The Band Spectra of the Hydrides of Lithium

Part III. Potential Curves and Isotope Relations

F. H. Crawford and T. Jorgensen, Jr., Physics Research Laboratory, Harvard University

(Received April 2, 1936)

Abstract

The empirical band spectrum rho-values, ρ^{*}, as computed from the constants of LiH and LiD depart markedly from the ratio of the reduced masses, $\rho=\left(\mu / \mu^{i}\right)^{\frac{1}{2}}$. The isotope discrepancy, $\left(\rho^{*}-\rho\right)$ is positive for the 11 band constants measured for the ground state and negative for 10 of the 13 in the upper state. By using Dunham's equations, the anharmonicity constants $a_{1}, a_{2} \cdots a_{\text {o }}$ are computed for the ground state and the effect of anharmonicity on the isotope ratio calculated. In only 2 cases out of 5 does this reduce the isotope discrepancy and then by amounts from 6 to 22 percent. In the upper state the anharmonicity constants must be got by a laborious

Abstract

approximation process. It is shown that the resulting set of a values accounts quite satisfactorily for both the sign and value of the 9 band constants, which have been previously reported as abnormal. This well-known abnormality can therefore not be ascribed in any significant measure to L uncoupling. The Dunham corrections further reduce the isotope discrepancy in 4 out of 5 cases by an average of about 25 percent. The dissociation energies (Morse) are found to be for $\mathrm{LiD}, \mathrm{D}_{0}{ }^{\prime \prime}=2.53, \mathrm{D}_{0}{ }^{\prime}=1.15$ volts and for $\mathrm{LiH} \quad \mathrm{D}_{0}{ }^{\prime \prime}=2.54$ and $\mathrm{D}_{0}{ }^{\prime}=1.18$ volts (all ± 0.2 volt and measured from the $v=0$ level).

Introduction

THE ${ }^{1} \Sigma \rightarrow{ }^{1} \Sigma$ band spectra of LiH and LiD are of particular interest for testing the finer points of the theory of molecular spectra for two reasons. In the first place the molecules are relatively light and therefore the isotope shifts to be expected are larger than for any known molecules except H_{2} and HD. In the second place the upper electronic state is quite abnormal in that the molecules appear to shrink in size as well as to vibrate more rapidly as the amount of vibrational energy increases. Similar effects are present in the case of the hydrides of Na and K though they are there less pronounced in magnitude than in the present case. In addition the simplicity of the structure of ${ }^{1} \Sigma \rightarrow{ }^{1} \Sigma$ bands is of great assistance in the measurement of those molecular constants on the precise determination of which the present discussion so largely depends.

Preliminary accounts of results and the data on which the present paper depends have been given earlier. ${ }^{1}$

It is now well known experimentally that the molecular constants of hydrides and deuterides ($M H$ and $M D$) are not in general related precisely by powers of the reduced mass

[^0]ratio $\rho \equiv\left(\mu / \mu^{i}\right)^{\frac{1}{2}}$, where $\mu=M H /(M+H)$ and $\mu^{i}=M D /(M+D)$, of the simple isotope theory. As here defined $\rho=0.750486$ and is therefore <1 and we find in the ground state that the eleven constants which can be measured with reasonable certainty all give ratios (say ρ^{*}) which are slightly nearer unity.

Thus ($\rho^{*}-\rho$) which we may call the isotope discrepancy is in every case positive. In the first excited state, on the other hand, we find $\left(\rho^{*}-\rho\right)$ is positive for only three of the constants and negative for the other ten. It seems probablealthough sufficient data are not at hand for certainty-that the first result, i.e., $\left(\rho^{*}-\rho\right)>0$, is the normal behavior for the ground states of most molecules.

As in Part II we shall write the complete energy expression (in. cm^{-1}) for a rotatingvibrating diatomic molecule in a singlet state as

$$
\begin{align*}
\frac{W}{h c}=\frac{W_{0}}{h c}+\sum_{l=0,1 \ldots} & \sum_{j=0,1 \ldots} \\
& \times Y_{l j}^{*}\left(v+\frac{1}{2}\right)^{l}[J(J+1)]^{j} \tag{1}
\end{align*}
$$

The empirically determined "rho-value," $\rho_{l j}{ }^{*}$ referred to in the paragraph above, is then given by $\left(Y_{l j}{ }^{i *} / Y_{l j}{ }^{*}\right)^{(1 / l+2 j)}$ and in general varies with both l and j. Since the elementary isotope theory ${ }^{2}$.

[^1]predicts that $\left(\rho_{l j}{ }^{*}-\rho\right)=0$ the departure of this difference from zero may be taken as an indication that the empirical molecular band constants $Y_{l j}{ }^{i *}$ and $Y_{l j}{ }^{*}$ have lost their (assumed) precise mechanical significance. This implies for example that $Y_{10}{ }^{*}$ (identical with the vibration constant $\omega_{e}{ }^{*}$, where the asterisk is used to emphasize its empirical nature) does not give exactly the rate of vibration for small amplitude motions about the equilibrium position. This latter mechanically simple constant we shall designate by ω_{e}. Likewise $Y_{01}{ }^{*} \equiv B_{e}{ }^{*} \neq B_{e}$, where $B_{e}=h / 8 \pi^{2} c I_{e}$, and therefore the actual moment of inertia at the equilibrium position, I_{e}, cannot be computed directly from $h / 8 \pi^{2} c B_{e}{ }^{*}$.

