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TEMPERATURE CHANGES ACCOMPANYING THE
ADIABATIC COMPRESSION OF STEEL.

BY K. T. COMPTON AND D. B. WEBSTER.

INTRQDUcTIQN.

HE formul~ of Clapeyron, which apply to reversible transformations
of a body whose state is a function of two independent variables,

lead to the conclusion that all substances which expand when heated
will experience a rise in temperature when mechanically compressed, and
vice versa. It was first shown by Lord Kelvin' that, as a result of the
second law of thermodynamics, the rise in temperature 60 produced in

a rod or wire by an increase AIi in the stretching force should be expressed

by the equation
a0

60 = —
2 AI',

zr'ps J
where r and p are the radius and density, respectively, of the wire, a
is its thermal coefficient of expansion, s is its specific heat, 0 is the absolute
temperature and J is the mechanical equivalent of heat.

Joule' first attempted a verification of this equation by measuring

the temperature changes produced by suddenly stretching or compressing
various liquids, metals, wood, rubber, etc. Although in a general way
Joule's observations agree with the theory, there is an average dis-

crepancy between theory and experiment amounting to about I5 per cent.
Later Edlund, ' experimenting with metal wires, showed that the

relative temperature changes in different metals may be accurately pre-
dicted by Thomson's formula, but failed to prove the absolute accuracy
of the formula. In the case of steel, for instance, the apparent tempera-
ture increase was only 63 per cent. of that predicted by the formula.

By using a greatly improved method of measuring small temperature
changes in wires and by taking into account the effect of possible varia-
tions in the thermal coefficient of expansion of the wire at different ten-

sions, ' Haga' succeeded in verifying Thomson's formula within 2.54
'Edinb. Trans. , ao, p. 283, x883; Winkelmann, Handbuch der Physik, z, Vol. 3, p. 637.
' Proc. Roy. Soc., 8, p. 353, x857; Phil. Trans. , x49, p. 9x, x859.
3 Pogg. Ann. , xa6, p. S39, x86S.
' Dahlander, Pogg. Ann. , x4S, p. x47, x872; Winkelmann, Hand. d. Phys. , 2, Vol. 3, p. 6o.
' Ann. d. Phys. u. Chem. , xS, p. x, x882; Winkelmann, Hand. d. Phys. , 2, Vol. 3, p. 637.
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per cent. in the case of steel and within 0.25 per cent. in the case of
german silver for changes of 2I.7I5 and I7.I34 kg. respectively in the
stretching force.

Each of these investigators measured the change in the temperature
of the wire by means of a thermocouple of which one junction was
soldered to the stretched part of the wire and the other to an unstretched
portion of the same wire. The disagreement in the results of investiga-
tions of this phenomenon are largely due to the difficulties involved in
accurately measuring the small temperature changes. These changes
are small, amounting to about 0.5' C. in the case of steel suddenly
stretched to its elastic limit. But the quantity of heat liberated or
absorbed is very small, owing to the small heat capacity of the metal
wire, and this heat is so rapidly lost by surface conduction and radiation
from the wire that the galvanometer, with its period of swing of several
seconds, is unable to register the total initial change in temperature.

20 ~.

gp
\ SC W A.

/J
II 1LQ iu

Ill
II 'r' l~If' 1~ 1l

I/ No~ 'L, '~.
o

~.s:::
LLI 6'

LU.B
C3 2

~10

1
'L W ~

ll
Vl

l si

%0 ZO 80 40 50 80 70 80 90 iOO
T IME (seconds)

Fig. 1.

Haga employed a Thomson galvanometer whose period of swing was
6 seconds and whose damping factor was less than the critical value, so
that it possessed an oscillatory swing. From the equation of motion of
the galvanometer and observations of the first three swings following a
change in the tension of the wire, he was able to calculate the deHection
which would have been observed instantaneously after changing the
tension if the inertia of the moving system of the galvanometer had
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been zero. To this was added an approximate correction for the deflec-
tion produced during the time (2 seconds) required to make the change
in the tension. From the deflection thus calculated, the sensitiveness
of the galvanometer, the resistance of the circuit and the constants of
the thermocouple the initial change in the temperature of the wire could
be calculated.

