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An Interpretation of Page's "New Relativity"
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Page's proposed extension of the theory of relativity is
examined from the standpoint of the general kinematical
theory developed by the present author, of which it is
found to be a special case. The contention that this
extension renders Einstein's theory untenable would seem
to be without real foundation; for although such an attempt

to treat of observers in motions other than those contem-
plated in the special theory of relativity must lead to a
theory transcending this latter, Page's theory is shown to
be readily understandable in terms of a simple, though
somewhat artificial, space time of a type met in the general
theory of relativity.

N a recent issue of this Review L. Page' has
-- developed a relativistic kinematics suitable
for observers suffering constant relative accelera-
tions, and has announced his intention of setting
up a corresponding theory of the electromagnetic
field. We here examine this program, in the light
of previous related work, in order to determine
whether or to what extent its results are incom-
patible with the existing relativistic theories.
As a result of this examination we are led to the
conclusion that Page's kinematics is included as
a special case in the general kinematical theory
formulated some months ago by the present
author' for a different purpose, and that as such,
although outside the frame of the special theory
of relativity, it may readily be understood from
the standpoint of the general theory. It is further
pointed out that an electrodynamical theory,
based on transformations of the kind employed
by Page, has been developed by H. Bateman'
and by E. Cunningham. 4 For the sake of concise-
ness and completeness the terminology of the
theory of groups is at times invoked, but it is to
be emphasized that all results are obtained by a
straight-forward analysis, for an understanding
of which a knowledge of the theory of groups is
not required.

1. oKINEMATICAL PRELIMINARIES

We begin, then, with a brief statement of the
results of our kinematical analysis, referred to

' Page, Phys. Rev. 49, 254 (1936).' Robertson, Astrophys, J. 82, 284 (1935).
~ Bateman, Proc. Lond. Math. Soc. '7, 70 (1908); 8, 223

(1909).
4 Cunningham, Proc. Lond. Math. Soc. 8, 77 (1909).It is

of interest to note that .this paper bears the title "The
Principle of Relativity in Electrodynamics and an Exten-
sion Thereof. "

above, ' which will be of service in the following.
It is there assumed that, for the purposes in
mind, the space-time region in question admits
a three-parameter family of possible equivalent
observers, in the sense that through each event
there passes the world-line of one (and in general
only one) such observer A, and that his view of
the development of the whole, as obtained with
the aid of a proper clock, light signals and a
theodolite, is intrinsically indistinguishable from
that of any other observer A' in the family.
It is then shown that under these conditions A
can define operationally a set of coordinates
g&=—(rrlgf), and can introduce a Riemannian
metric

ds' —=dr' —t'(r)du'
du'—=d vP+0'(g) [dtP+sin' ed+j

in which

o(g) —= sinh s, ri or sin g (1.2)

according as the Riemannian curvature k of
the auxiliary three-space with metric dl is —1,
0 or +1, respectively; the function $(r) &0
characterizes the type of relative motion between
any two equivalent observers of the family, and
is so far arbitrary. This metric ds' possesses the
important properties:

(a) The world-line of each of the fundamental particle-
observers A' is a geodesic q =const. (o.=1, 2, 3) of
ds', along which the interval s measures the clock time
v of A'.

(b) The world-lines of all light paths are the null-geodesics
of the metric.

The coordinates q& of any event E in the
region are determined operationally by A as
follows. Let ti be the time at which A must send
out a light signal in order that it pass through
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E, and let t2 be the time at which a signal sent
out from E reaches the world-line of A. Then
the coordinates v, p assigned the event E by A
are obtained from his clock readings t&, t2 by
means of the equations

2F(r) = F(tg) +F(ti), 2g = F(t2) —F(ti), (1.3)

for the line element (1.1), where

&'(t, r) =c'$(ti) $(t )o'(n) (2 3)

and ~, q, t~, t2 are to be expressed in terms of t, r
with the aid of (1.3), (2.1).

Now the path of any light signal which
intersects the world-line of A is given by

where F(r) =fdr—/((r) (1 4) r = ~c(t —t,), 0 =const. , P = const. ,

is any primitive of 1/$(r). The angles 0 and P
are those made by the direction of either light
signal with the zenith and meridian, respectively,
of A's theodolite. The transformation q&—+q'&

from the coordinates employed by A to those
employed by any other fundamental observer A'

is given by ~'= v and a transformation q —+q'

of the spatial coordinates which leaves de, and
therefore ds', invariant in form as well as in fact;
that this latter transformation is a member of a
six-parameter group G6 of motions is accounted
for by the fact that each of the ~' particle-
observers may orient his theodolite in any one of
~' ways. For the case &=0, of greatest interest
for our present purposes, this group G6 is the
group of Euclidean motions, consisting of the
three-parameter group T3 of Euclidean transla-
tions and the group R3 of rotations; we may then
for most purposes ignore the latter, and confine
ourselves to the group T3 of translations between
observers with similarly oriented theodolites.