Now although various approximations in the solution of the wave equation for a rotatingvibrating diatomic molecule have been pointed out as partly responsible for these differences, it seems desirable to call attention to the classification of neglected effects given by Van Vleck ${ }^{3}$ in a recent careful reexamination of the whole problem. The neglected energy terms, although not all capable of specific evaluation in forms suitable for immediate comparison with experiment can be considered as due to four effects :

1. Anharmonicity terms due to the interaction of rotation and vibration. This question has been considered in great detail by Dunham ${ }^{4}$ who, writing the molecular potential energy function in the general form :

$$
\begin{equation*}
V=a_{0} \xi^{2}\left[1+a_{1} \xi+a_{2} \xi^{2}+a_{3} \xi^{4}+a_{4} \xi^{5}+\cdots\right] \tag{2}
\end{equation*}
$$

obtained small correction terms to the usual energy expression. These correction terms (actually only five were evaluated, see Eqs. (7) to (11) below) involve the potential coefficients a_{1}, a_{2}, etc., and a factor $p^{2}=\left(\mathcal{B}_{e} / \omega_{e}\right)^{2}$ and in general may be positive or negative depending on the precise form of Eq. (2). Since their values depend on p^{2}, these terms will be very small for heavy molecules and of importance only for hydrides. Here p^{2} varies from $\approx 10^{-4}$ for certain states of $\mathrm{H}_{2}, \mathrm{LiH}$, etc., to 10^{-5} and 10^{-6} for a large number

[^2]of the electronic states of molecules formed from the first two rows of the periodic table.
2. Terms due to the interaction of electronic and nuclear motions (neglecting the interaction of neighboring electronic levels). The use of a potential function of the type of Eq. (2) is equivalent to considering the frequencies of electronic motions so high that the nuclei in a nonvibrating molecule are essentially fixed. To this approximation, terms in the original complete wave equation for a diatomic molecule ${ }^{5}$ which vanish when averaged over the frequencies connected with the electronic motions, are neglected. In higher order approximations of the energy of the system these neglected terms do, however, make contributions. The form of these contributions has been considered by Kronig, ${ }^{6}$ Dieke 7 and Van Vleck ${ }^{3}$ where simple approximations for a few of these terms are given, suitable for electronic states of symmetrical molecules with $L=0$ or for those states (with $L \neq 0$) which can be satisfactorily approximated by considering the nuclei coalesced. The precise evaluation of these terms in the general case requires more detailed knowledge of the molecular wave-functions concerned. They do, however, contain p^{2} as a factor and probably tend to increase both $\left(\rho_{10} *-\rho\right)$ and ($\left.\rho_{01}{ }^{*}-\rho\right)$. The remaining corrections arise from the interaction of other electronic states with the one under consideration and are of two sorts.
3. L uncoupling terms. ${ }^{8}$ These are due to the interaction of electronic states whose Λ values differ by ± 1, are zero for $\sigma^{1} \Sigma$ states and have no appreciable effect on vibrational constants, i.e., the coefficients $Y_{l 0}{ }^{*}$. Their sign is + or - according as the perturbing state is above or below the one in question. They vary as b_{e} / ν, where $\nu \approx$ the electronic separation of the states involved.
4. Terms arising from the interaction of states of the same Λ value. ${ }^{3}$ These terms are of a distinctly new type and do not affect the rotational constants $Y_{0 j}{ }^{*}$. They also are of the order of B_{e} / ν and may be + or - .

[^3]A detailed evaluation of the effects (3) and (4) requires of course a fairly complete knowledge of the electronic states of the molecule in question. Since the corrections of these four types (unless an actual large scale "perturbation" is present) are usually small, we can treat them as independently additive. Consequently we can write:

$$
\begin{equation*}
Y_{l j}^{*}=Y_{l j}\left[1+\left(\Delta_{1}\right)_{l j}+\left(\Delta_{2}\right)_{l j}+\left(\Delta_{2}\right)_{l j}+\left(\Delta_{4}\right)_{l j}\right] \tag{3}
\end{equation*}
$$

where Y_{l} is the mechanically significant value $Y_{l j}{ }^{*}$ would assume if the contributions $\left(\Delta_{1}\right)_{l j}$, etc., of the above effects were zero or experimentally undetectable. Here then

$$
\begin{equation*}
Y_{l j}{ }^{i *} / Y_{l j}^{*}=\left(\rho^{*}\right)^{l+2 j} \tag{4}
\end{equation*}
$$

and since ρ is usually near unity we may write to the same degree of approximation :

$$
\begin{equation*}
\left(\rho_{l j} *-\rho\right)=\Delta_{1} \rho_{l j}+\Delta_{2} \rho_{l j}+\Delta_{3} \rho_{l j}+\Delta_{4} \rho_{l j} \tag{5}
\end{equation*}
$$

where in general $\Delta_{4} \rho_{l 0}$ and $\Delta_{4} \rho_{0 j}$ will be zero.
From the above it is apparent that only the corrections due to anharmonicity $\left[\left(\Delta_{1}\right)_{l j}\right.$ and $\left.\Delta_{1} \rho_{l j}\right]$ can be computed in a detailed manner at the present time. We therefore propose in this paper to deal primarily with these.

Effects of Vibration and Rotation Interaction

Dunham's calculations of the explicit form of the $Y_{l j}$'s in terms of the anharmonicity constants a_{1} to a_{6} of Eq. (2) indicate that each coefficient of Eq. (1) is of the form :

$$
\begin{align*}
Y_{l j}^{*}=f_{l j}\left(\omega_{e}, B_{e}\right)\left[A _ { l j } \left(a_{1},\right.\right. & \left.a_{2} \cdots\right) \\
& \left.+p^{2} C_{l j}\left(a_{1}, a_{2} \cdots\right)\right] \tag{6}
\end{align*}
$$

and that therefore by neglecting the last three terms of Eq. (3), $Y_{l j}=f_{l j} / A_{l j}$ and $\left(\Delta_{1}\right)_{l j}$ $=p^{2} C_{l j} / A_{l j}$. Here $A_{l j}$ and $C_{l j}$ are functions of the anharmonicity constants $a_{1}, a_{2} \cdots$ and are therefore the same for each isotope, while $f_{l j}$ and p both contain factors dependent on mass and are different in the two cases. In general $f_{l j}$ decreases rapidly with both l and j. Dunham's calculations were carried far enough to obtain five of the $C_{l j}$ terms. Since it will be necessary to refer repeatedly to these equations we shall give them here in a form slightly more suitable for numerical reckoning. ${ }^{8 a}$

