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transmission through thick BaO-deposits (Table
II) may indicate the presence of thin regions,
formed in the process of oxidation of thick Ba-
films. That these regions are not bare is evidenced
by the shift of the Ag-peak.

The distribution of energy losses appears to
offer a new, sensitive tool for the study of sur-
faces and surface layers. If the substance of the
film has a distribution curve reasonably different
from that of the backing material, layers only a
few atoms thick can be detected. This test
appears to be somewhat more sensitive, and less
likely to alter the conditions studied, than
present electron diffraction methods employing

high voltages. " In the case of t a, the metal can
be detected in a thickness decidedly (i on a
backing of the oxide. This is now being used to
study the surfaces of thermionic emitters made
from CaO and BaO. For the detection of small
amounts of foreign material on a surface this
method is probably never as sensitive as thermi-
onic measurements, but in favorable cases it has
one great advantage compared with these: it not
only detects, it identifies.

"The diAraction beams obtained with single crystals
at low bombarding voltages appear to be even more sensi-
tive than the energy loss distribution to a small coverage
of foreign material on the surface: Farnsworth, Phys. Rev.

.49, 605 (1936).
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The general properties of the single electron wave func-
tions for a crystal are discussed, and an expression derived
for the probability of excitation by electron bombardment
as a function of the two electronic levels involved in the
transition. When the excitation energy is small compared
with the energy of the bombarding electron, the relative
transitions probabilities approach those for excitation by
radiation. A detailed calculation has been carried out for
the case of solid copper, for which the energy levels are
now known from other work. Approximate wave functions—of the atomic type for the lower state, free-electron-like

for the upper state —were used to evaluate the transition
integrals. The calculated distribution curve for the in-

elastically scattered electrons is in fair agreement with the
experimental curve in the region of small energy losses: the
rapid rise from small values and the following two maxima
exhibited by the experimental curve are all reproduced in
their proper positions. The departures for higher losses
are attributed to the fact that the free-electron-like wave
functions used are not a proper approximation to the actual
functions in this region.

HE problem of inelastic scattering of elec-
trons in matter, early discussed for relatively

fast electrons by Thomson' and others as a
problem of atomic scattering, was treated very
completely by Bohr' on the basis of classical
electron theory. More recently, quantum theory
has been applied particularly to the scattering by
free atoms. Frohlich' has given a wave-mechan-
ical treatment of the inelastic scattering from
metals, using a special Bloch-Sommerfeld model
for the metal. He was able to deduce from this
the characteristic features exhibited by the dis-

' J. J. Thomson, Conduction of Electricity through Gases,
343 (1903).

2 N. Bohr, Phil. Mag. 25, 10 (1913);30, 581 (1915).
'H. Frohlich, Ann. d. Physik 13, 229 (1932).

tribution of the low energy secondary electrons.
In the present paper we consider the transition
pro&abilities for electronic excitation on the basis
of the general electron theory of solids. In experi-
ments on inelasti. c collisions, the target is usually
bombarded by a nearly parallel, homogeneous
beam of electrons and the energy distribution is
measured for those electrons which are scattered
into a small solid angle about a definite fixed
direction with respect to the target and the in-
cident beam. Tests with polycrystalline targets
have shown the energy distribution to be essen-

tially independent of both this latter direction
and of the angle of incidence. For this reason we

have calculated the total probability of all
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transitions with a given energy loss and arbitrary
direction of the scattered electron, assuming an
isotropic distribution in direction of the primary
particles. It seems likely that the isotropic dis-
tribution of primary and scattered electrons here
involved is actually nearly established inside the
target as a result of the frequent processes of
elastic scattering by the massive ions in the
lattice.

While most experimental work in this field, for
technical reasons, has been done on metallic
conductors, the theory applies to solids in general.
The present discussion divides into three main
parts. In the first the wave functions and their
properties are reviewed; in the second the general
expressions for the transition probabilities are
developed. In the third part approximate cal-
culations are carried out for the case of copper,
for which the energy levels are now known and
approximate wave functions available, and the
results are compared with experimental data.

