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The Ferromagnetism of Nickel
II. Temperature Effects

J. C, SLATER, Massachusetts Institute of Technology

(Received April 15, 1936)

With the model proposed in an earlier paper, the
temperature variation of the ferromagnetism of nickel is
discussed. By application of Fermi statistics to the electrons
in the d bands, the free energy is computed as a function
of temperature and magnetic moment. At each tempera-
ture, the value of magnetic moment for which the free
energy is a minimum is the value which will actually be
found, and this decreases with increasing temperature,
going to zero. at the Curie point, in satisfactory agreement
with experiment. The value of the free energy itself at the
minimum, as a function of temperature, is compared with
experimental values derived from the observed electronic
specific heat of nickel, and the agreement is again satis-
factory. To get agreement of both quantities with experi-

ment, it is necessary to use a smaller exchange integral
than was suggested in the ea lier paper, but plausible
reasons are suggested for thinking that this should be done
anyway. It is found that even at the absolute zero not
quite all of the spins are parallel to each other, the mini-
mum in the free energy curve coming at a little less than
the maximum possible magnetic moment. It is suggested
that this small effect becomes much more pronounced as
iron is approached in the series of ferromagnetic elements,
explaining the fact that alloys of iron and cobalt show the
highest saturation moments of any ferromagnetic sub-
stances, the moment then decreasing in iron and even
more in alloys of iron with lighter elements.

N a previous paper, the writer has shown' that
& - the ferromagnetism of nickel can be accounted
for by the model of a metal in which each electron
moves in a stationary state throughout the
whole metal, modulated by the periodic lattice.
It was shown that the energy of the electrons of
such a metal changes for two reasons when the
metal goes, at the absolute zero of temperature,
from a nonmagnetic state with equal numbers of
electrons of each spin, to a magnetized state
with as many as possible of the electrons having
one spin, the remainder the opposite spin. In
the first place, work is required to produce this
change, because electrons of negative spin must
be lifted from lower, occupied states up to the
higher, unoccupied levels, in order to allow
them to change to positive spin. In the second
place, energy is gained because of exchange,
which, as in atoms, gives a lower energy the more
pairs of electrons there are with the same spin.
The first effect is ordinarily enough to outweigh
the second, resulting in a nonmagnetic normal
state, but in the ferromagnetic elements the
electrons concerned are in a narrow d band;
it requires a comparatively small amount of
energy to produce the necessary electron dis-
placement, and as a result the magnetized state
has a lower energy at absolute zero, and is the

' J. C. Slater, Phys. Rev. 49, 537 (1936).

stable state. This was shown to be the situation
for nickel, where the work required to produce the
rearrangement of electrons was computed by
use of energy levels extrapolated from calcula-
tions on copper, and where the necessary ex-
change integral was estimated from observed
atomic spectra. The calculation was not ex-
tended to temperatures above the absolute zero,
however. An estimate of the Curie point was
made in terms of the energy difference between
the magnetized and nonmagnetized states at the
absolute zero, but this cannot be regarded as
reliable. It is the purpose of the present paper to
discuss the temperature variation of the ferro-
magnetism, thus presenting the essentials of a
complete theory.

Experimentally, there are two phenomena to
be explained. In the first place, the saturation
magnetization decreases with temperature. At
the absolute zero, for nickel, the magnetization
corresponds to almost exactly 0.6 electron spin
per atom. As the temperature increases, this
decreases, very slowly at first, then very rapidly,
falling to zero at the Curie point. Secondly, the
specific heat shows anomalies definitely con-
nected with the ferromagnetism. If a Debye
function is subtracted from the observed specific
heat, ' the difference is large, and must be at-

~ E. Lapp, Ann. de physique 12, 442 (1929). Miss Lapp
considers the electronic specific heat to drop to zero above
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tributed to the specific heat of the free electrons.
This electronic heat is proportional at low tem-
perature to the temperature, then begins to
rise more rapidly, going to a sharp peak at the
Curie point, after which it falls to an approxi-
mately constant but by no means negligible
value, of the order of magnitude of —,'R.