[^4]\[

$$
\begin{align*}
& Y_{10}{ }^{*}=\omega_{e}{ }^{*}=\omega_{e}\left[1+p^{2} C_{10}\right], \tag{7}\\
& Y_{01}{ }^{*}=B_{e}{ }^{*}=B_{e}\left[1+p^{2} C_{01}\right], \tag{8}\\
& Y_{02}{ }^{*}=D_{e}^{*}=-4 B_{e} p^{2}\left[1+p^{2} C_{02}\right], \tag{9}\\
& Y_{11}{ }^{*}=\alpha_{1}{ }^{*}=B_{e} p\left[6\left(1+a_{1}\right)+p^{2} C_{11}\right], \tag{10}\\
& Y_{20}{ }^{*}=x_{1}{ }^{*}=B_{e} / 2\left[3\left(a_{2}-1.25 a_{1}{ }^{2}\right)+p^{2} C_{20}\right] \text {, } \tag{11}\\
& Y_{00}{ }^{*}=B_{e} / 8\left[3 a_{2}-1.75 a_{1}{ }^{2}\right] \text {, } \tag{12}\\
& Y_{30}{ }^{*}=x_{2}=B_{e} p / 2\left[10 a_{4}-35 a_{1} a_{2}\right. \\
& \left.+\left(56.25 a_{1}{ }^{2}-8.5 a_{2}\right) a_{2}-22.0313 a_{1}{ }^{4}\right], \tag{13}\\
& Y_{40}{ }^{*}=x_{3}=5 B_{e} p^{2}\left[3.5 a_{6}-15.75 a_{1} a_{2}\right. \\
& +\left(33.9375 a_{3}^{2}-8.125 a_{2}\right) a_{4} \\
& -\left(61.0313 a_{1}{ }^{3}-60.375 a_{1} a_{2}+7.875 a_{3}\right) a_{3} \\
& +\left(90.8791 a_{1}{ }^{4}-77.9531 a_{1}{ }^{2} a_{2}\right. \\
& \left.\left.+4.6875 a_{2}{ }^{2}\right) a_{2}-22.6084 a_{1}{ }^{6}\right], \tag{14}\\
& Y_{21}{ }^{*}=\alpha_{2}=6 B_{e} p^{2}\left[5 a_{3}-\left(3+13 a_{1}\right) a_{2}\right. \\
& \left.+\left(10+7.5 a_{1}+7.5 a_{1}^{2}\right) a_{1}+5\right], \tag{15}\\
& Y_{31}{ }^{*}=\alpha_{3}=20 B_{e} p^{2}\left[7 a_{5}-\left(4.5+25.5 a_{1}\right) a_{4}\right. \\
& +\left(14+26.25 a_{1}-22.5 a_{2}+54.375 a_{1}{ }^{2}\right) a_{3} \\
& -\left(8.5+45 a_{1}-6.375 a_{2}+59.0625 a_{1}{ }^{2}\right. \\
& \left.-51.375 a_{1} a_{2}+94.3125 a_{1}{ }^{3}\right) a_{2} \\
& +\left(21+28.125 a_{1}+35.25 a_{1}{ }^{2}\right. \\
& \left.\left.+29.7422 a_{1}{ }^{3}+29.7422 a_{1}^{4}\right) a_{1}+7\right], \tag{16}\\
& Y_{12}{ }^{*}=\beta_{1}=12 B_{e} p^{3}\left[4 a_{2}-\left(9+4.5 a_{1}\right) a_{1}-9.5\right], \tag{17}\\
& Y_{22}=\beta_{2}=24 B_{e} P^{4}\left[15 a_{4}-\left(30+47.5 a_{1}\right) a_{2}\right. \\
& +\left(61+117 a_{1}+103.5 a_{1}{ }^{2}-26 a_{2}\right) a_{2} \\
& \left.-\left(125+123.75 a_{1}+90 a_{1}^{2}+45 a_{1}^{3}\right) a_{1}-65\right] \text {, } \tag{18}\\
& Y_{03}{ }^{*}=H_{e}{ }^{*}=16 B_{e} p^{4}\left(a_{1}+3\right), \tag{19}\\
& Y_{13}{ }^{*}=\gamma_{1}=12 B_{e} p^{5}\left[26.6667 a_{3}-\left(120+88 a_{1}\right) a_{2}\right. \\
& \left.+\left(279+189 a_{1}+63 a_{1}^{2}\right) a_{1}+233\right], \tag{20}\\
& Y_{04}{ }^{*}=64 B_{e} p^{6}\left[a_{2}-\left(9+2.25 a_{1}\right) a_{1}-13\right] \text {, } \tag{21}
\end{align*}
$$
\]

where the $C_{l j}$'s are given by

$$
\begin{gather*}
C_{10}=\frac{1}{4}\left[25 a_{4}-47.5 a_{1} a_{3}+\left(57.375 a_{1}{ }^{2}\right.\right. \\
\left.\left.\quad-16.75 a_{2}\right) a_{2}-18.0469 a_{1}^{4}\right] \tag{22}\\
C_{01}=\frac{1}{2}\left[15 a_{3}-\left(9+23 a_{1}\right) a_{2}\right. \\
\left.\quad+\left(14+10.5 a_{1}+10.5 a_{1}^{2}\right) a_{1}+15\right] \tag{23}\\
C_{02}=\frac{1}{2}\left[-45 a_{4}+\left(90+102.5 a_{1}\right) a_{3}\right. \\
-\left(119+207 a_{1}+166.5 a_{1}^{2}-46 a_{2}\right) a_{2} \\
\\
+\left(199+173.25 a_{1}+126 a_{1}^{2}\right. \tag{24}\\
\\
\left.\left.+62 a_{1}^{3}\right) a_{1}+163\right]
\end{gather*}
$$

