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Theory of the Effect of Temperature on the Reflection of X-Rays by Crystals

III. High Temperatures. Allotropic Crystals

CLARENcE ZENER AND S. BILINsKY, drayman Crom Hall of Physics, 8'ashington University, St. Louis

(Received May 22, 1936)

In previous comparisons of the theoretical and experimental temperature effect for the
reflection of x-rays, a marked discrepancy was found at high temperatures. It is here shown

that this discrepancy disappears when proper account is taken of the variation of the charac-
teristic temperature with temperature. Further, a relationship is found between the temperature
factors for two allotropic modifications of the same element.

(1. INTRQDUcTIQN

~HE effect of temperature in decreasing the
intensity of reflected x-rays has been sur-

prisingly well interpreted at ordinary tempera-
tures by the simple Debye model of a solid. '
In this model the observed structure factor Ii is

given by fe ~, where f is the structure factor for
a perfect lattice, and' 2

6k'T sin' 8 &0+p

~.&02 X2 (T)

Here m, is the mean mass of the atoms, tt is the
glancing angle of incidence of the x-rays on
the reflecting plane, and tt is a factor which
deviates appreciably from unity only when

*The senior author was aided in part by a grant from
the Rockefeller Foundation to Washington University for
research in science.' See Compton and Allison, I-Rays in Theory and
Experiment, pp. 435—445.' For a simple derivation, see Zener and Jauncey, Phys.
Rev. 49, 17 (1936).

0/T)1. If 0' is regarded as independent of
temperature, as it has always been in the litera-
ture on x-rays, log I' becomes a linear function of
temperature in the region 1&. The only experi-
mental values of I' at high temperatures are for
NaCP and for KC1.4 The observed values of log F
for these two crystals deviates radically from a
linear function above 400'C. The purpose of the
first part of this paper is to show that the tem-
perature factor e™calculated by the simple
Debye model is in agreement with the observed
temperature factor even at high temperatures
when proper account is taken of the variation
of 0+ with temperature.

While in )2 the continuous variation of M for
a single crystal phase is discussed for the entire
temperature range of that phase, in )3 the dis-

continuous variation of 3f is examined when

the crystal undergoes an allotropic transfor-
mation.

' James and Firth, Proc. Roy. Soc. A117, 62 (1928).
4 James and Brindley, Proc. Roy. Soc. A121, 155 (1928).
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M = Sm'p sin' 0/X', (2)

where p is the mean-square displacement of an
atom. One then constructs a molecular model of
the solid, including third- and fourth-order terms
in the expression for the potential energy, which
expands with temperature. Both C„—Cy and the
mean-square displacement p are then directly
calculated. This approach has already been
investigated, ' but has not given any quantita-
tive predictions on the variation from the linear
dependence of M with T at high temperatures.

In the second method of approach one starts
from the phenomenological Debye model, and
determines that dependence of 0 upon tempera-
ture which is necessary to fit the specific heat
data. This function 0" (T) is then substituted
into Eq. (1). This second method is the one
adopted in this paper.

Two methods may be used to determine the
function 0'(T) from specified heat data. The
simpler one is to find that 0+ which gives the ob-
served Cr. ' Thus 0'(T) is defined by the equation

Cr(T) = Cg) I O(T)/TI. (3)

The second method' is to determine that func-
tion 0(T) which makes the observed entropy
equal to the entropy calculated from the Debye
model. The observed entropy (per atom) at a
temperature To is

' I. Wailer, Ann. d. Physik 83, 153 (1927).' Jauncey and Deming, Phys, Rev. 48, 481 (1935).
'This method is in principle identical to that used by

Fowler, Statistica/ Mechanics. The derivation here given is,
however, simpler than that given by Fowler.

(2. TEMPERATURE FACTOR AT HIGII
TEMPERATURES

The Debye model of a solid can make definite
predictions about the temperature dependence of
its properties only when the volume of the solid
is kept constant. Thus in order to compare th.=.

observed specific heat with that predicted by
the Debye model, C„ is always first reduced to
Cp. In order fairly to compare with experiment
the prediction of the Debye model as to the in-
fluence of temperature upon the intensity of
reflected x-rays, proper account must be taken
of the fact that the observations are made at
constant pressure and not at constant volume.

Two methods of approach are available. In the
first method, Eq. (1) is written in the form' P

TABLE I. The second row gives the percent error in 0
due to a 1 percent error in Cy, when O(T) is determined
from Eq. (3).

O~/T 0.25

6 ln O~/8 ln Cy 240

0.5

9.5 2.7 0.8

' M. Plank, Treatise on Thermodynamics, 5th edition.
p. 274.

