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increase in the applied field at which successive
breakdowns occur can be attributed to a con-
ditioning of the anode. A definite part of this
progressive increase in field can be attributed to
conditioning of glass surfaces when they are
exposed to the discharge.

11. A few tubes eventually would not give
breakdown at about 26 kv which was the highest
voltage available. Tests with one, in which there
was opportunity for much gas contamination did
not result in the subsequent occurrence of break-
down.

12. The highest electric field that could be
applied to a cathode without breakdown oc-
curring was about 4.7X IO' v/cm.

13.The evidence favors the conclusion that the
electric field applied to the cathode surface rather

than the applied voltage is the more important
factor in producing breakdown. The evidence
likewise favors the conclusion that the anode has
no effect on the breakdown and that when the
shielding against glass surfaces is complete, the
breakdown is determined primarily by conditions
at the cathode.

14. The suggestion is made that breakdown
involves a rupturing of the cathode surface under
the action of local heating and mechanical strain
associated with the electric field.

The author acknowledges with pleasure the
continued interest of Dr. H. E. Mendenhall
during the progress of the experiments and is
indebted to Dr. J.A. Becker for many suggestions
regarding the interpretation of the data and the
form of the manuscript.
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The problem of determining intranuclear forces from the
mass defects of the hydrogen and helium isotopes is inves-
tigated under the assumption that the interaction poten-
tials are proportional to a function f(nr') having the general
form of a potential w'ell and possessing the power series
expansion

f(ar') = 1 —ar +c~(os')'/2! —c~(cxr')'/3!+ ~ ~ ~

about the origin. With this assumption the Rayleigh-
Schroedinger perturbation theory is applicable to the two,
three and four particle eigenvalue problems. The perturba-

tion calculation yields small corrections to the eigenvalues
given by the "equivalent" two particle method. The
corrections are checked very satisfactorily in a special case
by means of a complicated variational calculation. Numer-
ical results are given for two extreme forms of the neutron-
proton model: Model I—Interaction between unlike
particles only, Model II—Equal interactions between all
pairs of particles. These results put close upper and lower
bounds on the strength of the interaction between like
particles in the model, intermediate between (I) and (II),
which corresponds most closely to the experimental facts.

I. INTRQDUcTIQN

HE mass defects of the hydrogen and
helium isotopes appear to require a nuclear

model with strong attractive forces between
neutrons and protons and somewhat weaker
attractive forces between like particles. ' ' 3

However in the study of the eigenvalue problems
it is convenient to consider two extreme forms
of the neutron-proton model with

'Feenberg and Knipp, Phys, Rev. 48, 906 (1935).
~ R. D. Present, Phys. Rev. 49,640 (1936).
3 Massey and Mohr, Proc. Roy. Soc. A152, 693 (1935).

(I) Interactions between neutrons and pro-
tons only;

(II) Identical interactions between all pairs
of particles.

The model which corresponds most closely to the
experimental facts is intermediate between (I)
and (II). If the eigenvalue problems associated
with (I) and (II) are solved, the corresponding
solutions for intermediate models can be ob-
tained by a simple process of interpolation. The
Hamiltonian operators for models (I) and (II)
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lators. 4 The same coordinate transformation
applied directly to Eq. (6) yields the equation

are taken to have the form

Hz(H') = ——',(6z+h2+z1, ) —Azf(nr„')
—Azf(nr, ),

Hz(He') = ——",(az+a, +z1,+z1.)
—Azf(nr iP) —Azf(nr i4')

—Azf(nr23') Azf(—nrz4'), (2) in which

(1) {Dz+Az+zzz(H') —sz —s,'+(3/8)c, (n/Azz)-'

X (sz'+4(sz sz)'/3+2sz's2'/3+s, ')
—(1/96)c~(a/Azr)(9sz +' ' +11s )

+ }(=0, (10)

Hzz(H') = ——,'(&z+&z+&3) '.A—zz-f(nrz2')
—3Arr f(nrz3') —3Azr f(«23') (3)

Hzi(He') = —
~ (&z+&2+&3+&z)

;A—izf—(«im') — 3A—zrf(«34'), (4)

in which f(nr') is a function possessing the power
series expansion

f(nr') = 1 —nr'+ci(nr')'/2!
—c~( r')'/3!+ . (5)

about the origin and vanishing rapidly for. large
values of r. The factor of two-thirds in Eqs. (3)
and (4) is introduced in order to make Az and

Az& directly comparable. M~e wish to determine
the normal state eigenvalues Ez(H'), Ez(He'),
Ezz(H'), Eiz(He') as functions of the parameters
in the interaction potential.