$$
\begin{align*}
C_{11}= & {\left[175 a_{5}-(112.5+397.5) a_{4}\right.} \\
& +\left(190+356.25 a_{1}-357.5 a_{2}\right. \\
& \left.+643.125 a_{1}^{2}\right) a_{3}-\left(167.5+459 a_{1}\right. \\
& -125.625 a_{2}+602.4375 a_{1}^{2}-584.625 a_{1} a_{2} \\
& \left.+891.1875 a_{1}^{3}\right) a_{2}+\left(285+286.875 a_{1}\right. \\
& +288.75 a_{1}^{2}+243.6328 a_{1}{ }^{3} \\
& \left.\left.+243.6328 a_{1}^{4}\right) a_{1}+175\right], \tag{25}\\
C_{20}= & \frac{1}{2}\left[256 a_{6}-682.5 a_{1} a_{5}+\left(1066.875 a_{1}^{2}\right.\right. \\
& \left.-442.5 a_{2}\right) a_{4}-\left(1491.5625 a_{1}^{3}\right. \\
& \left.-1833.75 a_{1} a_{2}+271.25 a_{3}\right) a_{3} \\
& +\left(1873.3203 a_{1}^{4}-1940.1563 a_{1}^{2} a_{2}\right. \\
& \left.\left.+213.375 a_{2}^{2}\right) a_{2}-408.3106 a_{1}^{6}\right] . \tag{26}
\end{align*}
$$

From the equations it is at once apparent that if all of the Y^{*} 's could be determined with comparable precision most of the a 's could be determined in two or more ways. Actually $Y_{00}{ }^{*}$ is not measurable directly, $Y_{04}{ }^{*}$ is seldom obtained and only an extremely complete and careful analysis gives the α 's, β 's or γ 's with enough accuracy to be of much value. The detailed procedure to be employed therefore depends on the data available and in any event the uncertainty in a given a increases with its subscript.

Ground State

In the ground state of both LiH and LiD the quantities ω_{v}, B_{v}, D_{v} and H_{v} change so regularly with v that relatively good values of most of the smaller constants are obtainable. It is desirable therefore to compute the a 's from the smaller constants and to use these for determining independently the correction factors $C_{l j}$ of Eqs. (22) to (26). This is open to the objection that the corresponding correction terms are not known for Eqs. (13) to (21) and may be relatively important. Since their contributions to the total energy expression will be small if not experimentally undetectable this means merely that to represent data of a given precision we need the a 's very much less accurately.

A glance at Eqs. (13) to (21) shows that a_{1} can be obtained from (19) and thence a_{2} from (17). Then a_{3} can be obtained from either (15) or (20) and a_{4} from (13) or (18). Finally a_{5} and a_{6} can be obtained from (16) and (14), respectively. The results of these calculations are given in Table I for both LiH and LiD where because of the larger number of bands observed in the latter

Table I. Potential coefficients for ground state.

Eq.	a_{n}	Li $^{2} \mathrm{H}$	Li${ }^{2} \mathrm{D}$
(19)	a_{1}	-1.84	-1.858
(17)	a_{2}	+2.33	+2.580
(15)	a_{3}	-2.69	-3.446
(20)		$-2.98 \dagger$	-3.456
(13)			
(18)	a_{4}	$+5.51 \dagger$	$+5.79 \dagger$
(14)	a_{5}	-14.35	+6.53

\dagger Values so marked are the more reliable of a pair.
case the results for LiD are more trustworthy. When a given a is obtained in two ways, one usually can be recognized as the more reliable. Thus x_{2} contributes 26 percent of the final value 5.79 of a_{4} in Eq. (13) while β_{2} contributes 23 percent towards 6.53 in Eq. (18). Since x_{2} is probably more certain than the very small β_{2} the first value is the more dependable. Such values are indicated by a dagger. It should be further remarked that since $\alpha_{3}\left(\equiv Y_{31}{ }^{*}\right)$ was too small to be measured for either isotope, theoretically a_{5} could not be determined. Actually, however, solution of Eq. (16) for a_{5} shows that unless $\left|\alpha_{3}\right|$ exceeds considerably its rough theoretical value of 1.3 percent $\left|\alpha_{2}\right|$, a reasonably good value should result from setting $\alpha_{3}=0$. Likewise in the case of a_{6} determined from Eq. (14) we require $x_{3}\left(\equiv Y_{40}{ }^{*}\right)$ which could be measured only for LiD . Since this occurs only in the practically dimensionless ratio $x_{3} / 5 B_{e} p^{2}$ in the solution for a_{6}, the LiD value of this term was employed in finding a_{6} for LiH . The coefficients are seen to alternate regularly in sign and to increase almost linearly in absolute value with the subscript. This as Dr. H. M. James, in this laboratory, has found, is apparently a characteristic of normal electronic levels.

With a reasonably good set of a values we are now in a position to do several things. We may first determine from Eqs. (7) and (8) better approximations to the mechanically significant constants ω_{e} and B_{e}. These then enable us to determine what we might call the Dunham approximation to $D_{e}{ }^{*}, x_{1}{ }^{*}$ and $\alpha_{1}{ }^{*}$, and finally to determine $\Delta_{1} \rho_{l j}$ the Dunham contributions to the isotope discrepancy. The first step gives us

$$
\begin{array}{ll}
Y_{10}{ }^{i *}=\omega_{e}{ }^{i}[1+1 / 10,042], & Y_{10}{ }^{*}=\omega_{e}[1+1 / 5660], \\
Y_{01}{ }^{i *}=B_{e}{ }^{i}[1-1 / 7376], & Y_{01}{ }^{*}=B_{e}[1-1 / 4157] .
\end{array}
$$

Table II.

