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A Note on the Possible Effect of Screening in the Theory of Beta-Disintegration

M. E. RosE, Institute for Advanced Study, Princeton, N. J.
(Received March 23, 1936)

The present paper considers the possibility that screening by the atomic electrons has an
appreciable effect on the energy distribution of P-particles emitted by heavy nuclei. A general
formula is derived from which it is possible to conclude that the effect of screening is negligible.
This result is also derived by another method. Finally, an explicit calculation based on the
model of a charged sphere is shown to lead to the same conclusion.

'"N a recent paper Konopinski and Uhlenbeck'
- ~ have remarked that, on the basis of the
Fermi theory of P-disintegration with their
modified interaction, one finds for heavy ele-
ments such as Ra E an energy distribution which

predicts too many slow electrons as compared
with the experimental results. ' An attempt by
these authors to remove this. difficulty by other
modifications of the interaction between the
heavy particle and the electron-neutrino field was
not successful in diminishing the number of slow

electrons without at the same time losing the
degree of asymmetry in the distribution curve
required by experiment. ' Although there may be
some question as to the existence of a real
discrepancy between experiment and the theory,
as modified by Konopinski and Uhlenbeck, it is

of some interest to inquire whether there may be
some influence hitherto not considered which
could appreciably acct the energy distribution.

In this connection it is plausible to consider the
possible effect of screening by the atomic elec-
trons. It is evident, from a qualitative stand-
point, that the screening will alter the distri-
bution curve in the direction of the "free
particle ' distribution' which, incidentally, does
fit the experimental curve for Ra E as given by
Sargent. In the following we shall determine the
effect of screening quantitatively.

By enclosing the system in a "sphere" (whose
size is afterwards allowed to increase without
limit) we may consider the wave function P of

' E. J. Konopinski and G. E. Uhlenbeck, Phys. Rev. 48,
7 (1935).' B.W. Sargent, Proc. Camb. Phil. Soc. 28, 538 (1932).' This feature of the experimental results is apparently
more reliable than the results for the low energy electrons.
See also reference 11.

4 That is, the distribution obtained by neglecting the
Coulomb field of the nucleus.
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the P-particle to be of a discrete type. The
screening can be represented by a Thomas-
Fermi potential'

V= —(nZ/r)4(yr), . y=u(128Z/9~') l (j)
It is to be noted however, that the main argu-
ment given below depends on the use of the
Thomas-Fermi potential only secondarily.

We now select a point rp such that for r )rp a
solution of the wave equation of the W. K. B.
type will be valid, ' and for r &rp the argument of
C in (1) is small enough to allow the approxi-
mation'

4'= 1 —'yr.

Then for r & rp the wave functions will be
Coulombian with the energy 8' replaced by
W' —Up where the constant screening potential
Up= A'Zp. The phase of the wave function at rp

will be denoted by x and the increase in phase
from ro to the classical limit of motion (or to the
boundary of the sphere) by e. Further we label
each state with an index n (radial quantum
number). Then

x„+i—x„+e„+i e„=ir—or d(x+6)/dn = ir (2).
We then apply adiabatically an infinitesimal
perturbation at small r producing an energy
change

bW=XfF(r) ~Pj'dr„„, ,

where F(r) is an arbitrary function of r confined
to nuclear dimensions and X is very small. The
integration in (3) is to be taken over the volume
of the nucleus.

' Q'e use rational. relativistic units, length being measured
in 5/nsc, energy in: mc2 and momentum in mc. In these
units e~ =n (fine structure constant).

s Only differences in phase as given by Eq. (2) below
rather than the exact values of the phases have to be given
correctly by the W. K. B. formulas.' For Z~80, p =0.036 while the singularity in the W. K.
B. solution is at r~ l.
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In general y and 0 could depend on ) and on 5'.
Since the W. K. B. method is supposed to apply
for r &ro and since F='0 in this region one may
consider 0 as depending only on W and not on )
while x naturally depends on both ) and O'. The
perturbation formula (3) is supposed to apply to
a constant n, i.e. , to such changes of x, 0 that

6X+60 =0.
Since 0 is a function only of W and not of ) this
means that

(Bx/BW+BB/BW) BW= XB—X/BX . (4)

Substituting for BW and B(x+B)/BW by means
of (2) and (3) we have

(dpi'/dW) fF(r) lyl'd, .= —(1/ )Bx/Bk, (5)

The right side of this equation is the same for a
given Ii as long as the wave equation is the same.
Thus it is the same for an electron of energy 8'
in the field of a screened nucleus and an electron
of energy 8'—Uo in the field of an unscreened
nucleus. Such states of screened and unscreened
nuclei may be called corresponding states and
the essence of the discussion lies in the possibility
of establishing such a correspondence. The left
side of the equation is the product of the number
of states per unit energy range dn/dW and a
weighted mean of the density I/I'. Since F is

arbitrary (dn/d W) I f I

' at any point in the
nucleus is the same for corresponding screened
and unscreened states. This latter quantity we

shall refer to as the electron density per unit

energy range.
It should be noted that dn/dW and

change by large factors if the standard normaliza-

tion to the same value of r'
I P I

' at inhnity is used.

Also the function F can be generalized to an

operator which may involve the spin indices of
the function P without altering the above proof.
It thus follows that

(dn/d W) ZP„*G,„P„ (5')

is the same for corresponding screened and

unscreened states for any point inside the
nucleus and for an arbitrary Hermitian G„,.

