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NOTE ON THE VALUE OF JOULE-THOMSON OBSERVATIONS
FOR COMPUTING STEAM TABLES.

BY HARVEY N. DAVIS.

HIS note is offered for two reasons. In the first place, it is often
supposed that Joule-Thomson or throttling experiments are of

value chieHy in evaluating the thermodynamic or Kelvin scale of temper-
ature, and in discussions of molecular attraction. As a matter of fact,
such observations a6ord by far the best available means of determining
for the use of engineers many of the important thermal properties of
such vapors as steam and ammonia. In the case of steam, a point has
now been reached where such observations are especially appropriate,
since all but one of the remaining gaps can best be filled by this method.
In the case of ammonia, much work has still to be done to supply the
constants of integration that are necessary in this line of attack, but even

here, Joule-Thomson observations will soon be necessary, if the most
accurate results are desired.

And in the second place, it is believed that a compact resume of the
underlying theory will be useful. In the course of this presentation, the
essential identity of certain procedures that have often been regarded
as distinct will be pointed out, and a variation of one of them suggested.
Furthermore the form of proof presented, although obvious, seems not
to have been published.

The fundamental data from which a set of steam tables can be most
easily computed are: For the one-phase region, data on (x) the specific
heat of superheated steam, and (2) the specific volume of superheated
steam. For the two-phase region, data on (3) either the specific volume
of saturated steam, or the total heat of saturated steam, or the heat of
vaporization, (g) the specific heat of orthobaric water, (5) the specific
volume of orthobaric water, and (6) the vapor pressure of wet steam.

Satisfactory data of the fifth and sixth sorts are already at hand.
Satisfactory data of the fourth sort are sadly needed, but can hardly be
supplied by anything resembling a Joule-Thomson experiment. But
everything that is still needed under either of the first three heads, and
the outstanding needs are numerous and important, can be supplied
better by suitable Joule-Thomson experiments than in any other way.
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In the first place, such experiments, if carried out with a heating coil,
as suggested by Buckingham in r9o3, can yield a direct determination
of the specific heat of superheated steam. The heating coil is embedded
in the plug of the ordinary experiment, and enables one to put a measured

quantity of heat into each gram of steam as it goes through the plug.

By this means what would ordinarily be a cooling can be reduced to zero,
or changed to a warming of the emerging steam as compared with the
entering steam. When the change of temperature is exactly zero, the
whole apparatus can be kept at one temperature, and the heat losses of
the ordinary sort are zero. It was this advantage that led to the proposal
of the plan in the first place. Unfortunately there are heat losses of
another sort in the isothermal experiment which, although not as large
as in the adiabatic experiment, are more difficult to handle. Neverthe-

less, let us suppose that the heat losses of both sorts can be controlled,
measured and allowed for, and that a series of experiments can be made

at different rates of heat input, the high side pressure and temperature
and the pressure drop being the same for all. Then if the heat supplied

per gram of steam is plotted against the corrected change of temperature

(Fig. t), the result will be a straight line (if c„is constant within the small

temperature range in question) and the slope of this line will be c, itself

for the low-side pressure and temperature. To prove this one has only
to notice that the plotted curve is really a curve of total heat against
actual temperature for various conditions of the low side steam all at
the same pressure. Its slope is therefore
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Furthermore, since the t-intercept is obviously pAp, the Q-intercept is

pc„hp. Whether the inevitable heat losses of various kinds can be
eliminated with sufficient accuracy to make this as good a method of
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measuring c„as that of Knoblauch remains to be seen. At any rate, it
will afford a useful check, either on c„, or on the elimination of the heat
losses, according to the relative accuracy of the previous knowledge of
these two factors.

It should be noticed in passing that this is simply a combination in one
experiment of the previously familiar principles of throttling experiments
and of continuous How calorimetry. The less the throttling provided
for in designing the plug, the more does this method approach continuous
Row calorimetry of the ordinary sort, like that of Knoblauch. But even
in his case, where the throttling was made as small as possible, the cor-
rection for it is a troublesome one to apply unless it is handled from this
point of view. And on the other hand, the introduction of as much

throttling as is conveniently possible has the advantages both of helping
to ensure that the steam is dry, and of providing twice as great a range
of temperature for the specific heat measurements for the same maxi-
mum difference of temperature between the steam and its surroundings.

