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§1. The selection rules for g-transformations are stated on the basis of the neutrino theory
outlined by Fermi. If it is assumed that the spins of the heavy particles have a direct effect on
the disintegration these rules are modified. §2. It is shown that whereas the original selection
rules of Fermi lead to difficulties if one tries to assign spins to the members of the thorium
family the modified selection rules are in agreement with the available experimental evidence.

§1.

CCORDING to the theory of B-disintegra-
tion given by Fermi® no change of the total
nuclear spin should occur in the most probable
transformations, i.e., in transformations located
on the first Sargent curve.? The transformations
corresponding to the second Sargent curve ap-
proximately 100 times less probable should cor-
respond to changes =41 or 0 of the angular
momentum of the nucleus. One may expect the
existence of still lower curves for higher changes
in the nuclear spin. This selection principle is
based on the assumption that the spin of the
heavy particles does not enter in the part of the
Hamiltonian which is responsible for the §-disin-
tegration. The same assumption was made in the
modified theory of Konopinski and Uhlenbeck?
who introduced the derivative of the neutrino
wave function in the Hamiltonian in order to get
a better fit with the experimental curves of the
energy distribution in B-spectra. We should like
to note here that this selection rule will be
changed if the spins of the heavy particles are

1 Fermi, Zeits. f. Physik 88, 161 (1934).
2 Sargent, Proc. Roy. Soc. A139, 659 (1933).
3 Konopinski and Uhlenbeck, Phys. Rev. 48, 7 (1935).

introduced into the Hamiltonian, a possibility
proposed in many discussions about this subject.
We shall first give the derivation of Fermi's
selection rule in a somewhat generalized form.
The probability of B-disintegration is propor-
tional to the square of the matrix element.

ESs f (@ P 0 ). (1)

Here ¢; and ¢, are the proper functions of the
heavy particles, protons and neutrons, for the
initial and final state, respectively. These func-
tions depend on the positions of the heavy par-
ticles, on their spins, and on a third variable*
which corresponds to the charge of the heavy
particles and which is capable of two values, in a
manner similar to the spin variable, the value
1 corresponding to a proton and the value 0 to a
neutron. The operator ;%' £ acts on this last
variable converting the /th particle in ¢, into a
proton if it was a neutron and giving Q;%» P¢,;=0
if the Ith particles is already a proton. The in-
tegration in (1) includes summation over the
spin and charge coordinates of the heavy par

4 Introduced by Heisenberg, Zeits. f. Physik 77, 1 (1932).
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ticles. ¢, and ¢, are the proper functions of the
neutrino and the electron. O is an operator
acting on these functions but not involving the
heavy particles and the delta function 8¢; sub-
stitutes the position coordinate ¢; of the I/th
heavy particle for the coordinates of the electron
and neutrino.

In Fermi’s paper the operator O was simply a
summation over certain products of the four
Dirac components of the electron wave function
and components of the neutrino wave function.
The Konopinski and Uhlenbeck operator in-
volved in addition the first derivative of the
neutrino wave function. In both cases, however
3¢:{O(¥,*¢e*)} is a scalar function of g;. This is
necessary since in (Q;% Py;)¢;* the summation
over the spins of the heavy particles gives also a
scalar and the integral in (1) must be a scalar.

Supposing at first that ¢, and ¢, are plane
waves, the same will be true for 8¢, {0, *¥*)}.
If we expand this wave in spherical harmonics,
and suppose that the nuclear radius 7, is small
compared to the wave-length A, then the am-
plitudes of the zeroth, first, second . . . spherical
harmonics within the nucleus will have the
ratio 1 : (7o/N) : (ro/N)? - - -. Neglecting all but
the zero-order spherical harmonic M, will be
different from zero only if the angular momentum
1 of the nucleus does not change during the §-
transformation and if the nuclear proper function
is even with regard to reflection on the mass
center before and after the disintegration or if it
is odd before and after. These transitions will
correspond to the first Sargent curve.

Taking into account the first-order spherical
harmonic in the development of 6¢;{O0,*¥*)}
further transitions become possible. The selection
rules for these additional transitions are those
valid for a polar vector: The change in angular
momentum Az is &1 or 0 (but not ¢=0—7=0)
and one of the two combining states is even, the
other odd. For all these cases, however, the
matrix element A will be smaller by 7o/A than
for the zero-order spherical harmonic and con-
sequently the transitions will be less probable
by (ro/\)2. Now for most S-disintegrations 7o/
is about 1072 and the transformations arising
from the first-order harmonic are ten thousand
times less probable than those arising from the
zero-order harmonic.