These phenomena may be best discussed by
means of the free energy 0= U —TS. We regard
this as a function of two variables, the tempera-
ture, and the magnetic moment p (measured in

electrons spins per atom). It is a well-known

property of the free energy that for equilibrium
it takes on a minimum value, in a system at
constant volume, and constant temperature.
Thus if we have a family of curves of + as a
function of p, for diRerent temperatures, the
minimum of the curves (which alone represents
a physically realizable state) will come at maxi-

mum p for the absolute zero of temperature,
but will shift inward toward smaller p as the
temperature increases, reaching p =0 at the Curie
point (which is determined by this fact), and
remaining at zero for all higher temperatures.
From this behavior we can at once derive the
well-known law giving the temperature variation
of the paramagnetic susceptibility. By sym-

metry, the free energy must be an even function
of p, or of the magnetic moment I of the whole

crystal (which is proportional to p). Thus the
first term in the power series expansion of 4 as
function of I, apart from a constant, is a term
in I2. Furthermore, the coeScient of this term
is positive for temperatures above the Curie

point, negative below, so that, if T, is the Curie
temperature, the expansion of + for small I
near T, is 4'=o,(T T,)I2. In the presen—ce of an
external magnetic field JI, the free energy is

diminished by an additional term III. For
equilibrium, the derivative of the whole free

energy with respect to I must be zero. Thus
8@/BI=0 =2rI(T T,)I H, I=H—/(2c(T —T.)), —
expressing the fact that the metal is paramag-
netic above the Curie point (I is proportional to
H, with a positive coefficient), and that the
paramagnetic susceptibility is inversely pro-

the Curie point, and treats the remaining specific heat,
which persists above this point, as an "unknown" term. It
seems likely that most of this "unknown" term is also of
electronic origin, and we have included it in our calculations.

portional to the temperature interval above the
Curie point. This well-known law is thus seen to
follow quite independently of the model. It is
evident, however, that the constant u bears no
necessary r'elation to the saturation magnetic
moment at the absolute zero, in contradiction
to the Weiss theory.

In addition to the magnetic moment, the
free energy + is of great value in discussing
the specific heat, on account of the relation
C„=—T(8'4'/BT')„Sinc. e C, for the free elec-
trons equals 0.001744T at low temperatures, in
calories per g mole, ' + must be a quadratic
function of the temperature, so that its second
derivative will be con.stant. We may take the
entropy S= —(8@/BT), to be zero at the abso-
lute zero, so that +, apart from an additive
constant, is given by the expression —0.000872T'
for low temperatures. For higher temperatures,
the free energy can be found by integrating the
experimental values of C„/T twice with respect
to temperature. This has been done numerically.
The result, then, gives the actual value of free
energy at the minimum of each curve of
against p, . In our comparison of theory with
experiment, we shall compare the free energy
curve, rather than the specific heat.

Using the model of the previous paper, the
free energy of the electrons has been computed as
a function of T and p. The method will be
described in the Appendix. BrieHy, we consider
the electrons to be a mixture of two gases, one

consisting of the electrons of each spin, with

energy levels as given by the model. The free

energy of the electrons of each spin is calculated

by application of Fermi statistics, the two are
added, the exchange energy is subtracted, and
the result is a correct deduction of the free

energy from the model used. It should be stated
that the calculation is largely numerical, and
that it depends on small diRerences of large

quantities, so that its accuracy is not great.
When the calculation was carried out, using
distribution function and exchange integral of
the previous paper, it was at once found that the
Curie point came out several times too high.
This was unexpected, for a discussion in the

3 Keesom and Clark, Physica 2, 513 (1935); W. H.
Keesom, Proc. Roy. Soc.A152, 12 (1935);N, F. Mott, Proc.
Roy. Soc. A152, 42 I'1935).
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earlier paper indicated that the Curie tempera-
ture, when translated into energy units, should
be of the same order of magnitude as the energy
difference between the magnetized and un-
magnetized states at the absolute zero, and this
relation was found to hold for the observed
Curie temperature and the calculated energy
difference. That argument, however, was based
on the Weiss and the Heisenberg theories of
the temperature variation of ferromagnetism,
and when the present theory is worked out it
appears that the Curie temperature is much
larger in comparison with the energy difference
at absolute zero than on those theories. To get
agreement with experiment, it was thus neces-
sary to reduce decidedly the energy difference
between magnetized and unmagnetized states,
and this could be done in either of two ways, by
reducing the exchange integral or by modifying
the distribution of stationary states so as to
increase the energy expended in raising electrons
of negative spin to unoccupied states of positive
spin. Both methods were investigated, and it was
found that agreement with experiment could not
be secured in any easy way-by the second method,
but that the erst alone su%ced to bring the
results into good agreement with experiment.
In the earlier paper, the exchange energy was
taken to be —f866@' cm —', where p, is expressed
in Bohr magnetons per atom. Expressed in
thermal units this is —5320@,' cal. per g mole.
In place of this value it was found necessary to
use the value —3315@'cal. per g mole, only 0.62
of the previous 6gure. A very plausible argument
can be given for supposing such a change to be
correct, however, as will be indicated in a later
paragraph.