In the present investigation we discarded the thermocouple method
of measuring the temperature change and employed a resistance method.
The stretched wire formed one arm of a Wheatstone's bridge and the
temperature change was calculated from the change in the resistance of
the wire accompanying the removal of the stretching force. There are
several features of this method which commend it as preferable to the
thermocouple method. In the first place it is far more sensitive. A
calculation of the current through the galvanometer when the bridge
is thrown out of adjustment by a slight change in the temperature of
the wire compared with the current which would be produced through
the galvanometer by the same temperature change in an iron-platinum
thermocouple shows that the resistance method may be made several
hundred times more sensitive than the thermocouple method. In our
apparatus the sensitiveness was about thirty-five times that of Haga's
apparatus. In the second place the resistance method is free from
possible errors due to the Peltier effect, which is a disturbing factor in all

thermocouple work except that in which a balanced or potentiometer
method can be employed. The Peltier effect would be of especial
significance in this work, since the supply of heat near the junction is so
minute. Such an error would tend to decrease the apparent temperature
change, and is therefore in a direction to account for the fact that prac-
tically all the temperature changes observed by investigators have been
smaller than those predicted by the theory. Finally, by using a strongly
damped galvanometer, the computations were greatly simplified and
instead of rather complicated calculations the results may be obtained
graphically, as is shown later in the paper. The resistance method, how-

ever, can be employed only in the case of metals and then only for stretch-
ing forces so far within the elastic limit that there is no elastic lag. For
this reason we chose steel piano wire as the material for investigation,
and carefully tested it with a micrometer microscope to prove the absence
of appreciable elastic lag within the region of the stretching forces which
we employed.

Method. —One end of a steel piano wire was soldered into a heavy lug
which was held rigidly in a clamp, while the other end was passed over
a pulley and was attached to a constant weight of 2.5 kg. which main-
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tained a taut horizontal length of I60 cm. of wire between the lug and
the pulley. About Io cm. from the pulley a short piece of No. Io copper
wire was soldered to the steel wire and dipped into a mercury cup. The
lug and the mercury cup were the terminals of the I5o cm. length of
wire which formed one arm of a Wheatstone's bridge. The balancing
resistance was a calibrated standard I.o050 ohm. The resistance of
the bridge wire was 0.0I032 ohm per cm. , and this wire was extended

by resistances of 4o and 4I ohms respectively at its ends. At room tem-
perature, 24' C. , the bridge balanced with the sliding contact at 68.o cm. ,

whence

4I + 68 X o.oIo32
R = I.005' = I.039I8 ohms

4o + 32 X o.oIo32

is the resistance of the steel wire. The battery terminals joined the two
large to the two small resistances since this arrangement gave the largest
deflections for a given current through the steel wire.

The galvanometer was calibrated with respect to temperature changes
of the steel wire by the following simple method. The bridge was

accurately balanced with the galvanometer at zero. A standard of
0.00I ohm resistance was then introduced in series with the steel wire.
This caused the galvanometer to deflect I8.72 cm. Since the current
through the galvanometer is proportional to the change in the resistance
of one arm, if the change is small, we may consider each centimeter
deflection as indicating a change AR = O.oo005345 ohm in the resistance
.of the steel wire. Thus if a small change in the resistance of the wire

is produced by a temperature change 60, AR = Radio. We carefully
determined the temperature coefficient of resistance 0, for the wire and
found n = 0.002820 ohm per ohm per degree at 24' C. Thus

