple of three (including 0). If we put $\overline{K_1^2} = cJ^2$ for $\Delta J = 1$ and $\overline{K_2^2} = dJ^2$ for $\Delta J=2$, where c and d are constants of proportionality, the values of the constants are found to be approximately $c=0.69$ and $d=0.14$. Then the equations for the Raman shifts become

$$
\Delta_2 F_{Rm}(J) = 2(2J+1) \times [B'' + 2D''(J^2 + J + 1) + 0.14\alpha''J^2]
$$
 (17) and

 $\Delta_1 F_{\nu_m}(I) = 2(4+1)$

$$
\times [B'' + 2D''(J+1)]^2 + 0.69\alpha''J^2].
$$
 (18)

The values of c and d being known, α'' may be calculated from the difference between the observed $\Delta_1 F_{Rm}(J)$ Raman shifts, supposed to correspond to Eq. (18), and certain pseudo values of $\Delta_1 F_{Rm}(J)$ based on the observed $\Delta_2 F_{Rm}(J)$'s and calculated as if they were related to the latter as true $\Delta_1 F_K(J)$'s would be related to true $\Delta_2 F_K(J)$'s (cf. Eqs. (4), (5)). This difference is $2(c-d)\alpha'' J^2(J+1)$. The best fit of the observed differences with this formula is obtained for $\alpha'' = 0.00154$. The probable error in this figure is, of course, relatively large. It should be mentioned especially that the observed differences do not fit the predicted form $CJ^2(J+1)$ very well.

By comparing Eq. (17) with the observed values of $\Delta_2 F_{Rm}(J)$ from the Raman spectrum, taking $B'' = 9.92$, since B'' is evidently practically the same as B_0 , D'' is found to be -0.00061 . Thus in Eqs. (14) – (18) we have, for the normal Thus in Eqs. (14) – (18) we have, for the normal state of ammonia, $B'' = 9.92$, $\alpha'' = 0.00154$, $D'' =$ -0.00061 . Using Eqs. (4) and (14), we get

$$
\Delta_2 F_K''(J) = 2(2J+1)
$$

×[9.92-0.00123(J²+J+1)+0.00154K²]. (19)

For parallel-type bands in the infrared spectrum (cf. Eq. (10)) the Eqs. (17) and (19) are replaced by

$$
\Delta_2 F_{Pa}^{\prime\prime}(J) = 2(2J+1) \times [9.92-0.00123(J^2+J+1)+0.00154bJ^2], (20)
$$

where bJ^2 has been put in place of $\overline{K^2}$, b being similar to d of $\Delta_2 F_{Rm}(J)$. On comparing the values calculated from Eq. (20) after omitting the last term in the bracket with those obtained from observed values of Barnes¹⁵ in the pure rotation band of ammonia, the differences should be equal to $0.00308bJ^2(2J+1)$. Using Barnes' data, the value of b is found to be 0.45 and Eq. (20) becomes of the form

$$
\Delta_2 F_{Pa}^{\prime\prime}(J) = 19.838 + 39.674 J
$$

-0.00596 J² - 0.00212 J³. (21)

The value of b could also have been calculated from the intensity distribution of the K components in the lines of a parallel-type band, but this was not done here.

From Eqs. (19) and (21), double differences $\Delta_2F''(J)$ have been calculated for use in comparison with experimental data below. In the second and fourth columns, values of $\Delta_2F_{K''}(J)$ are given for $K=0$ and $K=J$; in the third column for a mean K^2 value corresponding to $\Delta_2 F_{Pa}^{\prime\prime\prime}(J)$.

For the perpendicular type band, the J double difference in wave numbers, with constant K , should be given by Eq. (19) . If J is constant, the X double difference should be

$$
\Delta_2 F_J''(K) = \pm 4\beta' B +4K[\beta B + 0.00154J(J+1)].
$$
 (22)

In analyzing the photographic bands of ammonia according to the combination principle

TABLE II.