Using the revised exchange integral, the
values of free energy plotted in Fig. 1 were
calculated. In this 6gure the free energy 4', in
calories per g mole, is plotted as a function
of p, for a variety of temperatures. On each curve
the temperature is indicated, as a fraction of the
Curie temperature. It will be observed, in ac-
cordance with expectation, that each curve
below the Curie temperature has a minimum
for some value of p. Furthermore, as the tempera-
ture increases, this value of p decreases from
the value 0.6 which it has at the absolute zero
(the curves being adjusted to give this value)

to the value zero at the Curie point. To com-
pare with experiment, the dotted line of Fig. 1
is the experimental' curve which should pass
through the minima, and the circles represent
the particular points on the curve where the
minima should be found for the various tempera-
tures. To' compute the dotted curve, we have
found the free energy for each temperature, by
the method described above, and have plotted
it against the observed saturation magnetic
moment, marking the points of the curve cor-
responding to particular temperatures. Since the
free energy is roughly proportional to 1', this
curve resembles the familiar curve of p, as
function of T', with abscissa and ordinate inter-
changed. When now we compare the dotted
curve with its circles with the minima of the
theoretical curves, the agreement is surprisingly
satisfactory. The minima of the theoretical
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FrG. 1. Theoretical electronic free energy of nickel, in
calories per g mole, as function of magnetic moment, in
Bohr magnetons per atom, for different temperatures,
expressed as fractions of the Curie temperature (approxi-
mately 630' Abs. ). Minima give equilibrium values of
magnetic moment and free energy. Dotted curve gives
experimental relation between free energy and magnetic
moment, obtained from specific heat and saturation
magnetization, circles representing points on dotted line
corresponding to the various temperatures plotted, there-
fore being experimental positions of minima,
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curves at low temperature seem to show a slight
tendency to come at too small values of p, , but
it is hard to tell whether this tendency is real
or not, on account of the difficulty of the calcula-
tion and the inaccuracy in the curves. The values
of free energy at the minima, at low tempera-
ture, agree practically perfectly, showing that the
calculated specific heat is almost exactly right
(in contrast to the cruder ca1cuiations of the
previous paper, where the agreement was only
as to order of magnitude). In fact, in the Ap-
pendix the free energy is expressed analytically
as a function of temperature, and the specific
heat at low temperature found by differentia-
tion, with agreement to about two percent
with Keesom's experimental value. At higher
temperatures, it will be seen that the experi-
mental and theoretical free energies depart
appreciably from each other, the experimental
points lying lower, indicating that the experi-
mental specific heat is greater than the theoret-
ical. This is not surprising, for it is entirely
possible that other terms in the specific heat,
not of electronic origin at all, are becoming
appreciable at these temperatures, as often
happens with metals. Even if this is not the
case, the agreement is probably within the
error of the calculation and of experiment.

The net result, then, is agreement between
theory and experiment both in the magnetic
moment as a function of temperature, and in the
free energy. It would be more convincing to
calculate magnetic moment directly by finding
the minima of the curves, and to find a theoretical
free energy, differentiate it twice, and thus get a
theoretical specific heat curve, to compare with
experiment. The difficulties with this program
are entirely practical ~ It has been stated that the
calculations were difficult to carry out accurately,
for the two terms in the energy, the exchange
term and the other one, almost exactly cancel,
and the net result is the difference of almost
equal quantities. With curves as uncertain as
these are, an attempt to find the minima nu-

merically is seen from Fig. 1 to be impracticable.
The free energy as function of temperature could
be found more accurately from the ordinates of
the minima, but to get the specific heat we should
have to differentiate this curve twice numerically,
and this would introduce great errors. We must

thus be content with the type of comparison
with experiment which we have used. It seems
entirely satisfactory, however, within the limits
of error.