The essential quantities which enter in the
theories of p-decay are all of the form (5')p and

the result of the above consideration can be
expressed without formulas by saying that the
electron distribution is always such as though the

'Cf. E. Fermi, Zeits, f. Physik 88, 161 (1934).

nucleus were not conscious of the screening and
as though it emitted electrons into its immediate
vicinity always in the same way; the only effect
of the screening is then to accelerate the electrons
by the Coulombian repulsion of the screening
electrons and to change the kinetic energy W—Vo

into S' by this acceleration. From this point of
view the result has superficially an appearance of
being self-evident. Actually it requires proof
because it is possible to find examples in which it
is not correct. One such example is given in
section 3 of this note. In fact conclusions reached
in (5) and (5') may be inexact because inter-
ference effects in the space between the nucleus
and the screening charge can change the density
I&I'. These interference effects are neglected in
the W. K. B. method used in obtaining (5). In
the applications to P-decay it is reasonable to use
such an approximation because the screening
potential changes little within a wave-length of
the electron.

Proceeding to the disintegration formula we
write the Konopinski-Uhlenbeck result for the
probability of emission of an electron with
energy between H/" and S'+de as

Pxv(W)dW= W(Wp —W)4p4(W)dW, (6)
t/t/'o being the maximum emission energy. Then it
follows from the above considerations that the
effect of screening is to change this to

P(W)d W
= (W—Vp)(Wp —W)'N(W —Vp)dW. (6')

Since for Z 80, Uo ——0.02, the change in I' is of
the order 3 percent or less. Hence one may
conclude that the effect of screening is neg-
ligible. '

2.

It is possible to arrive at the conclusion
expressed in (5) by another method in which

explicit use of the W. K. B. solution is made. We
denote by p&/r and pp/r the radial functions of
the Dirac P which can be made to fulfill the
normalization condition

where R is the radius of a large sphere in which
the system under considera, tion is enclosed. By

' I am indebted to Professor G. Breit who pointed out
to me the derivation of this result.
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the substitution

v2
——(1+W—V) l p2

one finds that v2 satisfies the differential equation"

d pg/dy +f (y)@2=0. (8)

p2(~) =
I (T+1)/2RTj' sin (ky+'phase), (9)

where T=S"—V and the wave number k is
given by

1'=k'+1. (1o)

In a region where the W. K. B. solution just
begins to be applicable we have

T'+1 k
sin (k'y+ phase),

2R'1 k'

where k' is the wave number and T' the kinetic
energy in this region.

Since 8 can be made much larger than any
other length entering the problem, the phase
shift in the wave function is essentially given by

(12)

From (10), (11) and (12) we find that

I
qgI'/AT=(1+T')/2mk', (13)

which is independent of k and T. Hence keeping
k' the same it follows that I/I'/AT is inde-
pendent of the screening. Since the screening has
the effect of changing k' in accordance with the
energy shift I/I/'~H/" —Vo, it is evident that the
electron density per unit energy range is given
by the corresponding expression in the case of no
screening with the energy lV replaced by W —Vo.

3.

An alternative way in which we could repre-
sent the screening is to use a charged sphere
potential.

V= nZ(1/y 1/y, ) —for y (y—„
V=O for y )y, ; y1/y.

"Cf. G. Breit, Phys. Rev. 38, 463 (1931).The function
f'(r) is defined on p. 470 of this paper.

To (8) the W. K. B. method of solution may be
applied. With

&II ~~(")I'+
I
y2(~) I'2=1

we find

With this model the calculation of the disinte-
gration probability may be carried out with
exact wave functions and thus it is possible to
take into account the interference effects arising
from the reHection of the electron waves by the
charged sphere. The result one obtains is not the
disintegration probability (6') but a more
complicated expression which contains (6') as a
first approximation.

For r (r, the wave function is again the
Coulombian one with the energy displaced by an.
amount Vo while for r) r, linear combinations of
Bessel functions are used. The normalization
constant entering in I/I' will depend on the
wave functions at the point r, . For large Z the
"atomic radius" r, is large compared to unity
(Z 80, y, =28) sothatwemayusetheasymptotic
expansions of the wave functions. The dis-
integration probability thus obtained is

P, (W)dW=P(W)L1+O(y, ') jdW, (14)

where P(W) is given in (6'). The correction term
in (14) denoted by O(y, ') arises from terms
beyond the first in the asymptotic expansions of
the wave functions. These higher terms are of an
oscillatory nature and an average over a range of
large values of the radius r, has been carried out.
Actually the term O(y, 2) contributes a correction
much smaller than the relative difference be-
tween P(W) and Piro'(W) so that to a first
approximation the screening is represented in
the case of the present model in the same manner
as before. "

I wish to express my sincere thanks to Pro-
fessor G. Breit for his many courtesies to me.

"Since the completion of these calculations there has
appeared a notice of a new investigation of the continuous
P-ray spectrum of Ra E by A. I.Alichanow, A. I.Alichanian
and B. S. Dzelepow, Nature 137', 314 (1936). In these
experiments particular attention has been given to the low
energy portion of the distribution and it was found that a
large number of slow electrons are emitted. These authors
have made measurements starting at an energy (not
including the rest energy) of 30 kv and have obtained a
distribution curve which appears to be in agreement with
the Konopins¹iUhlenbeck theory. The appearance of
their curve suggests that. the probability does not tend to
zero at the origin, as is the case with the Sargent curves,
but rather to a finite value comparable with the maximum
probability. With these new measurements as a criterion
in the case of heavy nuclei and with the results for light
nuclei, see especially F. N. D. Kurie, J. R. Richardson and
H. C. Paxton, Phys. Rev. 49, 368 (1936), it seems that the
Konopinski-Uhlenbeck theory is capable of accounting for
all the features of the continuous p-ray spectrum.