	$K=0$	$K^2 = hI^2$	$K = J$
	59.50 cm^{-1}	59.50 cm^{-1}	59.51 cm^{-1}
2	99.12	99.15	99.18
3	138.66	138.74	138.84
4	178.10	178.30	178.54
5	217.40	217.78	218.25
	256.55	257.20	258.00
7	295.50	296.52	297.77
8	334.23	335.81	337.58
9	372.72	374.85	377.46
10	410.90	413.81	417.38
	448.80	452.67	457.39

method, it was attempted to select pairs of lines with wave number differences about equal to the known double differences $\Delta_2F_{K''}(J)$ or $\Delta_2F_{Pa''}(J)$ of the normal state and to arrange these into series, but this procedure gave only a few good series.

Then simple types of parallel and perpendicular bands predicted by assuming the rotational constants of the upper state levels not much different from those of the normal state were compared with the observed bands. Only the 6470A band seems to follow at all the general structure of the simple perpendicular type, but detailed consideration⁴ did not confirm this structure. Then a parallel-type band with different B and β in the upper and lower states was tried¹⁷ but the general appearance of the observed bands is far different from this type.

It seems very likely' that the difficulties in analyzing the bands may be explained as follows. As several authors have pointed out, the frequencies of the main photographic bands are approximately multiples of the frequency of the band at 3.0μ . For example, Adel¹⁷ gives the equation $v_n = 3389n - 50n^2 - 2n^3$. But if the 3.0μ band is composed of two overlapping fundamental bands (cf. Section II), then the bands here under consideration may involve not only harmonics of both these fundamentals, but also a variety of combination bands. Furthermore, it is to be noted that harmonics of a perpendicular-type fundamental include in general a set of several parallel and perpendicular-type bands. Thus each of the "bands" here considered may be composed really of a number of superimposed bands, some of parallel and some of perpendicular type.

¹⁷ Cf. A. Adel, Phys. Rev. **48**, 103 (1935).

For example (cf. (1) and selection rules), the 10,230A band should according to this explanation consist of three perpendicular and three parallel bands, the λ 7920 band of four parallel and five perpendicular bands, and the λ 6470 band of five parallel and seven perpendicular bands. Besides, an additional doubling may appear in each band due to the tunnel effect (α, β) doubling). Only some such degree of complexity as this seems to offer a reasonable explanation of the richness and apparent irregularity of the lines in each band, and the difficulty in carrying out an analysis with the help of the combination principle.

IV. EXPERIMENTAL WORK

The five absorption bands in the long wavelength photographic region of gaseous ammonia were photographed with a 21 -foot grating (Paschen mounting), the dispersion being about $2.6A$ per mm in the first order. A glass absorption tube, 32 mm in diameter and 4.3 m long, with plane glass windows fused on the two ends, and a 500:-watt projection lamp as a source of light, were used. Eastman spectroscopic plates of the following types were used throughout the work: types C and F for 6470A and 5490A, type R for 7920A, types P and Q for 8800A and type Q for 10,230A. The spectrograms were made first with the absorption path equal to the length of the tube. Then by reflecting light through the tube with a right-angled prism, the path was increased to double the length of the tube. The time of exposure varied greatly with the type of plate and the region of the spectrum, from one-hour exposures for the second-order spectrum of the 6470A band to 85-hour exposures for the firstorder spectrum of the 10,230A band. The plates were hypersensitized in an ice-cooled bath of 4 percent ammonia solution and dried before an electric fan after being washed in alcohol. The tube was filled with ammonia gas from a small tank containing pure liquid ammonia, very kindly supplied by Professor W. C. Johnson of the Department of Chemistry. Experiments were also made at the temperature of solid $CO₂$ $(-77^{\circ}C)$, with which the absorption tube was packed during exposure, the ammonia pressure indicated being 14 mm, Only the strong lines of the 10,230A band then appeared on the plates,

while those of the other bands were too weak to be photographed.

The ammonia absorption lines were compared with standard lines of the second and third order spectra from a 220-volt iron arc. The wave numbers in vacuum were calculated in the usual way, except that those of the lines beyond 10,000A were computed in the way indicated by Babcock¹⁸ by extending the use of Kayser's Tabelle der Schwingungszahlen, in the neighborhood of 10,000A. From the best spectrograms the following numbers of lines were measured: 714 lines in 10,230A, 304 lines in 7920A and 162 lines in 6470A. Absorption lines (only a few in number) due to the water vapor band, 9420A, were identified and eliminated from the 10,230A band.

Complete tables of lines in wave numbers are given in the Appendix.