II. THE PERTURBATIQN M ETFIoD

A detailed discussion of the symmetrical three
particle problem is given to illustrate the
general method. The starting point is the
Schroedinger equation

{—-,'(~z+ ~~+~s) 3Azzf(n—r zz')
—3Anf(nri3') —3Anf(nr23') }it=Eiz(H' )P (6)

For small values of n the potential function
f(nr') may be replaced by the first two terms in

the power series expansion (5).With this approxi-
mation Eq. (6) reduces to

~zi(H') = [Err(H')+2Anj/(nAzz)*. (11)

The wave function P can be expanded in terms
of the solutions of the oscillator Eq. (9) and the
usual perturbation theory applied to obtain
ezz(H') as a power series in (n/Azz)1, ci, c2 '

ezz(H') = c'+ (n/Arr)-'c&z&

+ (n/An) z'zz+ . (12)

The results of the perturbation calculation are

e' = 6, zrz& = —(15/4) ci,
e&'& = (5/128) {112cz—129c '} (13)

The same procedure when applied to the other
three problems yields results similar to (13).
The energy eigenvalues are given by the ex-
pressions

Ez(H3) = —2Az{1—3(0.933a/Az) l

+ (15/8) ci(0.933n/Az)
+ (2.5664cz' —(35/16) c2) (0.933a/Az) '+ },(14)

Ez(He') = —4Ai {1—3(0.7286n/Az) '

+ (15/8) ci(0.7286n/Az)
+(2.5089cz' —(35/16)cs)(0 7286n/Az) *+ }, (15)

Ezz(H') = —2Azz{1 —3(n/Azz):
+ (15/8)ci(n/Arz) + (2.5195cz2

—(35/16) c,) (a/Azi) '*+ . . }, (16)

Err�

(H e') = —4A iz {1 —3 (0.75n/A zi) *

+ (15/8)ci(0.75n/An)+ (2.4902cP
—(35/16)c2)(0.75n/Azz)*'+ }. (17)

{—i2 (Dz+Ar+zz, 3) —2Azi
+-', nAzz(r12 +r13 +r23 ) }O' Ezz $ ~ (7)

In terms of the internal coordinates

In the special case

f(nr&) c arz—(cz=c2=1), (18)

(z = (16aAzz/9)&(xz ——', (x,+x,)),
(,= ( A n)-'*z(zg xx,), —

Eq. (7) takes the simple form

+6 +6 s12 s22}po —0

the expansions in powers of (n/A)& appear to

(8) converge quite rapidly. However the range in
which Eqs. (14), (15), (16), (17) may be expected
to be moderately accurate does not extend into
the physically interesting region (n &(2.8&(10 "

(9), )
which we recognize as the wave equation for a
system of six independent linear harmonic oscil-

4 See !A". V. Houston, Phys. Rev. 4'7, 942 (1935) for a
discussion of the general "harmonic oscillator" model.
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Model I 8=2Az
P =1.8660m

& =4Az
P = 2.9142n

(21)

(22)

III. THE EQUIvALEN T Two-PARTIcLE

EQUATIONS

The procedure described in the preceding
section can be applied to obtain the normal state
eigenvalue of the two-particle Hamiltonian
operator

H = ~ Bf—(P—r'). (19)

The resulting expression for the eigenvalue is

8 = BI1——3(P/B)'*+(15/8) cz(P/B)
+(2.5781cP—(35/16)c')(P/B)&+ }. (20)

We get "equivalent" two particle problems by
giving B and P the values

The Eqs. (25), (26), (27), (28) reduce the three
and four particle eigenvalue problems to the
much simpler problem of computing the lowest
eigenvalue of the one dimensional equation'

Id'/«'+8+Bf(P") }v = o (»)
Calculations to test the accuracy of the Eqs.
(25), (26), (27), (28) are described in the ap-
pendix. The results, as far as they go, indicate
that these equations are quite accurate in the
physically interesting range of o values.

IV. NUMERICAL RESULTS

A table from which any one of the quantities
8, B, P can be computed when the other two are
known is available in the case of the Gaussian
potential (Eq. 18).z The conditions

Zz(He') =Ezz(He'),

Model II B—2A zz

P=2cx (23) —Ez(He')+(coulomb correction)" =54mc' (30)

8 =4Azz
HP=3- (24)

These results were originally found by a vari-
ational method' which does not require that any
restrictions be placed on the potential function
f(nr'); in particular the power series expansions
about the origin may contain odd powers of r.
It is clear from the original variational derivation
that the eigenvalues 8z(H'), 8z(He'), 8zz(H'),
8zz(He4) of the "equivalent" problems do not
differ very much from the eigenvalues of the
corresponding three and four particle problems.
The differences can now be estimated since the
two sets of eigenvalue s are related by the
equations

~z(H') = 8z(H')

2(Az —A. ) =A..=2(An —A. ) (31.)

is an immediate consequence of the two assump-
tions

TABLE I.* Az, Azz, Ez(H'), Ezz(H').

are sufhcient to determine Az and Azz as func-
tions of n. These quantities in turn determine
Ez(H') and Ezz(H'), which are given in Table I.