We wish to consider a collision in which a fast
and a slow electroo collide, the fast one losing a
little energy and the slow one gaining it. The
unperturbed problem 's that in which each
electron moves through a periodic potential
field, representing the crystal, unaffected by the
particular motions of other electrons. Each
electron in this approximation is represented by
a modulated periodic function of the type well
known in the theory of metallic lattices:

Pakp(r) = exp [fkp ' r]uaap(r),

Qako having the periodicity of the potential field.
We shall often use the equivalent Fourier reso-
lution:

Palp(1) = Pa(kp+ K&) exp [f(ko+ K&) r]. (la)

The stationary states are divided into a number
of bands, and the index a represents a particular
band. The vector ko is different for the various
states within a band. To satisfy Bloch's condi-
tion of periodicity, 4 the vectors K„must form a
discrete set, constituting what is called the
reciprocal lattice in the k-space. This reciprocal
lattice is determined by the crystal structure,

4 F. Bloch, Zeits. f. Physik 52, 555 (1928).

and is face-centered cubic for a body-centered
cubic crystal, and vice versa. We can conveniently
set up polyhedral cells in the k-space, one sur-
rounding each point of the reciprocal lattice, and
of such a shape that they fill the k-space com-
pletely without overlapping. We may imagine
a(kp+ K~) =c(k) as a single-valued function of
the continuous variable k in the k-space; then
the Fourier coefficients of a particular state ko
of the band a will be the values of a at the ap-
propriate points k of the various cells, points
reached from k(l by the translations K„. It can
be shown that the square of the magnitude of
one of these a's is proportional to the probability
that the electron in question have a momentum
(k/27r)k = (6/27') (ko+ K~), when in the state
(a, ko). For this reason the o, s are sometimes
called momentum eigenfunctions. It is evident
that Par, is a periodic function of ko, for if ko is
increased by one of the vectors of the reciprocal
lattice, say K„ the whole lattice of points ko+ K„
will be shifted back into itself. The same Fourier
coefficients must then be chosen, leading to the
same function as before, since by arranging the
states according to bands we have made P a
single-valued function of kt) within each band.
At the same time the energy of this state will

return to its initial value, so that the energy
within a band may be regarded as a periodic
function of the continuous variable ko (or k).
Often, on account of this periodicity, it is con-
venient to restrict ko to the central polyhedron
of k space, but this is not always desirable.

If in particular the state a represents a free
electron, its wave function is a plane wave, a
constant times exp [fk~ r] (where k& need not
be in the central polyhedron in k space), so that
only one a is different from zero. The energy of
the free electron is p'/2m, where p is its mo-
mentum. If we express energy in Rydberg units,
distances in atomic units, this becomes simply
k»', where k» is proportional to the momentum.
For the sake of uniformity, it is often convenient
to represent the state of a free electron by a
function in k space, and to make this single-
valued one must break up the free electron states
arbitrarily into bands. We could do this by
deciding to group together all those states for
which k» was in a particular polyhedron io
k space. For this particular band, a(ko+K„),



i52 E. RU D BERG AN D J. C. SLATER

regarded as a function a(k) of the continuous
variable k =ko+ K„, would be zero outside this
polyhedron, constant within it. The energy,
within the polyhedron, would be given by kP,
and by the periodicity property this would be
repeated in every other polyhedron. This par-
ticular assignment, however, is not very reason-
able when there is a small periodic perturbative
potential. In this case, the wave function and
energy will be slightly perturbed, and it can be
shown that the periodic energy function which
we have just discussed would be.distorted by the
introduction of certain planes of discontinuity,
across which the energy would change discon-
tinuously. Brillouin has shown' that it is much
better to take unperturbed functions by setting
up certain zones in k space. Such a zone is formed
from parts of many polyhedrons, all having
about the same energy and

~

k&
~

value, but
spread more or less uniformly about the surface
of a sphere. These parts of polyhedrons are so
chosen that they could be fitted together, by pure
translations K„ to form a single polyhedron. We
now assume a single energy band of the free
electron to be one in which a(k) is constant
within one Brillouin zone, zero outside it. The
energy within the Brillouin zone is given by kP,
and outside the zone it is a periodic function of
k, coming back to the same value at correspond-
ing points of each polyhedral cell ~ The Brillouin
zone is chosen in such a way that this determines
the energy at each point of k space uniquely.
The energy, however, is a rather complicated
function of k within an individual polyhedron.
The polyhedron, as we have said, can be divided
into parts which could be displaced by K, to
form the zone, and within each of these parts the
energy is represented by ~k+K, ~', a parabolic
function of k; but this function changes from
one part of the polyhedron to another, since the
proper translation vector K, is different for dif-
ferent parts. Because of this, the slope or gradient
of the energy as a -function of k changes discon-
tinuously from one part of the polyhedron to
another, though the function itself is continuous.
This is because the direction of the vector k~ for
the free electron, but not its magnitude or kP,
changes discontinuously with k in going from