(li)	$C_{l j}$	Observed	$\underset{\text { Dunham }}{\text { LUES of }} \boldsymbol{Y}_{l_{j}{ }^{i *}}$	LiD) Kratzer	Pekeris	Observed	$\begin{gathered} \text { Values of } Y_{l_{l}}{ }^{*} \\ \text { Dunham } \end{gathered}$	$\underbrace{(\text { FOR }}_{\text {Kratzer }}$	Pekeris
02	-35.69	$-2.856 \cdot 10^{-4}$	-2.72510 ${ }^{-4}$	-2.727	-	$-8.62 \cdot 10^{-4}$	-8.58510^{-4}	-8.594.10 ${ }^{-4}$	-
11	-235.6	0.09198	-0.0875	-0.1060	-0.0780	-0.2132	-0.2070	-0.2480	-0.1823
20	-837	-13.23	-11.046	12.70	-	-23.20	-19.64	22.54	-

Table III. Ground state isotope effects.

BAND ConSTANT	$(l j)$	$A_{l j}$	$C_{l j}$	$\rho_{l j}{ }^{*}$	$\left(\rho_{l j}{ }^{*-\rho)}\right.$	$\Delta_{1 \rho_{l j}}$	$\Delta_{1 \rho_{l j} /\left(\rho_{l j}{ }^{*}-\rho\right)}$
$\omega_{e}{ }^{*}$	10	1	+6.18	0.750628	$+0.00014_{2}$	-0.00006	-42%
$B_{e}{ }^{*}$	01	1	-8.42	.750685	+.00020	+.00004	$+22 \%$
$D_{e}{ }^{*}$	02	-35.69	.7520	+.0015	+.000084	$+6 \%$	
$\alpha_{1}{ }^{*}$	11	$6\left(1+a_{1}\right)<1$	-235.6	.7556	+.0051	-.000143	-3%
$x_{1}{ }^{*}$	20	$3\left(a_{2}-1.25 a_{1}{ }^{2}\right)<1$	-837	.7551	+.0046	-.000754	-16%

(+ sign in the last column indicates that the Dunham correction decreases the isotope discrepancy.)
Table IV. Upper state isotope effects.

BAND Constant	$(l j)$	$A_{l j}$					
$\omega_{e}{ }^{*}$	10	1	$\rho_{l j}$	-53.25	0.770918	+0.02043	+0.002618
$B_{e}{ }^{*}$	01	1	-46.22	.754561	+.004075	+.001136	$+13 \%$
$D_{e}{ }^{*}$	02	1	+214.4	.7424	-.008	-.00264	$+30 \%$
$\alpha_{1}{ }^{*}$	11	+0.83538	+3550	.2036	-.1622	-.06963	$+43 \%$
$x_{1}{ }^{*}$	20	+18.064	-8840	$.6951_{2}$	$-.0553_{7}$	+.01203	-22%

These results give $p^{i^{2}}=2.859 \times 10^{-5}$ and p^{2} $=1.611 \times 10^{-5}$ and enable the observed values of $D_{e}{ }^{*} x_{1}{ }^{*}$ and α_{1} to be compared with the Dunham approximations as well as those of Kratzer ${ }^{9}$ and in the case of $\alpha_{1}{ }^{*}$, of Pekeris. ${ }^{10}$ The numerical values are collected in Table II, where it appears that the difference between Kratzer's and Dunham's values for $D_{e}{ }^{*}$ are inappreciable and fairly close to the observations. In the case of $\alpha_{1}{ }^{*}$ Dunham's values are the best, though differing by more than the experimental uncertainty, with Kratzer's too high and Pekeris' as much too low. The agreement in the case of $x_{1}{ }^{*}$ is not as good and Kratzer's expression in this case lies closer to the observations.

Isotope Ratios

Turning to the isotope relations a little manipulation of Eq. (6) shows that we can write

$$
\begin{equation*}
\Delta_{1} \rho_{l j}=-\left[\rho\left(p^{2}-p^{\prime 2}\right) /(l+2 j) A_{l j}\right] C_{l j}, \tag{27}
\end{equation*}
$$

[^5]where $\rho=0.750486$. We find also that $\rho_{10}{ }^{*}$ $=0.750628$ and $\rho_{01}{ }^{*}=0.750685$. Hence $\left(\rho_{10}{ }^{*}-\rho\right)$ $=+0.00014_{2}$ and $\left(\rho_{01} *-\rho\right)=+0.00020$. But from Eq. (27) we have $\Delta_{1} \rho_{10}=-0.00006$ and $\Delta_{1} \rho_{01}$ $=+0.00004$. Therefore the residual discrepancy ($\rho_{l j} *-\rho-\Delta_{\mathrm{J}} \rho_{l j}$), in the first case is increased to +0.00020 and in the second decreased to +0.00016 . Since L uncoupling is ruled out for the ground $\sigma^{1} \Sigma$ state the first discrepancy is presumably due to effects (2) and (4) while the second must be due to effect (2) (the Kronig effect) alone, since effect (4) does not influence rotational constants (and particularly $B_{e}{ }^{*}$) appreciably. Similar calculations have been carried out for $\rho_{02}{ }^{*}, \rho_{11}{ }^{*}$ and $\rho_{20}{ }^{*}$ and the results are collected in Table III where it is seen that the Dunham effect is inappreciable in the case of $\alpha_{1}{ }^{*}$ and varies from 16 to 42 percent of the total discrepancy in the other cases. In only two cases does it decrease the discrepancy.