0.00005345
I cm. deflection =— = 0.0I 825 C.I.039I8 g 0.002820

change in the temperature of the wire. There remains the problem

of determining the deflection of the galvanometer, following a given

change in the tension of the wire, which would occur if the galvanometer

could respond instantly to temperature changes.
In order to reduce the rate of loss of heat from the wire it was passed

axially through a polished tin tube whose ends were loosely plugged

with cotton and which was covered with a thick layer of cotton to protect
it from the effect of slight temperature variations in the room. This
reduced the rate of loss of heat to less than half the rate when freely

exposed.
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After stretching the wire several times to avoid the anomalous effects
of the first stretch the experiment was conducted as follows. The
bridge was carefully balanced while the wire was kept taut by the con-
stant tension of 2.5 kg. Then the galvanometer key was opened and the
stretching weight added to the end of the wire. After standing several
minutes the stretching weight was suddenly released by a snap and
simultaneously the galvanometer circuit was closed and the deflections
at five-second intervals were recorded. After the initial outward swing
the galvanometer moved slowly back to zero as the wire cooled to room
temperature. These readings were repeated five times each for changes
of 5, Io and I5 kg. respectively in the stretching force. The table of
observations with five kg. shows the consistency of the results, especially

Deflection (Cm. ),
,~ ss

s 4 I s
g 0

Ave.

Deflection (Cm. ).

s
i

4 5 Ave.

0 0.00 0.00
5 3.10 2.00

10 3.95 3.65
15 3.80 3.60
20 3.30 3.30
25 2.80 2.80
30 2.40 2.40
35 2.00 2.00
40 1.70 1.60
45 1.30 1.30
50 1.10 1.10
55 0.90 0.90
60, 0.75 0.75

0.00 0.00 0.00
3.20 3.40 2.90
4.00 4.00 3.70
3.80 3.80 3.50
3.30 3.30 3.05
2.85 2.80 2.70
2.40 2.40 2.20
2.00 2.00 1.90
1.65 1.60 1.50
1.30 1,35 1.20
1.10 1.10 1.00
0.90 0.90 0.85
0.75 0.80I 0.70

0.00 65
292 70
386 75
3.70 80
3 ~ 25 85
2.79 90
2.36 95
1.98 100
1.61 110
1.29 120
1.08 130
0.89 140
0 75 150

0.60
0.50
0.40
0.35
0.30
0.23
0.20
0.15
0.14
0.10
0.05
0.00
0.00

0.60
0.50
0.42

I 0.37
0.30
0.24
0.20

I 0.18
0.10
0.08
0.00
0.00
0.00

0.65 0.65 0.60
0.55 0.55 0.50
0.45 0.45 0.40
0.40 0.40 0.30
0.30 0.35 0.27
0.23 0.28 0.20
0.18 0.22 0.17
0.15 0.20 0.15
0.10 0.15 0.10
0.10 0.10 0.05
0.05 0.05 0.00
0.00 0.05 0.00
0.00 0.00 0.00

0.62
0.52
0,43
0.36
0.30
0.23
0.19
0.16
0.13
0.09
0.03
0.01
0.00

after about ten seconds, when any effect of not pressing the galvanometer

key exactly with the release of the weight becomes negligible. The
logarithms of these averages, and also those for Io and z5 kg. , are plotted
with the time in the accompanying figure.

The first deHections depend upon the moment of inertia and damping
factor of the galvanometer as well as upon the rise in temperature of
the wire. But after about thirty seconds the deflection at any instant
accurately records the temperature of the wire at that instant, as is

shown by the following analysis. Thus the curves after thirty seconds

represent the cooling curves of the wire following these three changes in

tension, and the points a, b, c at which these curves, extended, intersect
the axis t = o give the deflections which would be recorded if the gal-

vanometer could reach a steady deflection before the wire loses part of
the heat developed.
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The validity of this statement is proved by the solution of the equation
of motion of the galvanometer,

d'x dxI—+ D —+ iVx = ~f35,dt' dt.