5 L. Brillouin, Qgantenstatistik (1931).

one part to another. When small perturbations
appear, however, the discontinuous changes of
slope are rounded off, and the energy function is
a smooth one. It is this property that leads one
to say that the Brillouin zone is the correct zone
to use for describing the free electrons. The
resulting type of function is the sort actually
found in the wave functions of fast electrons in
real lattices.

We shall have occasion to consider the ortho-
gonality and normalization of our wave func-
tioris. The vector k as a matter of fact cannot
take on arbitrary values in the k space, but only
a discrete set lying on a sublattice much more
closely spaced than the reciprocal lattice, such
that the number of points within a single poly-
hedron of the latter equals the number of atoms
in the crystal. Each state is capable of holding
two electrons, one of each spin, so that each
band can accommodate two electrons for every
atom of the crystal. This sublattice has the
property that, if k and k' are any two points of
it, J'exp [o(k —k ) r]dr =0, if the integration is
carried over the whole crystal, unless k =k', in
which case the integral of course is Uo, the volume
of the crystal. Now consider two wave functions,
Pakp and Poop' The nor. malization and orthogo
nality conditions demand that

)I EZo*(ko+ K,)b(ko'+K, )

1, if a = b ko=ko'
Xexp [

—i(ko+K„—ko' —Ko) rIdr=
0, otherwise.

If ko 4 ko', the property of the sublattice men-
tioned above immediately shows that the integral
is zero, so that the only remaining case is that in
which ko ——ko . This yields the conditions

0 if agb
Z&*(ko+K„)b(ko+Ky) = (2)
p 1/Uo if c=b

For a plane wave, when only one a is different
from zero, we at once see that the wave function
is Vo ' exp [fk& r]

2.

Returning now to our problem, we assume the
fast electron both before and after collision to



SCATTER I NG OF ELECTRONS F ROM SOLI DS

be moving fast enough so that it can be repre-
sented by a plane wave. If it has values K and K'
before and after collision, its wave functions will

be Vp & exp [iK r] and Vp l exp [iK' r]. It is
immaterial whether these happen to belong to
the same Brillouin band or not. We assume the
slow electron to have wave functions Pop, and
Pa'po' before and after collision, described by the
Fourier components a(ko+K, ), a'(ko'+K, ), re-
spectively. Let the total energy of the two elec-
trons before collision be W, afterwards W', where
W'= W' if conservation of energy holds. The
unperturbed wave function of the two electrons
together will be the product of the separate
functions. Thus before collision, the function,
including its time variation, is

1
e ' '~'+—exp [iK rp]Pa, p, (rj),

Ua&
(3)

where r~ is the coordinate of the slow electron,
r2 that of the fast one. We treat the collision by
the perturbation method of variation of con-
stants. At time t =0 we assume that the Coulomb
interaction e'/~rp —r~~ commences to act. The
solution of the time-dependent Schrodinger
equation can then be expanded as a sum of terms

senting conservation of energy. (8/Bt)
~

c
~

' meas-
ures the transition probability.

Let us consider first the interaction integral
(6). Following Bethe, ' we perform the integration
first over the coordinates of the fast particle.
Letting AK = K —K', r = r~ —ri and AK r
=AZr cos 0, we have

t exp [ikK. rp]
drp ——exp [iAK rg]

f
rp —r~/

r—leihxr cos 82~r sin Ododr

4x=exp [iAK r )] sin (&Kr)dr
hE o

The last integral does not converge. To avoid
this difficulty, Bethe averages over a small range
in dK, and after integration makes this range
approach zero. Another method is to replace the
exact Coulomb potential 1/r by e '/r, perform
the integration, and then let n~0. Both methods
give for the integral the value l./tt E Hence.