V. PRESSURE BROADENING OF THE AMMONIA BAND LINES

When Badger³ employed pressures of one to five atmospheres in photographing the ammonia 6470A band, he noticed that increasing the pressure of the gas broadened the absorption lines. All the ammonia lines in the photographic region show the same effect of broadening when the pressure is varied, and all appear to show the same degree of broadening at atmospheric pressure. In order to get the best resolution of the lines, it is important to know their width under various pressures.

The accompanying spectrograms of the 7920A band (cf. Fig. 1), of which only the central portions are reproduced, show the variation. of the width of the absorption lines with pressure. The lines at 750 mm pressure are about 0.55A broad and at 95 mm they become fairly sharp. They become still sharper at still lower pressures. This is shown in the 10,230A band, where at a pressure of 14 mm when the temperature of the gas is -77° C, the line widths become extremely small. The widths of the lines depend much more upon pressure of the gas than upon path length. The different absorbing lengths under the same pressure show apparently the same degree of broadening.

¹⁸ H. D. Babcock, Phys. Rev. **46**, 382 (1934).

Pressure (mm) Absorption length (m) $\begin{array}{c} A \ 750 \ 4.3 \end{array}$ \overline{B} \overline{C} $\begin{array}{c} B \\ 190 \\ 8.6 \end{array}$ 8.6 8.6 $\begin{array}{c} D \\ 140+610 \text{ (air)} \\ 8.6 \end{array}$ $^{E}_{95}$ 4.3

The influence of a foreign gas (air) on the widths of the lines is shown in spectrogram (D) , Fig. 1, for which air was admitted into the absorption tube containing ammonia at a pressure of 140 mm, making a total pressure of one atmosphere. The spectrogram of ammonia gas alone at 140 mm is also shown in (C) , Fig. 1. In these two cases, the numbers of absorbing ammonia molecules are the same. Though there is a slight broadening effect of air on the absorption lines, this effect is very much smaller than that of the absorbing ammonia molecules on one another. The widths of the lines at 140 mm pressure plus 610 mm of air are shown nearly equal to those of the lines of ammonia alone at 190 mm.

In comparing the spectrogram of the ammonia lines at 750 mm pressure with that of the HCN absorption band 1.04μ at 630 mm and that of the HCl 1.20μ band, both obtained by Herzberg and Spinks,¹⁹ the widths of the ammonia lines are smaller than those of the HCN lines but are about the same as those of the HCl lines. The widths of the HCN lines are about 1.4 times those of the ammonia lines at atmospheric pressure.

In the infrared spectrum of HCl, Lasareff²⁰ and Grasse²¹ report that broadening of the absorption lines of the 3.46μ band caused by the presence of different gases is nearly the same as that caused by the absorbing gas (HC1) itself. They explained the phenomenon on the classical theory of Lorentz collision broadening. In ammonia, as well as in HCN, the pressure broadening of the lines cannot be attributed to this cause, but instead to intermolecular forces. It seems that the effect observed in ammonia may be explained in part by the intermolecular Stark effect due to the dipole moments of the molecules. Such an effect would be proportional to the dipole moment and to the number of molecules dipole moment and to the number of molecule
per cc.²² The dipole moment of HCN is greate than those of $NH₃$ and HCl, the moments being than those of NH₃ and HCl, the moments being
2.5–2.6, 1.44, and $1.03\times10^{-18}\,\mathrm{e.s.u.}$, respectively.²³

An attempt has also been made to look for a dependence of the widths of the lines upon the quantum number J , but it appears that the effect, if any, must be comparatively small.

VI. FREQUENcY DATA AND ANALYsIs

10)230A AND 8800A BANDs

These two bands have been investigated by Lueg and Hedfeld,¹ but only a number of equal intervals in these bands were indicated by them. The 10,230A band appears in the present work to consist, as has not been noted previously, of

¹⁹ G. Herzberg and J. W. T. Spinks, Proc. Roy. Soc.

A147, 434 (1934); Zeits. f. Physik 89, 477 (1934).
²⁰ W. Lasareff, Zeits. f. Physik 64, 598 (1930).
²¹ W. Grasse, Zeits. f. Physik 89, 261 (1934).

²² V. Weisskopf, Physik. Zeits. **34**, 1 (1933). See also H.
Margenau, Phys. Rev. **48**, 755 (1935).
²³ Trans. Faraday Soc. **30**, following p. 904 (1934).