Excited State (Calculation of a Values)

The attempt to determine the a values for the excited state in the same way as for the ground
state immediately leads to quite discrepant values. Thus Eq. (19) gives for a_{1} roughly -2 whereas Eq. (10) (neglecting $p^{2} C_{11}$) gives -0.814 . Now the discrepancy may be due to the uncertainty in $H_{e}{ }^{*}$ as measured, or to the neglect of $p^{2} C_{03}$ in Eq. (19), of $p^{2} C_{11}$ in Eq. (10) as well as of effects (2), (3) and (4) above. Whatever the difficulty, a reasonable value for a_{1} cannot' be obtained by averaging such divergent values-and since the value of a_{2} depends to such an extent on the value of a_{1}, using Eqs. (11) and (17) we have four widely different values for a_{2} with no basis for preferring any particular one of them. As a result, beyond a_{2} even the sign of the higher a 's is in doubt. After following down all the possibilities it soon became probable that the neglect of the Dunham correction terms was not the primary difficulty-but that the real trouble arose from the difficulty in extrapolating the measured values of D_{v} and H_{v}, respectively, to obtain $D_{e}{ }^{*}$ and $H_{e}{ }^{*}$. This uncertainty was such as to produce even greater errors in $\beta_{1}, \gamma_{1}, \beta_{2}$, etc., and consequently to render the values of a_{1}, a_{2}, a_{3} and a_{4} as obtained respectively from Eqs. (19), (17), (15) and (13) quite untrustworthy. It seemed accordingly necessary to resort to a method of successive approximation, using only those experimental constants which could be determined fairly reliably from least squares representation of the remaining data, viz., the values of ω_{v} and B_{v}. Since the variation with vibration of ω_{v} and B_{v} was much smaller for LiD than for LiH , the calculations were carried out for the LiD data (actually the LiH data gave comparable resultsthough the actual numerical values depended uncomfortably on the precise number of observations used in the least-square reckonings). The necessary expressions for LiD are:

$$
\begin{aligned}
& \omega_{v}=180.711+13.987 u-1.1784 u^{2}+0.07932 u^{3} \\
&-0.00353 u^{4}+0.00006940 u^{5}(7 \text { points })
\end{aligned}
$$

and

$$
\begin{aligned}
B_{v}= & 1.6048_{1}+0.015940 u-0.0023732 u^{2} \\
& +0.00012783 u^{3}-0.00000417 u^{4}(6 \text { points }) .
\end{aligned}
$$

An examination of the equations from (10) to (17) then shows that the a 's of odd subscript can be obtained from the rotational constants α_{1}, α_{2}, and α_{3} while the a 's of even subscript can be obtained from the vibrational constants x_{1}, x_{2}
and x_{3}. The general procedure was to determine a first approximation to a_{1}, say a_{11}, from Eq. (10) by neglecting $p^{2} C_{11}$. With this a first approximation to a_{2}, say a_{21}, was then obtained from Eq. (11) neglecting $p^{2} C_{2} O$. Then by using Eqs. (15), (13), (16) and (17) in order, a_{31}, a_{41}, a_{51} and a_{61} were obtained. It was then possible to compute C_{11} and C_{20} approximately to get the second approximation of a_{1} and a_{2}, say a_{12} and a_{22}, respectively. This led then to better values for the higher a 's, to more reliable values for C_{11} and C_{20}, etc. The process is unfortunately very tedious and while not converging very rapidly soon gives results which do not oscillate very much in successive stages of the calculations.

The results are given in Table V for $a_{n 2}$ and $a_{n 5}$ together with the values of $C_{l j}$ resulting. ${ }^{11}$

Table V. Potential coefficients for upper state.

Eo.	$\begin{aligned} & \text { BAND } \\ & \text { CONSTANT } \end{aligned}$	A_{n}	$A_{n 2}$	$A_{n_{5}}$		$\begin{gathered} \text { Value of } \\ C_{l j} \end{gathered}$
10	$Y_{11}{ }^{*}=\alpha_{1}{ }^{*}$	a_{1}	-0.8604	-0.8608	C_{10}	-53.45
11	$Y_{20}{ }^{*}=x_{1}{ }^{*}$	a_{2}	+6.884	+6.948	C_{01}	-46.22
15	$Y_{21}{ }^{*}=\alpha_{2}$	a_{3}	-11.33	-11.44	C_{02}	+214.40
13	$Y_{30}{ }^{*}=x_{2}$	a_{4}	+30.40	+31.11	C_{11}	$+3550$
16	$Y_{31}{ }^{*}=\alpha_{3}$	a_{5}	-66.57	-67.77	C_{20}	-8840
17	$Y_{10}{ }^{*}=x_{3}$	a_{6}	+67.32	+68.48		

The striking fact is the rapidity with which the coefficients increase in absolute magnitude as compared with the more normal ground state, and in particular the fact that a_{2} is over 12 times as large as $\left|a_{1}\right|$. This will be discussed in more detail below.

The next step was to determine whether this set of a values was satisfactorily consistent with the predictions of the remaining equations. For this purpose Eq. (7) was used to determine from $Y_{10}{ }^{*}=\omega_{0}^{*}$ the true value, ω_{e}, of the rate of oscillation for zero amplitude, and from Eq. (8), $Y_{01}{ }^{*}=B_{e}{ }^{*}$, the true value of $h / 8 \pi^{2} I$. These then gave $p^{2}=\left(B_{e} / \omega_{e}\right)^{2}$ and from Eqs. (9) and (19) theoretical values of $Y_{02}{ }^{*}=D_{e}{ }^{*}$ and $Y_{03}{ }^{*}=H_{e}{ }^{*}$, respectively, could be obtained. The results were $Y_{02}{ }^{i *}($ calc. $)=-5.162 \times 10^{-4}, Y_{03}{ }^{i *}($ calc. $)=$ $+34.22 \times 10^{-8}, \quad Y_{02} *$ (calc. $)=-16.88 \times 10^{-4}$ and $Y_{03}{ }^{*}($ calc. $)=202.18 \times 10^{-8}$. It was next necessary in each case to obtain least-square curves which

[^6]passed through the observed data and these calculated values for $v=-\frac{1}{2}$. Since measurements could not be made for $v=1$ on LiD (and were uncertain on LiH) it was necessary to assign a probable value to say D_{1}, compute a leastsquare expression for D_{1} to D_{5} and calculate a $D_{e}{ }^{*}$ by setting $v=-\frac{1}{2}$. After a few trials a value of D_{1} could be chosen such that this extrapolated $D_{e}{ }^{*}$ coincided with the one calculated theoretically. This gave for LiD
\[

$$
\begin{aligned}
\beta_{1}{ }^{i} & =+2.64 \times 10^{-4}, & \beta_{2}{ }^{i} & =-0.8907 \times 10^{-5}, \\
\beta_{1} & =+11.23 \times 10^{-4} & \text { and } & \beta_{2}
\end{aligned}
$$=-4.7353 \times 10^{-5} .
\]