4me'
I=— ' Paao(ry) exp [iAK r&]P*p'po'(ri)dry

(AE)'Uo&

a'A:O'K'
r(a~k ~Q~t)g 2xfw't/o—

P a(ko+ K„)a'*(kp'+ K,)
(AX)' Vp "'

X exp [iK' rp]Po p, (rg). (4)
Uo' X

J
exp [i(ko+K —ko' —K +&K) 'r&]d&& (&)

If we assume that at (=0 the only one of the
coefficients c different from zero is the one mul-

tiplying the function (3), .and that this is unity,
perturbation theory leads to the value

o (a~ko~K~t) —zg
—l(l powwow

( $)I
where m = W' —H, the difference in energy
between the final and initial states, and

I= I I
— ex—p [i(K—K') rp]

Vp" " [rp —rg)

XPalp(r1) f*o'po'(rq) d rqd r p (6).
The square of the modulus of c(a'ko'K't) measures
the probability of finding the system in the state
(a'kp'K') at time t; for large values of t this will

have appreciable values only near m=0, repre-

As mentioned above, the integral is zero unless

kp+K„—kp' —K,+ILK=0, orko'+Ko —(ko+K„)
= AK, in which case it is Uo. If this condition is

satisfied; we have

I= 2 a(ko'+K„—&K)a'P(ko'+Ko) (8)
(AK)' "

or
4+e'

I= — f p, (r~) exp [i&K r~]
(AIt)' Vp vo

4me' 1
a'ko'(ry)dr] = — capo(r)

(AX) Vp ~ so

Xexp [iXK r]p*o p, (r)dr, (Sa)

where vo is the volume of one lattice cell of the
' H. Bethe, Ann. d. Physik 5, 325 (1930).
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FK'. 1. Illustrating the possib1e transitions in the E space
of the fast electron.

crystal and the last integration is over such a cell.
The last step depends on the space periodicity
of the wave functions (1). In (8) the quantity I,
whose square determines the transition prob-
ability, is written as a sum of terms, of which
each one represents a transition of the fast
electron from momentum K to a value K —AK,
and an equal and opposite transition of the slow
electron to momentum k'= ko'+K„ from a value
k' —~K. This term has in the numerator the
product of the amplitudes of the probabilities of
finding the slow electron initially with momen-
tum k' —cLK, when in the state («i, kp' —cLK),
finally with momentum k', when in the state
(a', kp'), and in the denominator the square of
the momentum change AE.

We are now ready to return to expression (5),
giving the rate of transition from the initial to
the final state. We really are not considering a
single transition, however, but all possible transi-
tions for which the fast electron originally has
approximately a definite energy, but arbitrary
direction, and the bound electron changes from
state (a kp) to state (c'kp'), gaining an amount of
energy «; we wish to compute (d/Bt) g ~

c ~' for
all these transitions. Let Fig. 1 represent a plane
section through k space (the reciprocal lattice and
the sublattice are not shown) parallel to the vector
&K, the s axis lying along the direction of &K.
The points K where the incident electrons have
nonvanishing Fourier components are assumed
to lie in a spherical shell of thickness 8E and

d( —2K cos 4p) = (1/AK)d(K") = (1/DK)dpi

and dn = p7rKbK(1/nK)d74i.

The probability of all the specified transitions .

with a given AE is then

1 —e2~'"""' p~E. SEdm
I2

Bt

8 p7rEbE x23 A
=—IP— —=—J'(kp', cLK), (10)

dt AE h ~E'

where A = 16ar«e4 pKbK/h and

1
J(kp, AK) = lgai4p(r) exp [ihK r]

Vo vo
&&P*.'. (r)dr (11)

or

J(kp', cLK) = Qa(kp'+K„—cLK)a'*(kp'+K, ).
p (11a)

This holds provided this type of transition is
possible at all. From Fig. 1 it can be seen that
transitions are possible only if

2K «/2K )AK )«/2K—=AK . (12)