TABLE III. Band: $v_0 = 9760.38sb$.

Possi- $_{BLE}$ J	POSSIBLE P BRANCH	POSSIBLE R BRANCH	POSSIBLE $\Delta_2 F^{\prime\prime}(J)$	POSSIBLE $\Delta_2 F'(J)$
0		9779.85s		
		9780.39s		
1	9740.31s	9799.54s	59.58	59.23
	9741.22sb	9800.86m	59.13	59.64
2	9720.27m	9820.09s	99.16	99.82
	9721.26s	9820.92s	99.08	99.66
3	9700.38m	9840.13s	138.69	139.75
	9701.78m	9840.89w	138.59	139.11
4	9681.40s	9860.43w	178.80*	179.03
	9682.33m	9861.30m	$178.67*$	178.97
5	9661 33sb	9880.57m	217.67	$219.24*$
	9662.22sb	9881.95w	217.59	219.73*
6	9642.76s	9900.70wh	256.73	257.94
	9643.71m	9901.64sb	256.97	257.93*
7	9623.84 <i>m</i>		295.90	
	9624.985		295.70*	
8	9604.80m			
	9605.89s			

two separate bands which can be distinguished by their intensity in absorption and which slightly overlap at 10,150A. The one of the longer wave-length is the stronger and its center is approximately at 10,230A. This stronger band has also been observed by Unger²⁴ using infrared technique. The center of the weaker band appears to be at 9900A.

On the high frequency side in the stronger band $(10,230A)$, there are several groups of strong lines with intervals of about 10cm^{-1} , half the spacing characteristic of parallel-type infrared bands, suggesting a similarity to perpendicular type bands such as the 1.97μ band, studied by Stinchcomb and Barker, which also show 10 cm^{-1} spacings.

The strongest 200 lines, approximately, were taken from the 10,230A band and all pairs of lines with wave-number differences about equal to the double differences $\Delta_2 F_{Pa}''(J)$ for $J=1, 2,$ 3 and 4 were sorted out. For instance, taking the double difference for $J=3$ as about 138.7 cm⁻¹ (cf. Table II), about ten pairs of lines giving Δv 's agreeing with this value to within ± 0.05 cm^{-1} were found. The most probable number²⁵ of accidental interval coincidences caused by random distribution of spectrum lines over 420 cm^{-1} (the approximate width of the band) is about 6, thus indicating that some but not nearly all of the $\Delta \nu$'s may represent real $\Delta_2 F_{Pa}''(J)$'s. One series of close pairs of lines given in Table

TABLE IV. Band: $v_0 = 10,099.74mb$.

Posst- $_{BLE}$ J	POSSIBLE P branch	POSSIBLE R BRANCH	POSSIBLE $\Delta_2 F^{\prime\prime}(J)$	POSSIBLE $\Delta_2 F'(J)$
0		10.119.47sb		
	10,079.84mb	10.139.31sb	59.71	59.47
2	10,059.76mb	10.159.17w	$99.62*$	99.41
3	10.039.69s	10.179.01s	139.17*	139.32*
4	10.020.00s	10.198.67s	178.92	178.67
5	10,000.09s	10.218.45mb	$218.43*$	218.36
6	9.980.24w			

TABLE V. Band: $v_0 = 10,104.86s$.

III gives Δv 's which agree very well with $\Delta_2 F''(J)$'s given in Table II. The lines belonging to the series form arrangements like P and R branches of a parallel band (cf. Fig. 2, where the most likely J'' values are shown, preceded by a minus sign in the case of the P branch lines). The strong line in the center of the series corresponds to the O branch (ν_0) . No other series of lines giving Δv 's corresponding to $\Delta_2 F''$'s were found in the 10,230A band.

The structure of the 9900A band (cf. Fig. 3) is simpler than that of the 10,230A band. Two series of lines, given in Tables IV and V, were found in this band, one agreeing quite well with predicted $\Delta_2 F''(J)$ values given in Table II, the other not agreeing with the predicted values though it forms a good series by itself.