2. CONSTANCY OF LIGHT VELOCITY

t =—(ti+to), —r —= -', c(tr, —ti). (2 1)

This in itself is of course no restriction on the
generality of the solution, although it leads to
the more cumbersome expression

d"= [8( )/&(t ) &(t2) jI«'
—Ldr~+R'(de'+sin' dPe) )/ Ic(2.2)

The kinematical theory given in resume above
is clearly the general solution of the equivalence
problem stated by Page in Part 1 of his paper.
However he, following E. A. Milne, would have
the theory expressed in terms of a time t and a
distance r assigned to the event E as in tke

sPecial theory of relativity, i.e. he would replace
our ~, p or t&, t2 by their expressions in terms of
the variables

and may therefore be interpreted as a radial
straight in the Euclidean (xye)-map constructed
from the Cartesian coordinates (xys) obtained
from the polar coordinates (r&P) in the usual

way; hence any light signal sent by A or received
directly by A is propagated rectilinearly in the
(xye)-map with the constant coordinate velocity
dr/dt = &c. However, it is readily seen from (2.2)
that other light paths do not in general possess
this property, and that to follow Milne and Page
in requiring that they do, places a severe re-
striction on the function $(r) characterizing the
relative motions of the fundamental particle-
observers. We remark in passing that this result
in no way contradicts that obtained in section 3
of the paper referred to above, ' where it is
shown that, at least in the open models k = —1, 0,
coordinates (TXYZ) may always be introduced
in which light is propagated rectilinearly with
constant coordinate velocity c; these latter are
defined in quite another way than the (txys)
here employed, and are such that the transfor-
mations from one particle-observer to another
constitute a six-parameter subgroup of the
general Lorentz group.

ln order to interpret Page's work in terms of
the kinematics outlined above, we must first
investigate the restriction imposed by his re-
quirement that all light signals, and not only
those which A is in position to observe directly,
are propagated rectilinearly with constant co-
ordinate velocity c in the Euclidean map con-
structed from the coordinates (xys). It is seen
immediately from (2.2) that, in order for all null

elements ds = 0 to be null elements in the
Minkowskian (txye)-map, the function R(t, r)
defined by (2.3) must be identically equal to r;
that this condition is also sufhcient follows from
the fact that the null geodesics of a conformally-
Hat manifold are at the same time null geodesics
of the associated flat. On replacing &(r) by its
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F f-
F=log f,

&
= (Cr+D)'/6, (k =0); (2.6)

g = (A r+B)(Cr+D)/ts,
(k = —1); (2.6')

F=2 tan 'f
$= DAr+B)'+(Cr+D)'hl2ts, (k=+1). (2.6")

Now in a certain sense

value 1/F'(r) in terms of the derivative F' of F,
the condition R=r yields the differential equa-
tions

F'( )F'( )( —)'= I2 DF( ) —F( ))/2&I' (24)
for F(r), where we have expressed all variables
in terms of tb t2 and have then set t~

——a, t = 7.
The solution F(r) is given, to within an additive
constant, by a quadrature, and the corresponding
forms of &(r) by diA'erentiation. The results of
this computation may be expressed in terms of
the general linear fractional function

f(r) = (A r+B)/(Cr+D), ti= AD —BC)—0, (2.5)

in the various cases k as follows:

and the new line element (2.2) is the Minkow-
skian form on which the special theory of
relativity is based; the original metric (1.1) is in
this case the "polar" form implied in the work
of Milne.

Finally, to come to the case adopted by Page,
we note that he requires (pp. 260, 263) that the
relative motion of two particle-observers be such
that at some instant they coincide spatially and
are then momentarily at relative rest. The first
of these conditions allows us to reject the case
(2.6"), for in it the distance function g(r) has
only complex roots; the second condition then
throws out the hyperbolic case (2.6'), in which
the two roots of g(r) are real but distinct. Thus
we find, as the only case in which two particle-
observers are at some time momentarily in coinci-
dence and at relative rest, the parabolic case (2.6),
in which $(r) has a double root and the spaces
7.=const. are Euclidean. The remainder of our
investigation will be devoted to a discussion of
this case.