In the experiments on inelastic scattering from
solids, the lower limit AK in (12) is usually

radius E.This shell will not in general be entirely
in one Brillouin zone, but will include parts of
several zones. It contains a stationary state for
each point of the sublattice, so that it is popu-
lated to a uniform density p. These incident
electrons all have approximately the same energy
E'. A second shell, inside the first, includes all
vectors K' for such states that the net energy
increase of the system is between m and m+dm.
Thus E"+e=E2+m, and the thickness of the
shell is dw/2K'. From the figure it will be seen
that the number of primary electron states
which can give rise to transitions in the range dm

is dn = pdv, where dv is the volume generated by
the small shaded area upon rotation around the
z axis. Each of these states gives rise to one single
transition. With the notations of Fig. 1,

dv=2mK sin 4pbKKd4p=7rKbKd( —2K cos rp)

and from the triangle

E2+AX2 —26EX cos q =E"
so that
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quite small compared with the spacing of the
reciprocal lattice. For small values of AX the
exponential factor in (11) can be expanded and

higher terms than the second neglected, giving

1
J(ko', cLK) =— /~a, (r)P*~ a, (r)[1+fkK rIdr

UP VO

1
Par, (r)P"u ~„(r)dr+ AK—L

Uo ~o Uo

-IO -5 0 5 10 IS VOLTS

Fic. 2. Distribution in energy of the higher electronic levels
in solid copper.

APL—cos (AK, L), (13)
Uo

the 6rst term vanishing on account of orthogo-
nality. Here

~ 4 L'cos' AX, L

~
O &hK~

d (AK)d(u
aX

= —,'I.' in (2X/e) (16)

L = cap r r *a'ko' r d 7,

J'(k, ', aK)
d(AX) des,

gita
(15)

the limits of integration being determined by the
condition (12).

It turns out that, when small values of e/2X
are possible, the greater part of all transitions to
the state (a', ko') comes from those terms in the
probability sum (15) for which AX is very near
its minimum value AK . In that region we can
use the expression (13) for J'. We should there-
fore obtain a fairly good approximation to the
actual distribution of small energy losses of the
scattered primary electrons, by allowing each
ko' of an unoccupied state to receive transitions
only from the occupied lower state with ko='kp',

assigning to each such transition a probability
proportional to

the linear moment for this pair of states.
Given the upper state (a', ko') there will be a

number of lower states u from which transitions
to this state can take place with a change of
momentum of magnitude between AX and
AX+ ddt and direction (of d.K) within the
solid angle element den. This number is propor-
tional to AX'dhXdco, each transition has a
probability (10).The total probability of transi-
tion to the state (a', ko') will therefore be pro-
portional to

or proportional to L' for very high K where e=
the energy difference between the two states.
This approximation must be restricted to the

region of small energy losses. When e is large,

the approximation would introduce a consider-

able error, except for very fast primary electrons,
because AX would not be small. The effect in

the region of small losses is essentially to make
the peaks and valleys in the calculated energy
distribution appear sharper than they should be „

because of the sharp selection rule by which we

have replaced the distribution of transition
probabilities in the sum (15). For high Z and

small energy losses, where the selection is quite

strong, the transition probabilities for electronic
excitation become practically proportional to
those for optical absorption, both being deter-
mined by the square of the moment L.

3.

We shall apply the method outlined in the
preceding section to the calculation of the energy
losses on scattering from solid copper. The
transitions involved in this case are from the

partly occupied band deriving from the 3d of

the free atom to the unoccupied states above it,
of which the nearest ones correspond to the
atomic 4s. Fig. 2 shows the distribution in energy
of the electronic states for solid copper;7 the
shaded area represents the part normally

T From an extension of the work by H. Krutter, Phys.
Rev. 48, 664 (1935); see also J. C. Slater, Phys. Rev. 49,
S37 (&936).
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occupied by electrons. Since the energy levels
are known for the different states of all the bands
in question, the energy required for each par-
ticular "vertical" transition, kp ——kp', can be
found. To calculate L from (14), however, and
hence the weight L' to be attached to each such
transition, we have to find approximate wave
functions for the lower and upper states involved.

The lower states a constitute a band of essen-
tially bound electrons. If the solid is imagined as
formed by bringing the free atoms together, the.
overlapping of neighboring atomic 3d functions
will therefore be small for this band and Bloch's
approximation to the wave functions can be used.
From the general properties of the Bloch function
it can readily be shown that its introduction to
represent the lower state in (11) and (14) results
in replacing fakp in these equations by (Uo/&o) *P~,

where P, is the corresponding atomic wave
function, in this case 3d. Thus for a given kp',

L is independent of hX, and L'=L'. The integral
over the finite volume Up of the entire crystal
can then be replaced by an integral over all

space, since the atomic function P, (r) has appre-
ciable values only in a very small region of r.