Tp C
S.b, . (Tp) =k d—T

0

In order to calculate the entropy by the Debye
model, one must pass from the absolute zero to
the temperature To in two steps. First one
changes the volume of the solid, keeping it at
the absolute zero, from its value at p=o, T=O,
to its value at p =0, T= To. According to the
Nernst heat theorem, ' the entropy change is
zero in this change of volume at the absolute
zero. The solid is now heated, at constant
volume, from T=O to T=TO. Throughout this
second process the characteristic temperature
remains constant. Hence the entropy change is
given by

' CD{0(To)/TI
SD(Tp) =k d r.

0 T
If we now equate these two expressions for the
entropy, and differentiate with respect to To,
we obtain

(d ln 0)/dT= —(C„—C&(0/T))/TCn(0/T) (4).
If the Debye model gave an exact representa-

tion of the specific heat, and if the empirical C„
and Cv were known precisely, Eqs. (3) and (4)
would give the same function 0(T). However,
since Cz(0'/T) becomes very insensitive to 0
when T becomes comparable with and larger
than O~, either a small error in the empirical
values of C~ or a slight deviation of the true
C& from CD produces a relatively large change in

O(T). This is illustrated in Table I. The function
0'(T) obtained from Eq. (4) is not sensitive to
these errors. The second method is thus used in
this paper.

The integration of Eq. (4) only gives the ratio
0~(2)/0~(0). Q(0) must be determined by using
Eq. (3) at low temperatures. The function O(T)
thus determined, when substituted into Eq. (1),
gives the temperature factor at all temperatures
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TABLE II. Jog of ratio O(T)/O(0) for XCl and NaCl at various temperatures as given. by Eq. (5).
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& ('c)
—» I o(T)/o(0) I

KC1 0.00346

NaC1 0.00266

—100

0.0160 0.0330

0.0176 0.0341

100

0.0513

0,0519

200

0.0690

0,0717

300

0.0870

0.0911

400

0.106

0.111

500

0.123

0.132

600

0.141

0.153

with constant pressure as predicted by the
Debye model.

According to the Debye model CD and C~ are
identical. Hence in Eq. (4) Cii ma, y be replaced
by C&. Now it is well known that the ratio
(C&—Cv)/(TCiC„) is very nearly a constant
over the entire temperature range of those
solids with a simple structure, the only solids to
which the Debye model is applicable. The con-
stant E may be calculated from the known values
of C„and Cz at one temperature To, say at room
temperature. When this relationship is used,
the integration of Eq. (4) gives

0(T) = 0(0)e-xa&r&, (3)
T

strictly not specified by a single 0~. The 0 used
in CD and in Eq. (1) refers to an average 0~,

but not to the same average. In the first case 0+

refers to an average of the type (II ') &, in the
second case to an average of the type (II ') '.
Now it may readily be proved, by using Schwarz'
inequality, " that

(e-')'& (0-')'.

The application of this inequality to an elasti-
cally isotropic solid will now be considered.
Here 0 as defined by the first average, say 0«
is given by

Oe '= (28 '+ei ')/3,
I.O

where H(T) = C„d1 0—

and X= [C&(TO) —Cv(To)]/TC&(To) Cv(To)
The only experiments over a wide range of

temperatures are for NaCP and KCl.' The ratio
0(T)/0~(0) obtained from Eq. (3) for these two
crystals is given in Table II. The accepted values
of 0'(0), which are obtained from Eq. (3), are
281'K for NaC1 and 230'K for KCI. The com-
parison between the calculated and experi-
mental values of log F(T)/F(290') is given in
Figs. 1 and 2. A better fit with the experimental
data is obtained by taking slightly larger values
for 0'(0) than given by Eq. (3).The experimental
points at the two highest temperatures for KC1
fall considerably below the best theoretical curve.
In view of the excellent fit with the other points,
and in view of the increasing spread of the
experimental points with temperature, these two
isolated experimental points are probably too
low.

It is to be expected that the 0(0) which gives
the best fit to the x-ray reHection data will
always be somewhat larger than the 0'(0) de-
termined from the specific heat data via Eq. (3).
This is because on the Debye model the solid is

Eucken, IIandbuch der Experimenta/physik, Vol. VIII/
1 (1929), p. 204.
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FrG. 1. Experimental points are marked by circles.
Curve A, theoretical curve with constant O. Curves C
and 8, theoretical curves with 0 calculated by Eq. (5),
with O(0) =281, O(0) = 298, respectively.
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FrG. 2. Experimental points are marked by circles.
Curve A, theoretical curve with constant O~. Curves C
and 8, theoretical curves with O~ calculated by Eq. (5),
with (0) = 230, O~(0) = 240, respectively.