7 —=c&(r)a(u) (2.7) 3. TRANsFoRMATIQN THEQRY

may be considered as a significant measure of
the "distance" at "time" 7 between two particle-
observers with the fixed u-interval u, and we
define

n =—d'X/dr' (2.8)

as the corresponding measures of the relative
"velocity" and "acceleration, " respectively. It
now follows from the results of the preceding
paragraph that the requirement of constant
coordinate-velocity of light in the (xys)-map
implies that the

relative

rnot~on of any two funda
mental particle-observers must be such that their
relative n-accelerati on is constant.

An examination of the three sets of equations
(2.6) shows that the only case in which the
relative velocity v can be zero for all ~ is that
in which k =0, C= 0; we then have

On taking as the origin of ~ that event at
which all ~' particle-observers momentarily
coincide, the invariant metric (1.1) defined by
(2.6) may be written

ds'=dr' —(q r'/2c)'LditP+ditg'+ds3'$ (3'1)

where the rt, (a, = 1, 2, 3) are the Cartesian
coordinates associated with the polar coordinates
(it8$) in the usual way, and p is the (constant) ac-
celeration between two particle-observers whose
(constant) u-distance is unity. Our first task is
that of discovering the transformation (rg, )

+(tx ) which throws —(3.1) into the conformally-
Minkowskian form (2.2), where the x, are the
Cartesian coordinates associated with (rtt$). We
may now take

$=D/A; r =Dcrt/A, (2.9)
F(r) = 2c/pr, — (3.2)

t= T cosh g, r =cr sinh it, (2.10)

and the original line element (1.1) is itself
Minkowskian on change of spatial scale. The
only other case in which the acceleration
vanishes throughout the motion is that in which
k= —1, C=O, whence

and the Eqs. (1.3), (2.1) yield as the required
transformation

,= (P —r~/c2)/t, rt, = 2x,/(t' r'/c ') p (3.3)—

the form (2.2) of the metric is then found to be

ds2= (r/t)~t dP —(dx 'i+dxP+dx 2)/c~j (3 4)



The transformation (3.3) has merely the eRect
of allowing the given observer A at g=o to
introduce a new coordinate mesh, of the kind
demanded by Page, in which A is at the origin
r=o of the new spatial coordinates x„and in
which the new temporal variable t is also a
direct measure of proper-time along his world-
line. In order to Find the relations between the
coordinates (tx ) employed by A and the co-
ordinates (t'x ') similarly introduced by another
particle-observer A' at q, =P, we must consider
the group of motions admitted by the metric
(3.1); as indicated above, we may here confine

ourselves to the subgroup T3 of translations
between observers with similarly oriented theo-
dolites. Hence the transformation A—&A' is
given by

7
1 (3.5)

and the transformation which it induces on the
corresponding Minkowskian coordinates is de-

Fined implicitly by

{/" r"/c')//' = {/' ——r'/ ')// (= r)
(3.6)x.'//' =x./& —~rp./2.

/,
' =b't/R',

(3.7)
x.' —b.= b2Lx. —(1y2Zb.x./b2) b.]/R',

R'{/x. ; b.) =Z(x +b,)' c'—/2, —
(3.8)

b =—2c'P /P'q P'—=ZP ' b'—=Zb 'where

this transformation may in fact be broken down

into the reHection

x =x —2(1+Kb,x,/b')b, (3.9)

in the plane through x„=—6 orthogonal to the
vector b„ followed by the space-time inversion

/'=b'//R', x,' b, =b'(x, + b,)/R'—(3.10)

in the pseudo-sphere

R'(~x. ; b.) —=R'(rx. ; b.) =b' (3.11)

of radius b and center at the event (0, b,). —
Thus the group I3 induced by T3 is that subgroup

Now this transformation must leave (3.4) in-

variant in form as well as in fact, and it must
therefore be a member of the general conformal

group in four dimensions;. hence it must be
compounded of at most dilatations, translations,
rotations (including reflections), and inversions.
The explicit form, as found directly from (3.6), is

of the general conformal group which consists of
the ~' transformations t(b,) of the form (3./),
and. which possesses the differential invariant
(3.4); the law of composition of this (Abelian)
group I„. is given by

t(b.)t(c.) = t(b.+c„). (3.12)

That (3.7) is indeed the explicit form of the
transformation derived by Page can be seen by
comparing it with his Eqs. {46), {47), (68), on
going over to the variables there employed. The
particle-observer A' at x ' =0 moves radially
away from A in the direction of the vector 6„
with a coordinate-velocity v which satisfies the
equation

~(1 s/"—) '= p~/, (3.13)

as can be found directly from (3.'/); hence the /,

rate of change of the left-hand side of (3.13),
which Page calls the "relativity acceleration" of
A' relative to A, is the constant Pq —and is the
same as their relative u-acceleration, as defined

by (2.8). The geometrical theorems derived by
Page in Part 4 of his paper are consequences of
general theorems on inversions, as applied to
the spatial inversion defined by (3.10) at time
&= &'=0.