A similar procedure in the case of the H_{v} values gave for $\mathrm{LiD} \gamma_{1}{ }^{i}=-39.54 \times 10^{-8}, \gamma_{2}{ }^{i}=+18.420$ and for $\mathrm{LiH}, \quad \gamma_{1}=-250.01 \times 10^{-8}$ and $\gamma_{2}=$ $+122.44 \times 10^{-8}$. Now it is to be admitted at once that great reliance cannot be placed on the actual values obtained from such an attempt to represent by least squares functions changing as rapidly as are D_{v} and H_{v}. The results, however, do represent a considerable improvement over those obtained empirically in Parts I and II. Thus in the case of LiD using Eq. (17) and the old value of $\beta_{1}{ }^{i}=1.32 \times 10^{-4}$ we find $a_{2}=+3.56$ which is about half the value given in Table V. If we use the new value of $\beta_{1}{ }^{i}$ given above we find $a_{2}=+5.90$ a result differing by only 15 percent. Likewise for LiH from the old $\beta_{1}\left(=10.1 \times 10^{-4}\right)$ we have $a_{2}=5.30$ while from the new $\beta_{1}, a_{2}=5.80$, likewise a shift in the right direction. Again using Eq. (20) and the values of $\gamma_{1}{ }^{i}$ and γ_{1} we have for $\operatorname{LiD} a_{3}($ old $)=+3.9, a_{3}$ (new) $=-5.9$ and for LiH, a_{3} (old) $=+3.7, a_{3}$ (new) $=-3.0$. Here the new values are both too small but have been altered 200 percent in the right direction and actually changed in sign by our process. Finally, using Eq. (18) and the values of $\beta_{2}{ }^{i}$ and β_{2} we have for $\mathrm{LiD}: a_{4}$ (old) $=+69.0$ and a_{4} (new) $=+51.2$, while for $\mathrm{LiH}: a_{4}$ (old) $=+56.5$ and a_{4} (new) $=+53$, again a shift in each case in the right direction.

We therefore conclude that to the extent that (1) the undetermined Dunham corrections $p^{2} C_{l j}$ and (2) the omitted Kronig and Van Vleck terms may be neglected-the anomalous behavior of the upper states of LiD and LiH can be accounted for semi-quantitatively in terms of a potential curve which departs in a characteristic
way from the usual shape. It is thus apparent that the anomalies of the upper state involving some 9 small coefficients which differ in sign or magnitude from the usual case, are pictured in a very satisfactory way in terms of a single potential curve and that this same curve accounts for a sizable fraction of the observed isotope discrepancy.

Upper State Isotope Relations

We are now in a position to compute the Dunham contributions, $\Delta_{1} \rho_{l j}$, to the isotope discrepancies just as in the case of the ground state. The results of this with $\rho\left(p^{2}-p^{i^{2}}\right)$ of Eq. (27) $=0.4917 \times 10^{-4}$ are given in Table III where the striking fact is apparent that the isotope discrepancies are reduced in four out of five cases, the Dunham term varying from 13 to 43 percent of the total discrepancy $\left(\rho_{l_{j}}{ }^{*}-\rho\right)$.

Potential Curves

With the a values determined we may now write approximations to the potential curves (convergent near the equilibrium positions only) of the ground ${ }^{1} \Sigma$ and upper ${ }^{1} \Sigma$ states of LiH and LiD. These are for the ground state:

$$
\begin{align*}
& V=a_{0}{ }^{\prime} \xi^{2}\left(1-1.858 \xi+2.580 \xi^{2}-3.45 \xi^{3}\right. \\
&+5.79 \xi^{4}-12.2 \xi^{5}+20.7 \xi^{6}+\cdots \tag{28}
\end{align*}
$$

where for $\mathrm{LiH} a_{0}{ }^{\prime}=6.57078 \times 10^{4}$ and for LiD $a_{0}{ }^{\prime}=6.5715 \times 10^{4}$ and for the upper state:

$$
\begin{align*}
V=a_{0}{ }^{\prime \prime} & \xi^{2}\left(1-0.8608 \xi+6.948 \xi^{2}-11.44 \xi^{3}\right. \\
& +31.11 \xi^{4}-67.77 \xi^{5}+68.48 \xi^{6}+\cdots \tag{29}
\end{align*}
$$

where for $\mathrm{LiH} a_{0}{ }^{\prime \prime}=4.91646 \times 10^{3}$ and for LiD $a_{0}{ }^{\prime \prime}=5.11154 \times 10^{3}$.

The ground states for the two molecules are thus very closely alike and follow the usual type lying above the osculating parabola for $\xi<0$ and below for $\xi>0$. On the other hand, the curves for the upper states differ somewhat more from one another and are distinctly anomalous in that although they rise above the corresponding parabolas for $\xi<0$ they quickly cross over and pass above again for small positive values of ξ. This behavior is more readily seen in Fig. 1 where the dotted curve is given by $a_{0}{ }^{\prime \prime} \xi^{2}$ and the heavy curve represents Eq. (28). It is this peculiar form of anharmonicity in the upper state which

Fig. 1. The heavy line represents Eq. (29) while the parabola is $a_{0} \xi^{2}$. The rapid rise of the curve above the parabola on the right is to be noted. It is this which causes the molecule to travel more rapidly than usual along the right branch and hence to have an average ξ, ξ, which is less than ξ_{0}. The corresponding average values for $v=0,1$, etc., are indicated by circles at the appropriate height. It is this peculiar shape which likewise causes the observed vibrational rate ω_{v} to increase with v to a maximum value before decreasing thereafter in the normal way. The heavy curve of course must eventually fall away and cross the parabola as the molecule goes toward dissociation, though that point is far out of the range of validity of Eq. (29).
accounts in detail for the anomalies to which attention has been called so often in the literature. We therefore assume that although some L uncoupling may be present in this state it probably does not have much effect on the potential curve and is reflected only in the residual isotope discrepancies $\left(\rho_{l j} *-\rho-\Delta_{1} \rho_{l j}\right)$.