where x is the deflection, I is the moment of inertia and f the sensitive-
ness of the galvanometer, D is the moment of damping at unit rate of
deHection, M is the moment of restoring force due to the suspension
and i is the current through the galvanometer. The current at any
instant t is given in terms of the initial rise in temperature 00, the resis-

tance R of the wire and its temperature coefficient of resistance a and a
constant k depending on the other resistances and the electromotive
force in the bridge by

i = kRn0pe

where 0. is the thermal coefficient of surface conductivity of the wire

and ms is its heat capacity per unit length. Putting

D
I

0 = c,IS
2

A. —&A' —48

fMkRu
I

2

A + &A' —48

the equation reduces to

dx dx—+A —+Ex = Cooe"
dt~ dt

of which the solution is

C
C' —2AC+ 48

where c' and c" are the constants of integration.
The time constants rj and T2 may be determined from the case where

the right member of equation (r) is zero. To do this a portion of the

bridge wire was short-circuited so that the galvanometer maintained a
steady deflection at 7.5 cm. The short-circuiting key was suddenly

removed and the readings noted at short intervals as the galvanometer
returned to zero. The results are shown in the figure by the curve ag
whose equation is

x = c&e "+ c~e
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T& is evidently too small to be detected (showing that the damping
moment is very large compared with the restoring moment due to the
suspension). It is certainly less than o.s second so that this component

75of the curve may be neglected. 12 is the time taken for x to fall to —,
e '

and is about 5.5 seconds. It is seen from the curve that the effect of
this term is certainly negligible after 30 seconds.

Beyond thirty seconds, therefore, the deHection is given by

C
x

C2 g C + gjeP8 /08

Thus the curves beyond 30 seconds represent the true cooling curves
and the points u, b, c, at which these straight lines intersect the axis
t = 0, are the true values of the initial deHections which would have
been observed if the galvanometer had responded instantly to the initial
currents.

The most probable straight line through the points beyond 30 seconds
was determined in each of the three cases by the method of least squares
and the probable error calculated. The three initial deHections a, b

and c were thus found to be 7.5 & 0.037 cm. , I5.0 & 0.047 cm. and
22.5 ~ 0.056 cm. respectively. When these deflections are multiplied

by the calibration constant o.oI825 we And that temperature changes
of O.I369 C. 0.2737 C. and o.4Io6' C. were produced in the wire by
changes of 5, Io and I5 kg. respectively in the stretching force.

Comparison of Experiment with Theory In or.—der to take into account
possible variations in the thermal coefficient of linear expansion of the
wire due to tension, we measured the coefficient of expansion between
temperatures of I3.6' C. and 32.2 C. under tensions of 4.5, 7.0 and 9.5
kg. , which were the average tensions in the three cases. The wire was

passed axially through a cylindrical water jacket and the expansion
was measured by micrometer microscopes. These results, together with

the other constants of the wire are given in the following table:

Radius of wire. . . . . . . .
Density of wire
Coefficient of linear expansion (4.5 kg. )

(7.0 kg. )
(9.5 kg. ) . .

Specific heat of wire
Room temperature
Mechanical equivalent of heat. . . . . . . . . .
Acceleration of gravity

r = 0.0310 cm.

p = 7.930
6 = 0.00001109
6 = 0.00001111
6 = 0.00001115
s = 0.1178
0 =-2970 K
J = 4.185 (10)v

g = 980.6

The values of d 0 calculated from Thomson's formula by substitution
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of these quantities are given in the following table and compared with
the experimental results. The theory is verified much more closely
and consistently than heretofore. If the mean of the experimental

R(kg.).

—5.0
—10.0
—15.0

ae oC.
(Calculate a ) .

0.1366
0.2738
0.4122

~e oc.
(Observed).

0.1369
0.2737
0.4106

Discrepancy,
Per Cent.

—0.22
+0.04
+0.39

Ave. =0.07

Probable Error,
Per Cent.

&0.50
+0.32
&0.25

results is used to calculate the mechanical equivalent of heat we And

J = 4.t88 (io)' ergs per calorie. The best results for steel previously
obtained (by Haga) lead to the value J = 4.29o (ro)' ergs per calorie,
in which the error is about thirty-five times that in the present work.
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