We also see, in retrospect, that the transfor-
mation (re,)—+(tx,), defined by (3.3) for a given
observer A, is itself interpretable as an inversion
of the variables

bo'/c'r, bog, (bo =2c'/p)

in the pseudo-sphere of imaginary "radius" ibo

about the origin.
Our approach has been based on the existence

of an invariant interval ds' which satisfies the
conditions (a), (b) stated in section 1 abo~e,
and which therefore offers an invariantive de-
scription of the only elements so far involved in
the theory —namely, the equivalent particle-
observers, their proper clocks and theodolites,
and all light signals. In the light of this, and
considering the rather arbitrary definition of t
and r, it is difficult to see why Page's "physical
interval" c'dt' —dx' should be expected to appear
as an invariant. It is to be noted, in this con-
nection, that the con/em/ of Page's Eq. (32) is
equivalent to the fact that our ds' is invariant
in the two-dimensional case 8=const. , / =const. ;
his expressions (31), (32) are not, however,
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invariants of the transformation (ir)~(t'r') in
the technical sense, for they depend on the
parameter q of the transformation. On the
other hand, the differential expression (69) which
he writes down for the full four-dimensional case
is not at all equivalent to our differential
invariant (3.4); even if it be modified by the
same treatment as that accorded (32) in bringing
it into invariant form, it could at best be ex-
pected to be invariant under a one-parameter
subgroup of I3, and not under the full group.

4. AssocIATED PARTI cLE-OBsERvERs

It remains to clarify the role of the ~' possible
particle-observers which Page associates with
each given particle-observer A of the type dealt
with above. These auxiliary observers have as
their world-lines the curves x, =const. ; in order
to avoid confusion with the primary particle-
observer A we shall refer to the former as test-
particles. Computation shows that the world-
lines x, =const. are not geodesics of the metric
ds', unless x,=0—hence, in Page's terminology,
the reference systems employed by two observers
A and A', while equivalent, are not homogeneous.
Now we have examined, ' in connection with the
general kinematical theory described in section 1

above, the possible modes of motion of such a
six-parameter family of test particles in a space
time possessing the uniformity properties here
implied, and have found that they must satisfy
differential equations of the form

d q" p

dydee'

( d7') d7 dg
+ =F~ r, (

bo' ——,(4 1)
ds' vo ds ds 4 dsP ds ds

dt/ds = t/r, (1'+1/r)x dr/ds=0; (4.2)

hence the ~' world-lines x, =const. associated
with each of the particle-observers A are solutions
of (4.1) provided we set

r(r, dr/ds) —= —1/r (4 3)

where p'=—~, the Christoffel symbols are com-
puted from the coefficients g„„of (1.1), and I' is
some function of at most r and dr/ds. On
evaluating these expressions for the metric (3.1)
and taking v as defined by (3.3), in which the
x are constants, these equations of motion
reduce to

t= (bo/c)e'*"o —(bo= 2c'/p)—
be taken in the form

(4.5)

dS'=dz' e""(d—xi'+dx2'+dx3') (4 6).
This invariant metric satisfies the conditions (a)
and (b) of section 1 above, except that it is no
longer a direct measure of clock time along the
geodesic paths of the fundamental particle-
observers. It is, on the other hand, the stationary
form of a contracting de Sitter universe of constant
Riemannian curvature —c'/b p', the relation
between a particle-observer A and an associated
test particle x =const. in the space time (3.4)
of interest here is, to within the time transfor-
mation (4.5) above, formally the same as that
between two associated free observers in the
de Sitter universe (4.6), and the relation between

' Robertson, Astrophys. J. 83, 187 (1936); in particular,
sections 4 and 5.' Cf. the discussion of the de Sitter universe by the
present author in Phil. Mag. 5, 835 (1928). Eq. (11)of this
discussion are in fact equivalent to those defining Page's
transformation (68) between equivalent particle-observers.