"Courant and Hilbert, Methoden der Mathematischen
Physik Vol. I (1924), pp. 2, 33.
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TABLE III. The second row gives for various values of
Poisson's ratio the ratio for an elastically isotropic solid
of the O~ which must be used in the Debye factor, Eq. (1),
for the intensity of x-ray reflection to the 0+ which must
be used in the Debye expression for the specific heat.

ELEMENT

TABLE IV.

TRANSITION
TEMPERATURE

('~)

HEAT OF
TRANSFORMATION

(calories
per gram atom)

M2
MI

o' 0.35 0.5

O~„/O~ g~ 1.025 1.027 1.032 1.040 1.051 1.070

0.3 0.4 0.45

)3. RELATIONSHIP BETWEEN THE TEMPERATURE

FAcToRs QF ALLQTRoPIc FoRMs QF

THE SAME ELEMENT

According to the Debye model of a solid, each
crystal phase is associated with a definite charac-
teristic temperature (which according to )2
must, however, be regarded as a function of
temperature). The value of the characteristic
temperature 1 of the low temperature modifica-
tion at the transition temperature To may be
calculated as described in )2. The value of the
characteristic temperature 0+2 of the high tem-
perature modification at To may at once be
obtained from the entropy equation

S)& {02/TO I Sn {0]/TO I =L/T. (6)

Here L is the latent heat of the transition (in
calories per gram atom when S is the entropy
per gram atom). The solution of this equation
for 0~2 may be affected either by use of tables"
of Sr&(O/T) or, when T) 0, by the analytical
expression" for Sg). When T)1.250", the follow-
ing equation gives S with an error of less than 1
percent:

SD=R{4+31n T/OI.
Substitution of this equation into (6) gives

0~)/0~2 —sr((2Rro)

Using Eq. (1), we obtain
"An analytical expression for $(x) is given by Gruniesen,

Handbuch der Physik, Vol. X (1926), 22.
"Extensive tables of $D(x) are given by Simon, Hand-

blch der Physik, Vol. X (1926), pp. 369—370.

where et, ol refer to the characteristic tempera-
tures associated with the transverse and longi-
tudinal vibrations, respectively. The defined
by the second average, say 0~„, is given by

0„-'=(2()2 '+()(-')/3.
The ratio 0„/Ocr will in this case be a function
only of Poisson's ratio 0-, and is given in Table
III. The elastic anisotropy of all actual crystals
will still further increase the ratio of the two
types of average.

Tin'
Arsenic'
Selenium'
Zinc4

Manganese 5

Calcium'
Thallium'

298
1017
423
618

1108

673
498

564
525
174
190
158
249
100
51

1.54
1.19
1.15
1.11
1.05
1.06
1.05
1.03

' Lewis and Randel, Thermodynamics (1923), p. 464.
2Laschtschenko, J. Chem. Soc. 121, 972 (1922).
3 Mellor, A. Comprehensit&e Treatise oui Inorganic arid Theoretical

Chemistry, Vol. X, p. 715.
4 Reference 3, Vol. IV, p. 430.
5 Umino Science Reports, Tohoku University 16, 775 (1927).
6 International Critical Tables, Vol. VII, p. 293.
7 Werner, Zeits. f. anorg. Chemic 83, 275 (1913).

312/M, = e2~«2&2'2& (7)

for the ratio of the two 3f's at the transition
temperature.

When a crystal phase is anisotropic, the
Debye function 3I will vary with the orientation
of the reflecting plane. " In this case Eq. (7) can
only be valid when 3II1 and M2 refer to some sort
of average. The correct type of average may be
uniquely obtained when T&O. In this case the
Einstein model of a solid may be used to de-
scribe the vibrations of the atoms. In this model
each atom is considered as bound elastically to a
fiXed lattiCe pOint. Let p, 1„p,1„, p1z and p2„p2„, p2z

be the mean squares of the displacement of the
atoms along the three principal axes, for the low
and high temperature phase, respectively. The
change of entropy may then be written in terms
of the ratio of two phase integrals. "

I. jJfs—2( zz(222 z+ 22 (&222+ zz(222 z)d~(tyds—= —Rln—
fffS 2(z I2z2z+2 /82 2z+/222zd+dydS

The reduction of this integral gives

P2xP 2yP2 z/ Pl xP1yP1 z
2LtRFp

Using Eq. (2), we see that this equation is equiva-
lent to Eq. (7) where now M stands for the
geometrical mean (3E M" M"')'*. Here M', 3E',
M'" are the three 3''s in which the reHecting
plane is normal to a principal axis. Table IV
gives a list of the ratios M2/M( which are pre-
dicted by Eq. (7).

"Zener, Phys. Rev. 49, 122 (1936)."Herzfeld, Xinetische Theori der Warme (1925), p. 161.