G. GAMOW AND E. TELLER

Actually the proper function of the electron is
not a plane wave because of the Coulomb inter-
action between the nucleus and the electron.
Fermi has shown that for the heavy elements,
where this interaction is the greatest, the result
will be to increase the probability of emitting an
electron with unit angular momentum, this event
being only about 100 times less probable than
the emission of the light particles with zero
angular momentum, thus giving the second
Sargent curve. The situation will be similar if
we accept the Hamilton term introduced by
Konopinski and Uhlenbeck or any other expres-
sion of the type given in the matrix element J;.

We have therefore from a generalized treat-
ment of Fermi’s theory the following selection
rules,

First Sargent curve: (1) A7=0; (2) proper functions,
even-even, or odd-odd.

Second Sargent curve: (1) As=0 or =1; (2) proper
functions, even-odd.

If we now assume that the spin of the proton
and neutron enters into the Hamilton term which
is responsible for the transformation we may
substitute M; by the more complicated ex-
pression

=¥ f (O Patp )0 0K D). (2)
£ 1

Hereby «;f operates on the spin of the /th
heavy particle and signifies the three Pauli
matrices:®

01
10

0 <
-7 0

1 0
0 -1

a¥= H a¥= H o=

‘. 3)

The summation over ¢ is meant to include the
three values x, v, 2. The three operators Of are
the three components of a vector. This means
that by a coordinate transformation the three
operators are transformed in the same way as the
x, v and z components of a vector. It is then seen
that the matrix element M, will again be scalar
quantity.

5 A similar expression was introduced by Fermi (in order
to insure relativistic invariance) as an additional term. In
his expression, however, the s stood for the Dirac matrices
which give only a small contribution as long as the velocity
of the heavy particles are small compared to ¢. It should

also be noted that Dirac’s s are the components of a polar
vector whereas Pauli’s «’s form an axial vector.
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Expanding the expressions 8q;{ O¢(y,*y*)} into
spherical harmonics and retaining only the zero-
order functions integration over the coordinates
of the heavy particles shows that transitions are
possible if (1) Az=0 or 1 (but not z=0—2=0),
and if (2) The transition is of an odd-odd or
even-even type. These are the same selection
rules as those valid for an axial vector. The cor-
responding transitions would be located on the
first Sargent curve.

From the first-order spherical harmonics we
obtain transitions with (1) A7=0; &1 or %2,
(2) the transitions are of the odd-even type.

Either the matrix element M; or the matrix
element M, or finally a linear combination of
My, and M, will have to be used to calculate
the probabilities of the @B-disintegrations. If
the third possibility is the correct one, and
the two coefficients in the linear combination
have the same order of magnitude, then all
transitions which would lie on the first Sargent
curve according to any one of the two sets of
selection rules mentioned above would now lie
on the first curve. This would mean that the
selection rules are the same as for an axial vector
with the addition that also the z=0—¢=0 even
—even or odd—odd transitions are allowed.

We shall show now that if exchange forces of
the Majorana type® are acting between protons
and neutrons and if these forces have to be
explained by a pB-disintegration of the neutron
and a following capture of the electron and
neutrino by the proton then the actual matrix
element to be used is the sum of the matrix
elements M, and M,. Indeed if we should have
only M, then the charges would: be exchanged
with the spins remaining unaffected, i.e., we
should obtain Heisenberg forces. If on the other
hand M, were the correct expression then con-
sidering a system of one neutron and one proton
represented by ¥ (¢1)¥r(¢2])" and applying first
to ¥u(g:1]) the operator corresponding to Mz and
then the inverse operator to y¥»(g2]), the ex-
pression ¥p(q1])¥n(g2]) would be obtained. By
a similar procedure ¥ (q:1])¥r(ga}) is transformed
into 2¢2(qi] ) ¥n(g]) —¥r(aD¥n(gl). Now
¥n(g:1D¥r(ge]) is according to both Majorana

6 Majorana, Zeits. f. Physik 82, 137 (1933).
" The arrows in Y (¢11) and ¢p(qe1) represent the spins of
the neutron and proton.
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F1G. 1. Schematic representation of the radioactive o-
and B-disintegrations from Th B to Th D, indicating
various B-transformations leading to excited states of
product-nuclei.

and Heisenberg in exchange interaction with
¥r(q:1))¥n(g2]) whereas ¥ (q1])¥r(gs]) exchanges
with ¥p(q1])¥n(gsl ) according to Heisenberg and
with ¥p(q:l)¥n(ge]) according to Majorana. The
matrix element M> will correspond therefore to
a superposition of the Majorana and the Heisen-
berg forces in the ratio 2 to —1. If we want to
obtain pure Majorana forces we must add M,
and M. with equal coefficients.