Besides this direct determination of c~, Joule-Thomson experiments
can give indirect but valuable information about c„, in three substan-
tially equivalent ways proposed originally by Dodge, by Davis and by
Grindley. The value of each of these methods lies in the fact that it is
easier, especially at high temperatures, to measure c„at one atmosphere
than at higher pressures; for each of these methods enables one to spread
a c„curve, determined at atmospheric pressure, into a family of curves
covering as wide a range of pressures as are covered by the Joule-Thomson
data. Dodge's and Davis's methods effect this by spreading c„along
lines of constant total heat or enthalpy; Grindley's spreads c„along lines

ef constant temperature. The relative convenience of these three
methods depends largely on how the Joule-Thomson experiments have
been arranged and carried out.

Dodge's method requires that the experiments fall into groups, through-
out each of which the high- and low-side pressures are held at fixed values:
each group would contain experiments at different and well scattered
temperatures. If such data are represented graphically by plotting
high-side temperatures as abscissa. and low-side temperatures as ordi-
nates, each group of experiments yields a curve which, at ordinary
temperatures, lies below and close to th 45' line of symmetry of the
figure, as in Fig. 2. Each point of this curve corresponds to a single
experiment in which steam at a high-side temperature t, determined by
the abscissa of the point, is throttled into steam at a low-side temperature

.Sp, determined by the ordinate of the point. Let the high- and low-side
pressures corresponding to the whole curve be p and po. Then Dodge's



HARVEF ¹ DAVIS. t
SECOND
SERIES.

theorem is that the slope of the curve at the given point is equal to the
ratio of c„at (P, f) to c~ at (Pp, 3p). If in each group of experiments, the
low-side pressure is one atmosphere, the c„curve at the high-side pressure
is thus determined.

To prove this theorem, let Fig. 3 represent on the p, t plane two experi-
ments corresponding to neighboring points of the curve. In one experi-
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Fig. 2. Fig. 3.

ment steam is throttled from state (r) to state (2) with the total heat at
the constant value H. In the second experiment steam is throttled
from state (3) to state (4) with its total heat at the constant value
H + gH. At the constant pressure p (line r3), the average value of c„
would be

AH
Cy

At the constant pressure Po (line 24), the average value of c„would be

So

But in Dodge's figure (t4 —t~) would be the difference between the
ordinates of neighboring points of the curve, and (t3 —t~) would be the
difference between their absciss3. The ratio c„/ „, is therefore equal to
the slope of the secant. When AH approaches zero, this equation ap-
proaches the equation stated in words in Dodge's theorem.

This process is more accurate if modified by the use of the temperature
difference (tp —t) as ordinate instead of to itself, as in Fig. g. The curve
then lies below and close to the t axis and can be plotted on a much larger
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scale. Its slope s for any value of t is now less by unity than before, and

C~ C„—C„, AC~I+s or s
C~o Cyo C~0

That is, the slope, which is now small, is the ratio of the increase in c„
between po and p along a line of constant enthalpy to the value of c„at
the po end of the interval. Since Ac„ is not more than a third of c„, for

any pressure range occuring in ordinary practice, an accuracy of e per

Fig. 4.

cent. in s would give an accuracy of nj4 per cent. in the computed c„
even under the most unfavorable circumstances, and a much higher

accuracy over a large part of the plane. This offsets, at least in part, the
disadvantage of having to use the derivative of an empirically deter-
mined function instead of the function itself.