Two points in connection with the calculation
deserve further comment. In the first place, as
has been stated, it was necessary to use an
exchange integral only 62 percent of the value
found in the previous paper. Not only this, but
the value of the integral is found rather ac-
curately from the requirement that the Curie
point agree with the experimental value, for a
very few percent in the exchange integral make a
large proportional change in the small difference
between exchange and binding energies, which
much more nearly cancel than in the previous
paper. The earlier value of the integral, however,
was derived from empirical spectrum terms, and
it is not legitimate to change it as drastically
as this without justification. One fact was over-
looked in the previous paper, however. The
integral was found from a configuration of
nickel in which there were 8 d electrons, .whereas
in the metal there are about 9.4 d electrons per
atom. The increased number of electrons in the
d shell in the metal will increase the shielding
on each electron, causing the orbits to increase
in size, and will thereby decrease the exchange
integral, which is very sensitive to orbital
dimensions. The amount of change cannot be
estimated from available nickel terms, but in the
next element, cobalt, such an estimate can be
made. In Co I we have two configurations,
3d'4s' and 3d'4s, both leading to the terms 4I'

and 4I', analogous to the 3I" and 'I' in nickel,
used in determining the exchange integral in the
previous paper. The interval between the centers
of gravity of these multiplets is about 14,700
cm ' in the 3d'4s' configuration, but only about
10,500 cm ', or 71 percent as great, in 3d'4s.
If this figure of 71 percent can be accepted for
the decrease in the integral on adding one elec-
tron to the shell, the integral for nickel should
have been (0.71)"'=0.62 times as great as first
estimated, in exact agreement with the factor
which we found necessary to fit the magnetic
observations. Since the earlier value of the ex-
change integral was estimated to be accurate
only to five or ten percent, this exact agreement
of course is fortuitous.
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The second interesting point may be seen by
reference to Fig. 1. It has been previously sup-
posed4 that at the absolute zero all electron
spins were parallel to each other. On the other
hand, the curve for 1=0 in Fig. 1 shows a
minimum at a value of p, slightly less than that
corresponding to all spins being parallel. The
figure is drawn on the assumption that there
are empty spaces in the d shell corresponding
to 0.64 electron per atom; in this case the
minimum energy is for a state with 0.62 electron
of positive spin, 0.02 of negative spin, giving the
net spin of 0.60, as observed. This minimum is
real, not a result of inaccuracies in computation,
as an analytical investigation of the theoretical
nature of the curves in this neighborhood shows.
The writer knows of no theoretical method of
discovering whether this is in agreement with the
facts or not. The shape of the curve near the
minimum could be investigated only by studying
the change of saturation moment in fields much
stronger than can be obtained, in which case
theoretically the moment could eventually be
increased to a true saturation of 0.64 magneton
per atom, but this is outside the range of experi-
mental fields. There is, however, a very interest-
ing possibility opened up by this effect. It is
well known that the saturation moments of
Ni, Co, and Fe at the absolute zero correspond,
respectively, to 0.6, 1.7, and 2.2 magnetons per
atom. If the number of s electrons per atom
remains approximately unchanged in this series,
we should expect the saturation moment to
increase by one unit in going from one atom to
the next, so that it should be about 2.7 for iron,
rather than 2.2. It is now attractive to suppose
that when the calculations for iron are carried
out it may be found that the minimum of the
curve, at absolute zero, lies not where the mo-
ment is 0.60/0. 64 of its maximum possible value,
but at the smaller proportion 2.2/2. 7. That is,
we suppose that as the end of the series of
ferromagnetic elements is reached, the curve of
+ versus p, at absolute zero does not suddenly
change from a curve like that for nickel, with
maximum energy at p =0, to a curve of the non-
magnetic type with a minimum at @=0, but
that rather the minimum already present in

4 N. F. Mott, Proc. Phys. Soc. 47', 571 (1935); J. C.
Slater, reference 1.

nickel gradually moves in toward p=0. This
is in accordance with the observed facts for
alloys. In the first place it is found that the
highest saturation moments are found, not in
iron, but in iron-cobalt alloys, which contain
a smaller number of holes per atom in the d shell
than iron, and at first sight would be expected to
have smaller moments. Presumably the effect
of which we are speaking begins to be important
between these alloys and iron itself, cutting the
moment of iron below its expected value, with-
out greatly affecting the iron-cobalt alloys.
In the second place, alloys of iron with lighter
elements, as chromium and manganese, have
more holes per atom in the d shell than iron,
and might be expected to show greater satura-
tion moment. As a matter of fact they show less.
an observation interpreted by gneiss' and his
colleagues by the assumption that the moments
of the chromium or manganese atoms set them-
selves opposite to the moments of the iron atoms,
an assumption which has no place in the present
type of theory. Rather we may assume that, in
spite of having more holes in the d shell than
iron, the tendency of the minimum of the free
energy curve toward @= 0 is so marked in these
alloys that the moment is really less than iron,
not greater. These remarks are illustrated by
Fig. 2, in which the saturation moments of the
alloys of Ni-Cu, ¹iZn, ¹iCo, Fe-Ni, Fe-Co,