The doublet series with $v_0 = 9760.38$ in the 10,230A band and the series with $v_0 = 10,099.74$ in the 9900A band presumably correspond to two of the three predicted parallel bands expected near 10,000A (cf. end of Section III). The doubling in the series with $v_0 = 9760.38$ is most likely the α , β (tunnel effect) doubling. The explanation of the band with $v_0 = 10,104.86$ is not obvious; it might involve an excited lower state, but seems too strong for this; besides, no temperature-sensitiveness was observed. Perhaps the arrangement in a series is spurious.

²⁴ H. J. Unger, Phys. Rev. **43**, 123 (1933)

²⁵ G. R. Harrison, Rev. Sci. Inst. 4, 581 (1933).

FIG. 3. 9900A band. (v_0 should be v_0 .)

The 8800A band was also photographed but because of the rapid falling off of sensitiveness of the plate in this region, it was not used for measurement.

In the preceding tables, the small letters following the wave number of each line denote its intensity, *viz.*, $ss = \text{very strong}, s = \text{strong}, m$ = medium, w = weak and b = broad. The lines in series are arranged, and J values assigned, so as to give double differences as close as possible to the $\Delta_2 F_{Pa}''(J)$ values from Eq. (21), but the J numbering might still be shifted in some cases. The broad lines are usually due to blending of two or more lines and therefore their measurements are less reliable. When differences of observed $\Delta_2 F$'s from calculated values can be explained as due to blending with other lines, or to inaccuracy of measurement due to weakness of a line, they are marked with an asterisk.

7920A BAND

Badger and Mecke² found 54 lines in this band and arranged them into several series with

a mean interval between adjacent lines equal to 19.88 cm⁻¹. They assumed the selection rule $\Delta K = \pm 1$, corresponding to the case of a perpendicular type band. Thus they took the spacing between the two strong lines in the center of the band with several lines in their neighborhood as the mean value of the coefficient of K^2 in Eq. (2), so that the moment of inertia, I_c , could apparently (but cf. Ref. 12) be evaluated.

In the present work an attempt was made to analyze the band rigorously by the combination principle method, but the structure does not fit the form either of a perpendicular type band or of a parallel type band. Two series, given in

TABLE VI. Band: $v_0 = 12,609.24s$.

Possi- ві.е ${\it J}$	POSSIBLE P branch	POSSIBLE R branch	POSSIBLE $\Delta_2 F''(J)$	POSSIBLE $\Delta_2 F'(J)$
		12.629.64s		
	12,589.71w	49.33sb	59.73	59.62
	69.91s	69.96s	99.07	100.05
3	50.26m	89.42s	138.73*	139.16
	31.23w	12,708.95s	178.23	177.72
5	11.19m	29.12m	$217.31*$	217.93
	12.491.64w	48.68s	257.32	257.04
	71.80w	68.18m		296.38

Possi- BLEJ	POSSIBLE P branch	POSSIBLE R BRANCH	POSSIBLE $\Delta_2 F^{\prime\prime}(J)$	POSSIBLE $\Delta_2 F'(J)$
		12.639.50s		
	12,599,32m	58.65s	59.60	59.33
	79.90m	79.19sb	99.20	99.29
	59.45sb	98.37m	138.76	138.92
	40.43m	12.718.86s	178.39	178.43
	19.98 w	37.62s	217.83	217.64
	01.03w	56.29s	256.37	255.26
	12.481.25w	75.71m		294.46

TABLE VII. Band: $v_0 = 12.619.75s$.

Tables VI and VII, were found, however. The Δv 's found in the two series agree with the double differences of the normal state as calculated from Eq. (21) (see Table II). The interval between the zero-lines of these two series is about 10 cm^{-1} .

It seems likely that the two series found in the 7920A band represent two of the four parallel bands expected in this region (cf. end of Section III).

6470A AND 5490A BANDS

Badger³ has investigated these two bands and found 57 lines in the 6470A band, but he indicated only that the mean value of the spacing of the lines in series was 19.74 cm^{-1} . The structure of this band looks more like a perpendicular than a parallel type band. A group of strong lines which are nearly equally spaced in the center of the band suggests the Q branch of a perpendicular band, while there are also other groups of lines resembling P and R branches. However, on detailed consideration⁴ it was not found possible to reconcile the structure with that expected for either a perpendicular or a parallel band. This is not surprising in view of the considerations given at the end of Section III.