Table II gives the depth of the neutron-proton
well, A„, as a function of a and the binding
energy of the deuteron.

Attractive forces between like particles are
necessary to account for the difference between
A„and Az, Azz. Let A„„and A „represent the
depths of the neutron-neutron and proton-proton
wells. The inequality'

+0.021m(n/Az)*'cz2+ .
, (25) Az Azz P z(H') j zz(H')

Ez(He') = 8z(He') 2.8 )( 10 "cm
+0172n(a/Az)'*cz2+ .

, (26) 2.o x zo-"cnz
1.6 )& 10-'8 cm

10
20
30

64
97

126

65
98

129

19.8
17.1
14.9

17.9
14.3
1.1.6

Ezz(H') = 8zz(H')
+0.117a(n/Azz) *CP+' '

Bzz(He4) = 8zz(He4)

+0.228u(n/Azz) *'cP+

(27)

(28)

5 Feenberg, Phys. Rev. 47, 850 (1935),Eq. (26); reference
1, Eq. {13).

+ Units —Energy —mc2 =510 000 e.v.
Length —Pi/c(Mm) ~ =8.97 X 10-» cm.

'An "equivalent" two particle equation was used by
signer in his pioneer investigation of the three and four
particle eigenvalue problems, Phys. Rev. 43, 252 (1933).' Reference 1, Table I; also reference 5, section II.' Reference 1, Table II.

' Feenberg, Phys. Rev. 49, 273 {1936).
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TABLE IV. g(o.', E(H )),

H') —3.5mc' —4.0mc' —4.5mc' H') —3.5mc' —4.0mc' —4.5mc'

10
20
30

48
82

114

50
84

117

51
86

120

10
20
30

0.22
0.17
0.14

0.23
0.18
0.15

0.24
0.19
0.16

TABLE III. Upper and lower limits on A„„(Eg.3~). TABLE V. Upper and lower limits on A,„(Eg.33).

10
20
30

H') —3.5mc'
U L

33 31
32 29
30 24

—4.0mc'
U L

30 28
28 24
25 18

—4.5mc'
U I.
26 24
24 20
20 13

10
20
30

H') —3,5mc~
U L

44 42
46 43
46 40

—4.0mc'
U I.

41 39
43 40
42 36

—4.5mc'
U L

38 36
40 37
39 32

Z(H' singlet) 0. (32)

Values of g computed from Eq. (32) are listed
in Table IV.

The inequality (31) must be replaced by

2(Az —A„)+gA„A„„
2(Azz —A„)+gA„(33)

and Table III byasimilartablebased on Eq. (33).
For n = 10, the like particle depth A„„ is

almost identical with the effective neutron-
proton depth (1—g/2)A„. Consequently at this
point

A„„=2(Azz —A„)+gA„. (34)

In the range 10~n~20 the upper limit on A„„

"Reference 1, section V."L. A. Young, Phys. Rev. 48, 913 (1935).
'2 The numerical integration of Eq. (28) with 8=0 yields

the result (1—2g)A„~2.7a.

(a) A„„-A...
(b) Neutron-proton interaction independent

of spin orientation. The upper and lower limits
on A„„, computed from Eq. (31) are shown in
Table III.

Assumption (b) is probably incorrect. It
appears necessary to assume a dependence on
spin orientation in the neutron-proton inter-
action as suggested by Wigner in order to
account for the very large scattering cross section
of slow neutrons in hydrogen. ' " We replace
(b) by the assumption:

(c) Depth of the neutron-proton well

=A„(triplet interaction),
= (1—2g)A„(singlet interaction).

The constant g is determined by the condition"
ilZ(He4) =Z(He4) +54 (36)

measures the deviation from the value 54mc'
used in Eq. (30). There are corresponding devi-
ations zlA „„and 8E(H') from the tabulated
values of A„„and Z(H'). The relations

8A„„—1.1zzE(He4), 5E(H') 0.4izZ(He4),
10—cE—20, (37)

permit the calculation of corrections to the
tabulated values when 8E(He') is known.

The nuclear masses and energies given recently
by Aston ' Oliphant "K.T. Bainbridge ' Bethe
and Livingston" determine the energies

"Eqs. (8) and (9), reference 1, are used to compute the
corrections."F. W. Aston, Nature 137, 357 (1936).