0 Co 2 Fe

FIG, 2. Saturation magnetic moments of ferromagnetic
alloys at absolute zero, in Bohr magnetons, as function of
number of empty holes in d shell, arbitrarily taken to be
0.64 in Ni, 1.78 in Co, 2.78 in Fe. Data from references 5.

' P. Weiss, "Recherches recentes sur le magnetisme, "
Con gres International d'electricite (Paris, 1932); M.
Fallot, "Ferromagnetisme des alliages de fer, " Thesis
(Paris, 1935). The curves for Fig. 2 are taken from these
references.
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Fe-Mn, FC-Cr, and Fe-V are plotted as a func-
tion of the number of holes in the d shell,
equalling the maximum possible magneti~ mo-
ment if as many spins as possible were parallel.
j:t will be seen that up to about halfway between
Co and Fe, all the alloys lie very nicely on a
line which is approximately the 45' line, indi-

cating almost maximum possible moment, but

that at this point the cuIvc bleaks a%'ay, stalt"
ing to decrease, which we interpret to mean that
only part of the available spins are parallel in the
st8te of mlnlmum fICC cncIgy.

The writer is greatly indebted to his colleague
Professor Francis Bitter for interesting discus-
sions, and particularly for assistance in locating
I cfcrcnccs ln thc fcrroIQagnctlc lltcl Rturc.

APPENDIX

We 6rst find the free energy P of a system of electrons
all Of the same spin, the energy being a sum of one-electron
energies of the various electrons. A stationary state of
the system is denoted by the values of the e s, the number
of electrons in the ith orbital, . where by the exclusion
principle @g is limited to the values 0, j.. If there are

¹

electrons, we have

If the one-electron energy of an electron in the ~th state
is ~;, the total energy 8 is

E=Ze;a;.

Then according to Gibbs the free energy is given by the
equation

where the summation is to be extended, over all stationary
states of the combined system; that is, over all combina-
tions of the n s consistent with (1) and the exclusion

principle. By using (2), Eq. (3) becomes

where again each e; is to range over the values 0, i, subject
to the condition (1). Introducing an index s, we have

exp {—P/kT) =coeScient of term in @+0 in

We recognize in (6) the familiar condition in the Fermi
statistics determining the number of particles as the sum
of the number in the various stationary states, and see
that in the usual notation we should let

Substituting this value of z in (5), and again neglecting
unity compared to N~, we have

exp (—p/kT) =constant times exp (—Ng'/k T)
II(j.+exp (Q —e;)/kT) },

p=constant+Eg —kTZ ln (l.+exp ((g —e;)/kT)). (8)

The formulas we have derived are convenient when

most of the energy levels are empty. In our case, however,
most of the states are 6lled, only the top states of the
d band being empty, and it is better to rewrite the formulas
so that the essential contributions to the sums come from
the holes, not the 6lled levels. Thus assume there are
only ¹ empty stationary states, so that ¹+N» equals
the total. number of stationary states, which is assumed

6nite (as in the d bands). Then in place of (6) we have

¹

——Z
exp ((~' —t)/k T)+&

'~

exp ((g—e;)/kT)+ j

where x;=exp (—~;/kT). We evaluate the integral (5) by
the method of steepest descents. To do this, we First 6nd
the minimum of the integrand along the real axis; then we

know that the integral is given. by a constant times the
value of the integrand at this point. To 6nd the minimum
of the integrand, we take the logarithm and differentiate:

The quantity being summed in (9) is approximately equal

to unity for the states empty at absolute zero, for which

&; is greater than f, but is approximately zero for the states
occupied at absolute zero. In place of (8) we have

P(¹,T)=constant+(¹+¹—¹)g
—kTZ In (exp ((f—~;)/kT))

—kTZ ln (i+exp ((~;—g}/kT))

—constant+ Ze ' —Ng

—kTZ» (~+exp ((;-—y)/kT)). (~0)

from which, neglecting unity in comparison to¹,
¹=Z

z (1/s)~"P z'

The quantity being summed in (10) is again approximately
zero for the states occupied at absolute zero, but is approxi-

mately equal to g —e; for the states unoccupied at absolute

zero. Thus at absolute zero, leaving out of account the
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first two terms in (10), which are constants, we see that f
is equal to the negative of the sum, over unoccupied states,
of e;., that is, to the work required to remove the electrons
from these states, starting with all states filled.