§2.

We can now show that the new selection rules
help us to remove the difficulties which appeared
in the discussion of nuclear spins of radioactive
elements® by using the original selection rule of
Fermi.

We shall discuss the sequence of transforma-
tions in the thorium family leading from Th B
to Th D (thorium lead) which is represented
schematically in Fig. 1. First of all we can con-
clude with a rather high degree of certainty
that the normal states of Th B, Th C’ and Th D
nuclei, possessing even atomic numbers and even
mass numbers, have the spin 2=0.° The trans-
formation Th B—Th C gives rise to a continuous
B-spectrum with the observed wupper limit
m, Proc. Roy. Soc. A146, 217 (1934); Physik.
Zeits. 35, 533 (1934). .

9 For four elements of this type (:He?; ¢C12; s016; 145%) the
absence of spin is directly shown by the band spectra; other
13 investigated elements of this type (5Cd!10; »5Cd2;
48Cdu4; EGBaIHG; aeBaISS; 80Hg200; 80Hg202; 80Hg204; 82Pb204;

$2Pb208; ,Pb208=Th D) do not show any hyperfine structure
which makes it very probable that their spin is also zero.
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E=0.362 MV and is accompanied by a very
strong v-line h»=0.238 MV along with several
much weaker lines. The number of secondary
electrons (due to internal conversion of the
v-line 0.238 MV in the K level) is according to
Ellis and Mott!® about Nz=0.25 per disintegra-
tion from which these authors conclude that it
must correspond to a quadripole radiation. In
fact the internal conversion coefficients for this
frequency are, according to calculations of Mott
and Taylor,* ¢3=0.026 and «,=0.205 for dipole
and quadripole radiation, respectively. Thus for
the total number of y-quanta radiated by nuclei
N,=Ng/a we should have according to these
two possibilities 9.6 or 1.2. Since this number
should not be larger than unity we must exclude
the possibility of dipole radiation and consider the
v-line in question as due to quadripole transi-
tion with the intensity almost one quantum per
disintegration. The fact that the observed value
is 20 percent larger than unity must be due to
errors in the measurements of Nj or the calcula-
tion of a. Accordingly we admit with Ellis and
Mott that in this case we have 100 percent
excitation of the quantum level 0.238 MV of the
Th C nucleus. The total energy of the trans-
formation is 0.3624+0.238=0.600 MV and the
observed upper limit of the B-energies corre-
sponds to the transformation Th Brorm—Th Cexe.

The B-transformation from Th C to Th C’ cor-
responds to the upper limit of the B-spectrum
Eg=2.25 MV and is accompanied with only very
weak v-radiation. Thus we conclude that in this
cast the main transformation, 80 percent, takes
place between normal states Th Crorm—Th C norm.

Finally in the g-transformation between Th C”
and Th D the level 3.202 MV of Th D nucleus is
(according to Ellis and Mott) excited to almost
100 percent, the transition to the normal state
occurring by emission of two v-lines 0.582 MV
and 2.620 MV both with the absolute intensities
of the order unity. Thus the observed upper
limit of the B-spectrum Eg=1.79 MV corresponds
to the transformation Th C”,orm—Th Dexe. The
total energy of transformation being 1.794-3.202
=4.99 MV.

In Fig. 2 the logarithms of the partial decay
constants of different subgroups of g-spectra are

10 Ellis and Mott, Proc. Roy. Soc. A139, 369 (1933).
11 Mott and Taylor, Proc. Roy. Soc. A138, 665 (1932).

G. GAMOW AND E. TELLER

plotted against the logarithms of the correspond-
ing upper energy limits.!?

The curves I and II correspond to Sargent’s
permitted and nonpermitted transformations as
estimated from different members of three radio-
active families. We see that the main transforma-
tion Th Buem—Th Ce, corresponds to the curve
I whereas the main transformation Th Cpomm
—Th C’orm corresponds to the curve II. From
the original Fermi selection rule: Curve I:
A1=0; Curve II: A2=0 or &=1. We conclude that
2(Th Cexe) =2(Th Bporm) =0. Since the y-line rep-
resents a quadripole transition we have further
2(Th Cyorm) =2. In this case the transformation
Th Chorm—Th C’ 0rm should correspond to A7 =2,
i.e,, must belong to the third Sargent curve,
which is in contradiction with experimental
evidence, this transformation belonging to the
curve II.