The writer wishes to express his appreciation to Professor R. S. Mulliken for the proposal of the problem and for constant inspiration and valuable advice throughout the investigation, also to Professors D. M. Dennison and E. F. Barker for helpful correspondence. He also wishes to thank Professor G. S. Monk for valuable suggestions during the work and Professor W.C. Johnson for the pure liquid ammonia.

APPENDIX

Unaravi									
			60.76sb		9868.58 w	42.20m	12.56sb	82.90mb	56.10w
9503.74 w	14.98s	84.58 w	61.71m	11.52sb 13.03s	69.36w	42.66m	10013.75s	83.55s	57.02m
06.67w	16.09w	9685.63s		9814.03mb	70.18s	43.46mb	14.66sb	84.77m	10158.32w
08.29w	17.49w	86.22s	62.87w		71.24w	9943.99w	16.29s	85.67w	59.17w
10.57w	9618.88w	87.57s	63.39s 9763.94w	15.30sb 16.97s	72.36s	44.66m	17.20w	10086.10mb	60.31m
14.17m	20.56w	88.895	64.51s	17.70s	9873.28s	46.06s	17.83w	86.76m	61.64w
9518.02m	21.34m	90.04s		18.03s	73.95s	46.49w	10018.71m	87.86w	62.32w
22.94m	22.66m	9690.24s	65.46m	9818.37 w	76.01s	46.95w	19.45m	89.625	10163.09s
28.60m	23.84m	90.84w	65.83m		76.91wb	9947.47 w	20.00s	90.18s	64.11w
33.80s	9624.98s	91.33m	66.37s	19.24sb	77.25w	48.94 w	20.84m	10090.83w	
34.26 w	25.93w	91.80sb	9767.04s 67.73w	$20.09s$. 20.42w	9877.83w	49.33w	21.72w	91.46m	64.57w 65.71s
9534.66m	27.69s	93.20m		20.92s	78.27m	49.95 w	10022.55m	92.74mb	67.16wb
35.09w	28.94m	9694.11m	69.18s		79.09w	50.50m	23.22m	94.46mb	10168.09mb
35.52w	29.38m	94.84s	69.91m	9821.53s	79.76m	9950.92s	23.75s	95.07s	69.30m
36.29w	9630.12w	95.43s	70.70s	22.41sb	80.57m	51.66s	24.23m	10096.57mb	69.84w
37.06m	30.92w	96.40m	9771.35s	23.15w	9881.95 w	52.15s	25.48mb	97.32mb	70.40w
9538.40m	31.97s	97.35m	72.12s	23.83s	82.60 w	53.12m	10025.91w	98.14m	71.34w
39.20w	32.54s	9698.32m	72.67m	27.54m	83.44w	53.94w	27.11w	98.74s	10172.17w
40.65s	33.10w	700.38m	73.38s	9828.19w		9954.49w	27.53w	99.74mb	73.04w
42.84 v	9635.12m	01.78m	73.93m	28.86m	85.04w			10100.74s	
44.93 w	35.77m	02.48m	9774.70m	29.31m	85.76 w	55.01 w	28.61w 29.65w	02.56s	73.61m