Davis's method is based on a differential equation that can be obtained
directly from the modified form of Dodge's equation above. Let p —po

be called dpH. Then
I f AC„l S

CP lAP)H APH

s is the derivative with respect to t at constant p of the function to —/,

which is the drop of temperature through the plug and is negative. Let
this function be called —hfH, so that a positive At may correspond to a
rise of temperature as usual. Then

s I 8—= ———(~~)
~PH ~PH ~4 ~4 ~ ~P H

If now ApH approaches zero, this difference equation becomes

t 9p'~

C„ i BP / H & Bt i „'
where p is the Joule-Thomson coefficient, and is the limit approached by
(~t/~p)s. This is Davis's differential equation. Its integral is

& gp'i

the integration being at constant II. When p, is known as a function of
' For other proofs of this equation see Davis, Proc. Am. Acad. , 45, zgxo, p. 29$.
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p and t, the integration can be effected by mechanical quadrature, and
the ratio c„/c„, determined. The chief advantage of Dodge's method
over this is that, in Dodge's method, the integration is performed auto-
matically by the steam itself for the pressure range covered by a set of
experiments.

Grindley's method is based on a differential equation that can be
deduced directly from this one. According to a familiar transformation
formula,

Therefore the last equation becomes

t Bc&, ' f Bc„t f Bp & B(pc„)——p — —C
( Bp ) g i Bt i „"t 8t ]„Bt

This is Grindley's equation. Its integral is

B(pc„)
85

this integration being at constant temperature.
This equation has certain advantages over that proposed by Davis.

Thus it spreads c, along lines of constant temperature instead of along
lines of constant enthalpy, which is more convenient. It also determines
the increment in c„ instead of a ratio, which is conducive to accuracy.
And finally it involves the product pc„ instead of p alone. Whether this
is an advantage or a disadvantage depends on whether the isothermal or
the adiabatic plug experiment can be carried out with greater accuracy.

It is at very high superheats that all three of these methods are most
useful, because, under these circumstances, other methods of getting c„
are facing their greatest difficulties. Thus, while the experiments of
Knoblauch determine the spacing of the c~ curves at different pressures
with much accuracy at moderate temperatures, they fail entirely to
separate these curves at and above 5oo' C. , the experimental points at
the various pressures being inextricably mixed. Even the roughest sort
of knowledge of p in this region wouM space the curves more satisfactorily,
after the experiments had determined the average height at which they
should lie.

Whether Grindley's or Davis's equation will prove to be more useful

at high superheats will depend on whether p or the product pc„comes
nearer to following a law of corresponding states. It has frequently
been assumed that p follows such a law. ' If so, Davis's equation is the

' For instance, by Buckingham, by Berthelot, by Callendar, and by Davis.
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useful one. But p, is essentially a calorimetric quantity, and if it does
follow a law of corresponding states, it is the only calorimetric quantity
known to do so. The product pc„on the other hand is a specific volume,
and it was for specific volumes that the law of corresponding states was
originally proposed. One would therefore have predicted a priori that
the product pc„would be more amenable to such treatment than p. If
so, Grindley's equation is the useful one.

Turning now to the specific volume of superheated steam, we have the
well known relation

Vo PC„+ dTT To 1 T

where the integration is to be carried out at constant pressure. For a
perfect gas, p, would be zero, the integral would vanish, and v would be
proportional to T at constant pressure. For steam, the integral appears
as a small correction term on the ratio v jT. v can therefore be computed
as a function of T along an isopiestic, if its value is known at any one
point of the isopiestic. Fortunately v is known close to the saturation
line from computations with the Clapyron equation, and from the ex-
periments of Knoblauch, Linde and Klebe. This gives a starting point
for every isopiestic between I and Io atmospheres. Within this pressure

range, the best way to get specific volumes at any temperature however

high is undoubtedly to make measurements, not on v itself, but on the
product pc„.

This procedure has certain great advantages. In particular, the object
of the experiments is to determine, not the whole quantity sought, but a
relatively small correction term. For example, in computing the specific
volume of steam at 5o lbs. per sq. in. abs. and 6oo' F. superheat, the
whole correction term is probably not more than 5 per cent. of the answer

sought. If, therefore, the correction term is known within 2 per cent. of
itself, the specific volume is known within o.I per cent. of itself, which

is as good as the accuracy of the initial volume used as the constant of
integration. Furthermore, the correction term is not an observed quan-
tity but the integral of an observed quantity. The only chance for a
2 per cent. error in the integral is a systernotic error in pc„amounting
to 2 per cent. throughout the whole range. The allowable accidental
errors in pc„might be considerably greater than 2 per cent. for an accuracy
of o.x per cent. in v.