The difficulty will be still not removed if we
take the possibility into account that +-line
0.238 mv corresponds to a magnetic dipole
radiation. For this case the coefficients for
internal conversion have been calculated by
Fisk and Taylor!® and are considerably larger
than the corresponding coefficients for electric
radiation. Accepting this possibility we obtain
for the number of y-quanta A»=0.238 mv a value
small compared with unity (weak excitation) and
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F16. 2. Logarithmic plot of the relation between partial
decay constants and corresponding upper energy limits for
various components of complex B-ray spectra.

12 Upper energy limits of different 8-subgroups are ob-
tained by subtracting the excitation-energies from the total
energy of transformation; partial decay constants are
estimated from the total decay constant and relative
excitation of different nuclear levels.

8 Fisk and Taylor, Proc. Roy. Soc. A146. 178 (1934).
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should be forced to accept that the observed
upper limit of B-spectrum corresponds to trans-
formation Th Bhorm—Th Crorm. This will lead
again to contradiction with Fermi's original
selection rule first because the transformation
Th Bhorm—Th Cherm and Th Cpem—Th C’porm
corresponding to the same spin-change (because
2(Th Buorm) =2(Th C’porm) =0) would belong to
different Sargent curves and secondly because
in this case both transformations Th Buorm
—Th Cporm and Th Bhorm—Th Cexe being of the
first Sargent’s class would lead to the conclusion
#(Th Crom) =%(Th Cexe) =2(Th Bjom)=0 which
would exclude the possibility of any y-transition.

Applying our modified selection rule, curve I
Az=0 or =1 curve Il A7=0, 1 or +2 we have
the following possibilities

’I‘h Bnorm Th CeXC‘ Th Cnorm Th C’!lOl'l'!l
0 0 or #1|0, &1 or 2 0

nucleus:
spin:

. @

The possibility 2(Th Cporm) =0 or =1 must,
however, be excluded as in this case the trans-
formation Th Bperm—Th Cpomm would correspond
to the curve I and consequently, because of
larger energy, be more probable than Th Bnorm
—Th Cex.. There remains only the possibility
2(Th Corm) =2 which is in good agreement with
the quadripole-character of the v-transition.
The transformation Th Bporm—Th Cporm cor-
responding to Ai=2 cannot belong now to
the first Sargent curve, i.e., it must be at
least 100 times weaker than the main transi-
tion, as can be seen from Fig. 2. This accounts
for the fact that the corresponding ‘‘long range”
component of the continuous B-spectra of Th B
has never been observed. Thus we see that the
new selection principle removes the difficulty
originated in the case of the older rule.

It must be pointed out, however, that accord-
ing to the above considerations it is not possible
to assign even proper functions to all nuclei with

RULES FOR THE BETA-DISINTEGRATION
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even atomic number and even mass number.
Because if the proper function of Th Bpom is
even, the same is true for Th Cex (since the
transition Th Buorm—Th Cex lies on the first
curve) and also for Th Cuom (since Th Cexe
—Th Corm is a quadripole transition). But
Th Chorm—Th C'horm lies on the second curve
and therefore the proper function of Th C’horm
is odd. This is unsatisfactory since it would be
nice to substitute the rule that nuclei with even
atomic number and even mass number have =0
by the rule that the proper functions of these
nuclei remain unchanged during any symmetry
operation.

Turning our attention to the B-transformation
leading from Th C” to Th D we see that the
main transformation Th C",4:m—Th Dex. cor-
responds to the first Sargent curve from which
we conclude that Z(Th C”,orm) —%(Th Dexe) =0
or 1. It can also be seen from Fig. 2 that the
transformation Th C” orm—Th Dunorm belongs at
least to third, or still higher order, curve which
excludes the possibilities of Z2(Th C”porm) being
0, or 1. The excited level 3.202 mv of
Th D nucleus is connected with the normal level
by two ~y-transitions, 0.582 mv and 2.620 mv,
from which the second is surely quadripole.
This indicates that its spin will not be larger
than 4, because by each y-transition Az< 2. This
gives for i(Th C" o) the upper limit =5. Thus
for the spin of normal state of Th C"” nucleus we
have the choice between 2, 3, 4 and 5; it seems
however, to be necessary to accept the largest
possible value 7(Th C”"horm) =5 in order to have
a sufficiently large spin difference between
Th Crorm(2=2) and Th C”pom to explain the
presence of strong fine structure of a-rays in the
Th C—Th C” transformation.*

u G)amow and Rosenblum, Comptes rendus 197, 1620
(1933).