9546.80s	36.40mb	0.3.22m	75.22m	29.91sb	9886.46w	55.83m			74.59w
47.45m	37.92w	9703.63s	75.87w	30.685	87.77 w	56.76w	10030.88w	03.27s 03.91w	75.49w 10176.42m
52.28s	38.53m	04.59s	76.79m	9831.32w	88.64w 89.23m	58.04s 9959.13s	31.73m	04.86s	79.01s
52.71w	9639.57s	05.97s	77.56mb	31.91m			32.65s	10105.61wb	80.72s
54.23w	40.145	07.195	9778.85s	32.39m	89.89 w	59,85s	33.23s	06.90s	82.11sb
9554.80s	41.17m	08.39s	79.08s	33,40w	9890.71 w	61.085	34.27m		82.79w
55.74m	41.92s	9709.15s	79.85s	33.82m	92.44m	61.81s	10035.14m	09.50m 10.18m	10184.46w
56.66 w	42.76s	10.68s	80.39s	9834.40w	93.08w	63.74s 9965.67w	36.06s	11.76sb	85.98sb
57.56s	0643.71m	12.31m	81.16s	34.63w	93.56s		36.87 m	10112.33w	
58.41w	44.60mb	13.92s	9781.89 w	35.20w	94.42w	66.71 w	37.44sb 38.63wb	13.11w	89.02w 89.84 w
9562.48s	45.09mb	16.78 <i>m</i>	82.61m	35.77m	9895.48 w 96.84 <i>mb</i>	68.72w	10039.69s	13.74s	90.77w
63.65s	45.94mb	9718.26s	83.095	36.32m	97.73s	69.94 w 71.01w	40.55m	$13.74s$ $14.76m$	10192.03w
64.68 w	46.61mb	19.23s	83.56m	9837.22w	98.57w	9972.33sb	41.21 <i>vvb</i>	16.93s	93.51mb
65.33m	9649.87s	20.27m	84.19w	37.74s	99.86wb	73.08s	42.56wb	10117.79s	93.95w
67.86s	50.98s	21.26s	9784.79 w	39.13s	9900.70 <i>wb</i>		43.69s	18.57m	95.92sb
9569.54s	52.335b	23.89m	85.29w	40.13s		73.66w 74.10w	10044.85w	19.47sb	97.63s
70.96s	53.11w	9724.79s	85.44 w	40.89w	01.64sb 02.99mb	75.13s	45.88s	20.35w	10198.67s
73.23m	54.03sb	27.36s	86.38 w	9841.58w			46.58s	20.86m	202.35s
74.74s	9654.34sb	28.40s	87.01m	42.18w	03.76w	9975.86 w		10121.87m	05.89sb
75.23s	55.80w	29.665	9787.92s	42.86s	04.44w	76.51m	47.63wb 48.59wb	22.98s	07.20w
9576.05w	56.60w	30.22s	88.60s	43.45s	9905.36w	77.14m			09.14m
76.39m	57.43s	9734.45s	89.96s	44.11w	06.46s	79.05s	10049.52wb	23.53w 24.00w	10212.64s
77.67w	59.07m	35.59m	90.75s	9844.78m	08.70w	79.60w	50.61 <i>mb</i>	24.55m	13.42w
78.54m	9660.00w	$\begin{array}{ c c } \hline &35.59m \\ \hline &36.00m \\ &37.07s \\ \hline \end{array}$	91.17m	45.64w	09.44w	9980.24w	52.24s		
79.50w	61.33sb		9791.69w	46.41m	09.94w	81.19s	54.04w	10125.31s	14.63s