These results allow us to conclude, in accord-
ance with the general theory developed in
section 5 of the paper cited above, ' that the ~'
solutions of (4.1) fall into classes characterized
by a parameter d & 0. The class d =0 consists of
the ~' world-lines of the fundamental particle-
observers, the class d= ~ of the ~' light paths
in space time, and each class d(00, ~) of the
~' test particles which are at the fixed x distance
d from the particle-observer with which each of
them is associated. Further, the motion of each
member of such a class d is such that its X

distance, as defined by (2.7), from the observer
A with which it is associated, approaches asymp-
totically the value d.

Finally, these considerations unearth a sur-
prising formal connection between Page's work
and the transformation theory of the de Sitter
universe in the general theory of relativity. To
exhibit this connection, we first note that in any
case in which F is a function of r alone, the
equations (4.1) may be interpreted as the
equations of the ~' geodesics of the metric

e'+ r'~'ds' (4 4)

conformal to the original metric (1.1). For the
case (3.4) of interest here, this new metric may,
on subjecting t to the transformation
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two equivalent observers A, A' here is formally
the same as that between two free observers in
general relative motion in the de Sitter universe. '

5. SUMMARY AND CQNcLUsIQN

This examination of Page's work, from the
standpoint of our general kinematics, has shown
that it deals with one of the three possible cases
in which there exists a set of ~' equivalent
particle-observers with respect to whom light is
.propagated rectilinearly with a constant co-
ordinate velocity c in a coordinate system (tx,)
defined as in the special theory of relativity.
In each of these cases there exists a significant
Riemannian metric, of the type employed in the
cosmological applications of the general theory
of relativity, which is invariant under the group
Go of motions which describe the equivalence;
it is apparent a priori that this group is a six-

parameter subgroup of the general conformally-
Minkowskian group of transformations on the
variables (tx,), and that it is the direct product
of the group R3 of Euclidean rotations on the
spatial variables x„and a three-parameter group
I3 which has as its minimal invariant varieties
the spaces v. =const. We have in particular
examined this group I3 in the case adopted by
Page, and have shown how it may be generated
from translations, reHections and simple in-

versions.
The three cases thus found are characterized

by the fact that in them the fundamental
particle-observers undergo a constant relative
O.-acceleration, which in Page's case agrees with
the t rate of change of the "relativistic" velocity
defined by the left-hand side of (3.13); we must
regard this agreement as a happy coincidence,
however, for it is difficult to see what significance
is to be attributed to Page's procedure outside
the special relativistic theory of electrodynamics,
where it leads to the usual classical expression
for the ponderomotive force (and not to the
relativistic four-vector by which it should even
there be replaced). It would seem that, insofar
as the present line of attack is concerned, this
leaves little justification for Page's "hope of
finding a rational detailed description of atomic
structure" by an investigation of "equivalent
reference systems having other types of motion
Lthan with constant accelerationj, particularly

relative rotation"; indeed, it has long since been
pointed out by E. Cunningham' that "no such
relation [as that defined by the conformal
group) can express anything corresponding to a
rotational motion of the space-frame of refer-
ence. " It would further seem, particularly in
view of the severe restrictions which their intro-
duction implies, that the quasi-Minkowskian
coordinates (txys) are of no very great intrinsic
significance, although possibly of convenience
for some purposes. But, above all, it is to be
remembered that we are here on the kinematical
level of description, and that the question of
whether or not two observers are dynamica/ly
equivalent can be decided only in terms of the
more complete physical theory of which the
kinematics is but a noncommittal tool; thus,
while we are willing to entertain the view that
a general kinematical theory such as that out-
lined in section 1 above may play a useful role
in comological speculations, we should not be
disposed to attempt to reconcile it with the
obvious dynamical inequivalence of observers in

general relative motions in terrestial or atomic
problems. Otherwise stated, either these more
general types do represerit possible motions of
dynamically equivalent observers, in which case
we should expect to have recourse to methods
and concepts of the type met in the general
theory of relativity, or their dynamical inequiva-
lence should be expected to set serious limitations
to the usefulness of the kinematics.

Insofar as electrodynamics is concerned, we
confine ourselves to the remark that the problem
of transforming the electromagnetic field under
the general conformal group has been given a
detailed solution by Bateman and by Cunning-
ham in the papers cited above' 4; we do not
here go into the question of whether or to what
extent their theory is equivalent to the phe-
nomenological theory of electrodynamics based
on the line element (3.4) as in the general theory
of relativity.

Finally, I should like to thank Princeton
University for granting me sabbatical leave
during the present academic year, and to express
my appreciation to the California Institute of
Technology for the facilities for work which it
has placed at my disposal during this time.

7 Cunningham, The Prinriple of Relativity (Cambridge,
1914), p. 89. Cf. also p. 79 of reference 4 above.