Actually the 3d band is S-fold, as is the atomic
d state, and accommodates 10 electrons per atom
like the atomic state. This multiplicity arises
from the five possible m values, 2, 1, 0, —1, —2

for a d state; in general, however, a single
member of the band does not correspond to one
particular ns, but to a linear combination of all
five. Ke shall only need the average L for all
five components. To a good approximation the
wave function for the mth component state of
the 3d in copper may be written' as the product
of a radial function R(r) and the tesseral har-
monic Ti (p, 8) in the polar angles of r for 7,= 2,
each normalized to unity for the entire range of
the variables:

(7 inc])!
P =R(r) e'"&P!"!(cos 8) (17)

(E+ f
nz

f ) !

with

R(r) =r'(75 Se "'"+4 236e. "'".
+0.1185e—"'"). (18)

The unoccupied upper states behave much like
' J, C. Slater, Phys. Rev. 42, 33 (1932).

states of free electrons, at least those immedi-
ately above the'3d band, which may be said to
derive from the atomic 4s. One might therefore
try to represent such a state by a free electron
wave function Uo l exp [ski r], where ki could
be determined by the condition that kP should
equal the energy of the state in question,
measured from a suitable zero, fixed by the loca-
tion (in energy) of the lowest 4s level. This
choice of function, however, does not satisfy the
condition of orthogonality, and therefore makes
(13) invalid; for the same reason it does not
make J vanish for AX =0, as the proper function
should according to (11).To represent the upper
state (c', ko') one would therefore have to set
up a function P~„which is orthogonal to the
atomic function P, and yet which resembles the
plane wave Uo l exp [iki r]. Such a function can
be found by using the expansion for a plane
wave in a series of spherical harmonics, corre-
sponding to s, p, d, f, ~ components, and by
assuming that the function P&, equals the plane
wave, without the d spherical harmonic:

&&P i(cos 8). (19)

Here r, 0 are spherical polar (zonal) coordinates,
the polar axis being the direction of k». Since the
other harmonics are orthogonal to the atomic d
function (17), this removes the difFiculty of
nonorthogonality. As far as the calculation of L
is concerned, it really makes no difference whether
we use the simple plane wave or the expression
(19), since the contribution of the omitted d term
to the moment is zero. Of course (19) is not quite
correctly normalized for a crystal of finite size,
because of the omission of the d term; we have
ignored this. The resulting function resembles a
plane wave in the region where the atomic
function is appreciable, but is distorted par-
ticularly for fairly small values of r where the d
spherical harmonic is relatively large. This is the
type of behavior actually shown by the wave
function for one of the higher states in the metal
in the neighborhood of the lattice points. In
k space the simple plane wave has a single com-
ponent for its Fourier resolution at k =k».
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ActURlly, .with thc d ter1Tl missing, thc FQUllcr
resolution of (19) will still have a large com-
ponent at the point kl, but in addition there
will be fairly small components at all possible
points kl+K, in k space. This in general is true
of the correct wave functions of electrons in
crystals, since they are never exactly plane
waves, Of course our approximation is not very
good. The correct function can be represented
as a sum of s, p, d, components, which are
not very well approximated by the 8essel's
functions, and the coeAieients multiplying them
are not well given by the coefhcients in the plane
wave expansion. Nevertheless, the general fea-
tures are fairly well given by our assumption, in
particular the way in which the wave-length of
the oscillations of the function changes with
energy„and this is the determining feature in
the variation of I2 for different upper states,
which. 18 thc fundamental thing we sh. R11 gct
from our calculations. In the approximation
adopted here the atomic d state is degenerate,
the Ave m values all corresponding to the same
energy. We are therefore free to choose any
orientation of the coordinate system in (17); we
shall take a polar axis that coincides with the
axis used in (19), the direction of k~. With this
choice, the vector L is most conveniently deter-
mined from the matrix elements of r cos 0,
r sin He'p, r sin 8e '~, representing the three
components of the vector r, rather than x, y, s.
The only terms in (19) which contribute any-
thing to the moment are the p and f terms for
1=1, 3, according to the same selection rules
which apply for atoms. Furthermore, only the
functions (17) for m=~1, 0 contribute any-
thing, again in agreement with the selection rule
for atomic transitions. For a case m=0, the
only component of L diAerent from zero is that
of f eos 0; foI f8= 1, thRt of P sin 88 +, Rnd fol-

5z = —1, f sin 88 +. Thc components have thc
following values:

I-,...g
= Vo '((4mi/5) 3E,+ (6vri/5) 3fg),

I-, .; y.~'&= Vo *'(2~i&6/5)(3I„+i' ), I

where

FIG. 3. The average square: moment I.' as a function of
the energy kP for the upper state.