10,230A and 9900A bands Characteristics of the line are denoted as follows: $ss = \text{very strong}, s = \text{strong}, m = \text{medium}, w = \text{weak}, \text{and } b = \text{broad}.$

9580.60s	62.22sb	38.78mb	92.11w	47.43s	9910.38m	82.76wb	54.71w	26.18s	15.43w
82.43s	64.43w	9740.31s	93.24s	49.12s	11.23mb	83.73w	10055.29w	26.82s	17.19ub
83.34s	65.12w	40.72sb	93.64m	9849.40w	12.60m	84.26w	56.10s	27.70w	10218.45mb
86.29s	9665.92s	41.22sb	94.86s	50.11s	13.47m	9984.73w	57.05w	28.38m	19.84sb
87.66s	66.29s	42.15w	9795.38w	51.03w	14.50s	85.94w	57.29w	10129.27m	20.35w
9587.99m	67.15m	42.52w	95.86m	52.13w	9915.53w	86.63s	58.38w	30.70mb	21.39w
89.42s	68.52w	9743.32m	96.55s	52.47w	17.05s	87.96w	10058.83w	32.43m	22.63mb
91.12w	69.28m	43.83m	97.00w	9853.63mb	18.97s	89.26s	59.76 <i>mb</i>	35.39sb	10225.46wb
91.64s	9670.11s	44.81w	97.30w	54.16w	20.48w	9990.32w	60.35w	38.72sb	26.37m
93.77s	71.58w	45.39m	9797.61w	55.28m	22.03m	91.64s	61.66w	10139.31sb	27.63m
9594.84w	72.14w	46.30w	98.11w	56.36m	9923.61m	92.72m	63.21w	41.24w	28.58w
95.40w	72.98s	9747.80s	98.92w	57.44w	25.41s	93.53m	10064.82mb	41.95w	29.98w
96.10m	73.58s	48.57s	99.54s	9857.93s	26.17w	94.67m	65.95w	42.65w	10230.53s
97.64m	9674.16s	49.50m	9800.12m	58.38s	26.83w	9995.51m	67.13s	43.17w	31.91w
601.27w	74.98w	50.10w	9800.86m	59.22w	29.62s	96.34s	67.98m	10143.96s	32.50s
9603.70s	75.76s	50.70s	01.39w	59.53w	9930.93s	98.19w	68.60s	44.52s	33.57s
04.80m	76.36s	9750.95w	01.99w	60.43w	32.15w	98.99m	10069.36m	45.86s	34.11w
05.33w	76.65s	52.04m	02.96w	9861.30m	33.06w	99.63m	70.01m	46.64m	10234.60w
05.89s	9678.39s	52.66m	03.45w	61.43w	34.77m	10000.09s	71.59m	47.35m	47.42s
06.98m	78.75s	53.46s	9804.19m	62.19w	36.61sb	00.61s	73.45sb	10147.71s	48.11w
9608.38m	79.64s	54.39s	05.19m	62.84w	9937.97sb	02.61sb	74.75s	48.48w	53.14w
08.95s	80.13w	9755.53s	06.59s	63.33w	38.47w	07.06s	10077.02mb	49.02m	
09.80w	80.78s	56.61s	07.72s	9863.74s	39.09w	07.62s	78.47mb	50.23w	
11.57s	9681.40s	58.19mb	08.50w	64.19w	39.62s	10008.89s	79.84mb	51.70w	
12.32w	82.33m	59.24s	9808.66s	65.04w	40.47s	09.52sb	80.95s	10152.59sb	
9613.13w	82.95m	59.80s	09.83sb	66.10s	9941.05s	10.35s	81.445	54.12w	
13.52m	83.91m	9760.38 <i>sb</i>	10.56s	67.06 <i>mb</i>	41.51w	11.13s	10082.30w	55.23m	

10,230A and 9900A bands-Continued

15263.8w	29.7 _m	65.9m	97.2m	21.6w	15442.8m	72.3m	03.5w	29.7s	65.5w
68.6w	31.8m	15367.2w	98.2w	23.4m	44.5s	73.5w	15506.3s	30.8w	69.3w
72.3m	36.2m	68.2m	401.5w	15425.1m	46.8s	74.4m	08.2s	31.7w	15570.4w
89.4w	15339.3m	69.4w	02.8m	26.2w	47.8w	15477.8m	10.2s	32.6w	75.4w
94.6w	41.1w	70.4w	15404.4s	27.6m	48.8w	78.9m	12.5s	15533.4w	76.1w
15295.9w	42.4w	72.4w	05.5w	28.6m	15449.9s	82.4s	14.4m	34.8s	96.0w
300.2m	47.6w	15376.4s	08.25	29.4s	50.8m	85.4m	15515.4w	35.9m	99.3w
02.2w	49.3w	78.7w	09.1w	15431.5m	52.5s	88.95	16.5s	39.0s	15605.5w
04.2w	15351.3w	80.3s	10.0w	32.4w	53.7w	15489.95	17.6m	41.1m	06.2w
07.5w	53.1s	83.3s	15411.1w	33.8w	55.5m	91.0w	18.9s	15543.9w	
15310.4w	54.3s	85.6m	12.2w	34.7w	15457.8m	92.0w	20.0w	45.7w	
16.4w	55.7w	15386.6w	13.9m	35.9w	58.7w	$-93.3s$	15522.0w	48.4m	
17.2w	56.5w	87.6s	15.1m	15437.6w	59.9m	94.5w	22.7w	49.6w	
20.2w	15358.5s	90.65	16.5w	38.1m	62.7s	15497.1s	23.9w	52.2m	
20.7w	61.9m	94.2m	15417.6m	39.4w	64.8w	99.6s	25.2w	15555.3w	
15324.3w	63.0m	95.0w	18.4w	40.2m	15466.0m	15501.5m	26.4s	57.8w	
26.4w	64.8m	15395.9w	20.0s	41.2s	66.9m	02.3w	15528.3s	59.3w	

 $6470A$ band

FIG. 2. 10,230A band. (v_0 should be v_0 .)

FIG. 3. 9900A band. (v_0 should be v_0 .)