For purposes of reference the values of $B_{e}{ }^{*}$ and $\omega_{e}{ }^{*}$ as well as the values corrected for the Dunham effect for both states of the two molecules are given as follows:
$\operatorname{LiD}\left\{\begin{array}{lll}B_{e}{ }^{i * \prime}=1.6048 & B_{e} e^{i \prime}=1.6107 & r_{e} i^{\prime}=2.5795 \mathrm{~A} \\ \omega_{e}{ }^{i * \prime}=180.711 & \omega_{e}{ }^{i \prime}=181.472 & \\ B_{e} e^{i * \prime}=4.2338 & B_{e^{i \prime}}=4.2344 & r_{e} e^{\prime \prime}=1.59091 \mathrm{~A} \\ \omega_{e}{ }^{i * \prime \prime}=1055.12 & \omega_{e}{ }^{i \prime \prime}=1055.015 & \end{array}\right.$
$\mathrm{LiH}\left\{\begin{array}{lll}B_{e}{ }^{* \prime}=2.8186 & B_{e}{ }^{\prime}=2.8375 & r_{e}{ }^{\prime}=2.5896 \mathrm{~A} \\ \omega_{e}{ }^{* \prime}=234.41 & \omega_{e}{ }^{\prime}=236.225 & \\ B_{e}{ }^{* \prime \prime}=7.5131 & B_{e}{ }^{\prime \prime}=7.5149 & r_{e}{ }^{\prime \prime}=1.5915 \mathrm{~A} . \\ \omega_{e}{ }^{* \prime \prime}=1405.649 & \omega_{e}{ }^{\prime \prime}=1405.401 & \end{array}\right.$
From these the equilibrium separations are found where $\left(r_{e}{ }^{\prime}-r_{e}{ }^{i \prime}\right)=+0.0101 \mathrm{~A}$ and $\left(r_{e}{ }^{\prime \prime}-r_{e}{ }^{i \prime \prime}\right)=$ +0.00055 A .

Further from Eq. (12) we see that the height of the potential curves at the minima should be different for the two isotopes. Thus for the ground state $Y_{00}{ }^{*}=15.93 \mathrm{~cm}^{-1}$ and $Y_{00}{ }^{i *}=8.98$, a difference of $6.95 \mathrm{~cm}^{-1}$, while for the upper state $Y_{00}{ }^{*}=7.39 \mathrm{~cm}^{-1}$ and $Y_{00}{ }^{i *}=0.26 \mathrm{~cm}^{-1}$, a difference of $7.13 \mathrm{~cm}^{-1}$. Consequently we see that the electronic origin of the LiH bands should lie $0.18 \mathrm{~cm}^{-1}$ towards the violet of the LiD bandsan effect unfortunately too small to detect in this case.

These facts together with the data accompanying Eqs. (28) and (29) then enable us to draw three conclusions, viz., (1) the heavier isotopic molecule is the smaller, its potential curve (2) has the greater convexity at the minimum and (3) lies below that of the lighter isotope. These differences it will be recalled are in the same direction as those predicted by Kronig ${ }^{6}$ from the interaction of nuclear and electronic motions (effect (2) above).

By using Morse's expression for the dissociation energy, $D=\omega_{e}^{2} / 4 x$, we have after correcting for the zero-point vibrational energy $\mathrm{D}_{0}{ }^{\prime \prime}=2.53$ volts for LiD and 2.54 volts for LiH where the difference is not significant. If then the upper state dissociates into a normal H atom and a $2^{2} P \mathrm{Li}$ atom we have $\mathrm{D}_{0}{ }^{\prime}=1.15$ volts for LiD and $\mathbf{D}_{0}{ }^{\prime}=1.18$ volts for LiH . These results due to the small number of vibrational levels in the ground state can hardly be depended on to more than ± 0.2 volt.

[^0]: ${ }^{1}$ Crawford and Jorgensen, Phys. Rev. 45, 737 (1934); Part I, Phys. Rev. 47, 358 (1935) ; Part II, Phys. Rev. 47, 932 (1935); Phys. Rev. 48, 475 (1935). In Parts I and II complete references to the earlier literature are given.

[^1]: ${ }^{2}$ See, for example, Jevons, Report on the Spectra of Diatomic Molecules, p. 212.

[^2]: ${ }^{3}$ Van Vleck, Phys. Rev. 49, 417A (1936); J. Chem. Phys. (in press). Note that the energy expressions used by Van Vleck are in absolute energy units while ours are in cm^{-1}.
 ${ }^{4}$ Dunham, Phys. Rev. 41, 721 (1932).

[^3]: ${ }^{5}$ Van Vleck, Phys. Rev. 33, 467 (1929), Eq. (11).
 ${ }^{6}$ Kronig, Physica 1, 618 (1934).
 ${ }^{7}$ Dieke, Phys. Rev. 47, 661 (1935).
 ${ }^{8}$ Hill and Van Vleck, Phys. Rev. 32, 269 (1928).

[^4]: ${ }^{8 a}$ For convenience fractions have been divided out and given uniformly to four decimals. This is quite accurate enough for any experimental data.

[^5]: ${ }^{9}$ Kratzer, Zeits. f. Physik 3, 289 (1920).
 ${ }^{10}$ Pekeris, Phys. Rev. 45, 98 (1934), also Jevons, reference 1, p. 27, and Birge, Bull. Nat. Res. Council (1926), p. 237.

[^6]: ${ }^{11}$ The values of C_{11} and C_{20} are the fourth approximations since these were the values determining the corrections in Eqs. (10) and (11) for the fifth approximations to a_{1} and a_{2}, respectively.