Let us now turn to saturated and wet steam. It is almost certain that
suitable Joule-Thomson experiments with superheated steam can be
made to yield a more accurate determination of the shuPe of the IIT
curve of saturated steam than can be obtained ~n any other way. '

' See Davis, Proc. Am. Acad. , 45, 272, L9IO.
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BrieHy, the fundamental principle is that if, by means of throttling ex-

periments, we can plot the lines of constant H on the superheated steam
plane, and if, by means of c„values, for any one pressure, we can deter-
mine the differences hH from each curve to the next, we have a deter-
mination of the increase in H along the saturation line for each interval
between points of intersection with our curves. If H is known by direct
measurement at any one point of the saturation line, this process will

give its value all along the line. Fortunately there are a number of
good determinations of H between O' C. and r6o' C., particularly near
roo' C. A good set of Joule-Thomson experiments is therefore all that
is needed to determine a satisfactory HT curve over a considerable range.

This process, like that for computing the v of superheated steam, has
the great advantage of concentrating the efforts of the experimenter, not
on the whole quantity sought, but on a comparatively small increment
term. Thus if H]pp is assumed to be known, the term to be determined

experimentally is never greater than 5 per cent. of H itself, and I per cent.
on the correction term gives o.05 per cent. on H, which is somewhat

better than the accuracy of our present knowledge of H at the boiling

point.
When the H curve is thus determined, it will be easy to compute the

specific volume of saturated steam by means of the Clapyron equation, if
only the specific heat of water and the vapor pressure curve are known.
The latter is now well known over the whole range from O' C. to the
critical point, but our knowledge of the specific heat of water is very
meager at high temperatures and very chaotic at ordinary temperatures.

Finally, when all these things have been computed, either from the
satisfactory data already in hand or from a good set of Joule-Thomson

data, an interesting check on the self-consistency of the whole steam table
is afforded by Planck's equation

dH„, L, dpi"=—-'--+ ~I, —I I
—

I -I —,Id$ T t dt& ItBt&„, I, Bt t ~,.

where I. is the latent heat at the temperature in question. The deriva-
tives in the last term refer to superheated steam and water close to, but
not inside, the steam dome. The c„ thus computed is the limiting value
on the saturation line approached by the c„of superheated steam. The
fundamental data from which the right hand side can be computed are
(r) the value of (dp/dt)„„which is well known, (2) the value of L or H
at roo' C. , which is fairly well known, (3) a knowledge of the variations
of L and H with temperature, which should depend chiefly on Joule-
Thomson data, and (4) the value of (Bv/Bt)~ for steam, which also should
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depend chieRy on Joule-Thomson data. The derivative for water is
practically negligible. It is true that a knowledge of c„ itself, which is
the quantity sought, is involved in the computation of the variation of
L or H with temperature, but it happens that this indirect dependence
of the right hand side on c„is such as to make the computation insensitive
to errors in the values of c„originally assumed. The equation therefore
affords a valuable method of successive approximations for computing
c„along the saturation line, where direct measurements are most difficult,
as well as a useful check on the c„curves in general.

It appears, then, that the only experiments that are now greatly needed
to put our steam tables on a thoroughly satisfactory basis are a complete
and accurate series of Joule-Thomson or throttling exp™n~s,and a
thoroughly satisfactory series of experiments on the specific heat of water,
especially at high temperatures. Both sorts of experiments are now in

progress in the Jefferson Physical Laboratory, and, I believe, elsewhere

as well, and it is hoped that the results will be sufficient to serve the
purposes which have been indicated.

JEFFERSON PHYSICAL LABORATORY,

CAMBRIDGE, MASS. , Jan. , I9I5.