/ 2~q &

M„= r'R(r)
I
—

i J3(2(kyar)dr
&karl

1 —0.01516kI2

=kl 0.0933— +2.218
(1+0.0253k P) '

1—0.085| k,2 1 —0.4545k,2

—+21;35
(1+0.1425k P)' (1+0.757k P) '

Rnd
/2m' ) ~

r Z(r)~
~
I,),(k,r)dr

0

&kyar)

0.00378
=k18 +

(1+0.0253k P) ' (1+0.1425k P) '

(21)

I.' =Const. (3E„'+4'&~Air+ (21/16) DIP) (22).
In Flg. 3, I ls shown Rs R fUnctlon of thc energy
kp of the uppcI state.

To construct the energy loss curve to be
expected on this theory, we now proceed as
f'ollows. The energy range in question is divided
into elements of the same size, A~—in this case
De=0.01 atomic unit. The transition probabilityI' is evaluated for each one of a series of upper
states, picked with a uniform spacing as regards
ko'. The energy involved in the corresponding

+
(1+0.757kP) '

To obtain L,' we square the I. value for each m,
add and divide by 5, since all 6ve m values occur
with the same weight in the band of d functions.
The result is that
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FIG. 4. Comparison of calculated and experimental dis-
tribution curves for the energy losses in solid copper.

vertical transition is determined from the
tabulated energy levels for the diRerent bands,
and the I' value listed in the column for the cor-
responding element Ae. The distribution curve
for the energy losses is obtained by adding the
L,' contributions in each such column. The result
is shown in Fig. 4 together with the experimental
curve, 9 which is given for comparison. The agree-
ment in general is not unsatisfactory. Both curves
start with low values for zero energy loss. In the
theoretical case this arises from the small
number of possible transitions with small energy
losses. The curves then rise rapidly, each one
coming to a peak at about 7 volts, preceded by a
subsidiary peak at about 4.3 volts. At higher
voltages both curves fall oR. The agreement here,
however, is less satisfactory, since the experi-
mental curve f'alls oR smoothly, while the
theoretical one shows marked further peaks. In
regard to these diRerences one may make the
following comments. Our calculation of the
number of transitions for a given energy diRer™
ence has been based on actual calculations of
energy levels, and should be fairly reliable. It
takes account of the distribution of density
within the band of d electrons and of the devi-

9 E. Rudberg, Phys. Rev. , preceding paper.

ation of the excited electrons from free electrons.
It is this part of the calculations in which the
peRks RIe lntioduced. Those 'Rt 4.7 Rnd 7 volts
arise in a rather fundamental way: the band of
d electrons shows specially large concentration
of states at its two extreme energies, about 3
volts apart, and it is roughly these two concen-
trations which result in the two peaks. The two
maxima at 14 and 18 volts also arise from these
two concentrations, but here combined with
peculiarities in the excited electron bands, about
which there is much more uncertainty, on the
basis of independent evidence. These peculiarities
are connected with an especial concentration of
excited d components in the stationary states
for these bands. But in calculating the transition
probability L' we have represented the upper
state by a free electron function without the d
component. . If, as it happens in this region, a
large part of the correct wave function is actually
d, our method must give too big values for 2L

since d—d transitions should not occur. One thus
infers that the proper transition probability to
be used in this case should be small, which would
tend to counteract the high concentration of
transitions, thus reducing the violence of,the
Huctuations in this range, No such feature is
present with the peaks at 4.7 and 7 volts. Of
course our approximation to consider the transi-
tions as vertical becomes increasingly poor for
higher energy losses. Apart from this, one must
bear in mind that there is no direct way of dis-
tinguishing between the eRects produced by
single and multiple impacts in the experimental
curves. A fast electron may have two or more
inelastic impacts before escaping from the metal.
Since it tends to lose only a few volts on one
impact, it would then emerge with something
like double the energy loss in a single collision,
tending to raise the number escaping with a
moderate energy loss. Since the experimental
distribution curves show very few electrons for
quite small energy losses, however, it is fairly
certain that the first two peaks represent single
inelastic impacts.