"M. L. Oliphant, Nature 137, 396 (1936).
i6 Cornell Symposium (July 1936}.
"Bethe and Livingston, unpublished (we are indebted

to Dr. Bethe for communicating to us the results tabulated
In (38)).

coincides with the accurate value. Also in this
range the eigenvalue Ezz(H') does not differ
very much from the eigenvalue E(H') of the
physical model under assumption (c). No cor-
rection is needed at n=10. At n=20 the de-
parture from complete symmetry lowers the
eigenvalue by the amount 0.3mc'. This correction
includes the effect of changing from ordinary to
Majorana forces between unlike particles. "For
intermediate points the linear interpolation
formula

E(H') = —17 9+0 3. 3(n . 10),—10 zz. 20, (35)

is sufhciently accurate.
Let —Z(He4) represent the correct (unknown)

binding energy of the alpha-particle. The quan-
tity
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E(H') = —4.34&0.12mc'

Z(H') = 2E(H') —7.82&0.03mc'

B(He') =22(H') —6.26&0.20mc'

E(He') =28(H') —4.65&0.3mc'

(38)

Using Eqs. (35) and (37) the experimental bind-
ing energy of H3 determines o. to have the value
16(n 1 2.25&&10 " cm)" From Table V and
Eq. (37), A„„41mc' at n= 16."These values fit
moderately well with new results on the anoma-
lous scattering of fast protons in hydrogen. " "

P = (1+cHzz) P'. (40)

In the variation method of calculating the energy
the following matrix elements are required

APPENDIX. VARIATIONAL CALCULATIONS

The Gaussian wave function

P = N exp l

—(v/2) (rrz'+ rr3 + rz3 )] (39)

may be taken as an approximation to the normal
state eigenfunction of the Hamiltonian operator
Hzz(H') A better approximation which should
give fairly accurate values for the energy is

(ol1 o) =1 (oIHzzl0) =3+a—2Azr(a/(a+1))*,
(OlHzz' 0) =12cr'a' 6cr—Arrl —3o(a/(a+1))&+a(o/(a+1))' '}

+ (4/3)Azz' {(a/(o +2))r+ 16o'/(2o +1)l(2a+3) & l,
(Ol Hzz'I 0) =60n'a' —(3/2)Azzn'(a/(a+1))'"(48a +136o+103)

+4Azz n l (o /(o +2) ) '(3o +9o +2)/(o'+ 2) +64a (3a +9o +Sa)/(2 a+ 1)r (2a+ 3)5

—(8/9)Azz'l48o /(4a +12a+6)'*+16a /(2a+3)'+(a/(a+3))'*I

where t has been replaced by 3(xo.
The corresponding treatment of the "equiva-

lent" two particle Hamiltonian given by Eq.
(19) is based on the approximate wave function

4'=&exp L-( /2)r»' (42)

The matrix element (Ol1l0) is the same as in

Eqs. (41). If we replace 8 by 2Azz and P by 2rr. ,

(OlH l0) is also the same as in (41). The other
matrix elements are

(0 H' 0) =15a'a' —12Azra. (a/(a+1))'"(a+2)+4Azr'(a/(a+2))'*,
(0 H' 0) =105rr'a' —2Arrzr'(a/(a+1))'"(45a'+156a+156) (43)

+12Azzzu(a/(o'+2))'*(3a'+12o+4)/(a+2) —SArz (a'/(o+3))'*,

where p has been replaced by 2zro. In using (41)
and (43) it is convenient to give Azz values which

make the exact eigenvalue of the "equivalent"
problem independent of 0.. This will occur if we

set An =A. (Z(H') = —4.0). Then the exact
eigenvalue of Eq. (29) is —Smc'.

lo iH i0) 8 E—g 0.117m(a/A, ) &

10
20
30

—5.46—2.77—0.07

—7.34 —6.78 0.56—6.53 —5.40 1.13—5.60 —3.91 1.69

0.53
1.14
1.78

TABLE VI. Comparison of the values of E and 8, calculated from
(43) with the term 0.117n(a/Ayg) & in Eq. (27).

"The coulomb interaction between the protons in He'
accounts for about 80 percent of the experimental difference
between E(H') and E(He'). See reference 1, Table I I I.

"The condition A„„((1—2g)A„~ which is satisfied for
o. &15 precludes the existence of a di-neutron or di-proton.
At a = 16, A„„ is about 5 percent smaller than the neutron-
proton singlet interaction with E(H', singlet) = 0.

"Tuve, Heydenburg, Hafstad, Phys. Rev. 49, 402 (1936)."Breit, Condon and Present (to appear in the Physical
Review).

We now expect that the difference in the
energies 8 calculated from (41) and 8 calcu-
lated from (43) should agree with the term
0.117rr(zr/Arz)l in Eq. (27) if this equation is
accurate. Table VI shows that Eq. (27) is quite
accurate in the physically important range of 0.

values.