By using the numerical distribution of stationary states
in the d band described in the previous paper, the quantity

from (10) has been computed for a variety of tempera-
tures as a function of Ni. Actually g rather than Ni was
used as the fundamental parameter, Ni being calculated in

terms of g from (9), and P from (10). Finally f was elimi-
nated by plotting P as a function of N&, interpolating to
get the values at suitable values of Ni.

As mentioned earlier in the paper, the free energy is a
quadratic function of T at low temperatures; it was conse-
quently found convenient for some purposes to plot f as a
function of T', for various values of Ni. When this was
done, it was found that the curves were very nearly
straight lines over the range of temperature used, and that
they could be expressed with great accuracy by quadratic
functions of T'. Furthermore, by a fortunate chance, the
coefficient of the term in T4 was almost the same function
of N~ as the coefficient of the term in T', so that it was.
accurate enough to take the same coefficient in each case.
As a result, it was possible to write

p(N, , T) =f(Nq} —g(Ni) I T2—3.35 X 1()—zT4I (11)

where f(Ni) and g(Ni) are empirical functions of Ni. , and
the coefficient of the T4 term is empirical.

Now we are ready to consider the actual crystal. Let
there be N atoms in the crystal, so that there are 10N
states for d electrons, 5N of each spin. Assume there are
(10—n)N electrons in these states, of which (5 —n/2
+»»/2)E have positive spin, (5 —n/2 —IJ,/2)N negative
spin, so that there are (n/2 —p/2)N electrons missing
from states of positive spin, (n/2+p/2)N from those of
negative spin. Then we may write the whole free energy
as the sum of functions (11) for these two spins. This
gives the contribution to the free energy coming from the
one-electron energies of the electrons. From it must be
subtracted the exchange energy, which as shown in the
previous paper is quadratic in p, and whose coefficient has

TABLE I.

0 753
0.04 74.5
.08 72.8
.12 70.0
.16 66.2
.20 61.4
.24 556
.28 49.1
.32 41.6
~ 36 34.0
.40 26.5
~44 19.5
.48 12.8

0,001311
1309
1305
1295
1285
1270
1251
1230
1206
1180
1148
1112
1072

0.49
.50
.51
.52
.53
.54
.55
.56
.57
.58
.59
.60
.61
.62
.63
.64

11.2
9.7
8.1
6.7
5.5
4.0
2.8
1.7
1.0
.5
.2
.0
.3

1.0
2.0
4.1

G'(» )

0.001062
1050
1038
1026
1014
1000
985
970
952
934
912
888
861
830
785
624

which Fig. 1 was constructed. The values have been
smoothed, but probably are not accurate to the last sig-
nificant figure given. The constant in F(IJ} is adjusted so
that the energy of the stable state at absolute zero is zero.
The unit for F(IJ.) is calories per gram mole, and for G(p)
calories per gram mole per degree'. It is to be noted that
the value of G(p) for p =0.60 should give the coeScient of
T' in the actual free energy near the absolute zero, and
should agree with half the experimental value of C,/T, or
has been stated above should be 0.000872. Our value,
0.000888, di8ers from this value by about two percent,
as has been previously stated.

'been already seen to be 3315 cal. per g mole. Thus we have
as the complete free energy 4'(p, T) of the crystal

+(p~ T) =f((n/2 —p/2)N~ T)+0((n/2+I»/2) N, T) —3315''
= If((n/2 —p./2) N)+f((n/2+ p,/2) N) —3315p~)
—

I g((n/2 —p,/2) N)+g((n/2+ p/2) N) I

X IT2—3.35X10 zT4J
=F(p) —G(p) I T' —3.35 X 10 'T4 I. (12)

Values of F(»I) and G(p} as functions of (p), computed for
n=0.64, are given in Table I. They are the values from


